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Quantum metrology with boundary time crystals
Victor Montenegro 1✉, Marco G. Genoni 2✉, Abolfazl Bayat 1✉ & Matteo G. A. Paris 2✉

Quantum sensing is one of the arenas that exemplifies the superiority of quantum technol-

ogies over their classical counterparts. Such superiority, however, can be diminished due to

unavoidable noise and decoherence of the probe. Thus, metrological strategies to fight

against or profit from decoherence are highly desirable. This is the case of certain types of

decoherence-driven many-body systems supporting dissipative phase transitions, which

might be helpful for sensing. Boundary time crystals are exotic dissipative phases of matter in

which the time-translational symmetry is broken, and long-lasting oscillations emerge in open

quantum systems at the thermodynamic limit. We show that the transition from a symmetry

unbroken into a boundary time crystal phase, described by a second-order transition, reveals

quantum-enhanced sensitivity quantified through quantum Fisher information. We also

determine the critical exponents of the system and establish their relationship. Our scheme is

indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensi-

tivity. From a practical perspective, it has the advantage of being independent of initialization

and can be captured by a simple measurement.
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Quantum metrology protocols promise to achieve higher
precision in the estimation of physical parameters
compared with their classical counterparts1–4, with

applications ranging from biology5, optical interferometry6,7,
photonics and imaging8,9. One of the main issues in realizing
quantum metrology protocols is the preparation of resourceful
quantum probes. Besides strategies based on measurement and/or
quantum control10–24, a promising avenue is given by exploiting
critical quantum systems. Two possibilities have been explored:
(i) the ground state of critical Hamiltonians; and (ii) many-body
systems with dissipative phase transitions. In the former, the
ground state of critical Hamiltonians becomes highly sensitive
with respect to the parameters driving the phase transition when
approaching criticality25–39. In the latter, dissipative phase tran-
sitions occur via a gap closing in the spectrum of the Liouvillian
describing the open system dynamics40–42. In this case, the
steady-states present a divergent susceptibility with respect to one
or more parameters characterizing the system evolution. This
allows to exploit dissipative driven phase transitions for metrol-
ogy purposes, in the presence of symmetry-breaking43, with Kerr
resonators44,45, with a finite-component system31,46, and via
continuous measurements47–49.

The breaking of spatial symmetry results in the existence of
crystals. In a seminal paper, Wilczek50 predicted that breaking
temporal symmetry might also be possible, leading to the emer-
gence of time crystals50–52. In many-body systems, this is mani-
fested through long-lasting periodic oscillations of an order
parameter, with zero decay at the thermodynamic limit53. For
not-too-long-range interactions, time crystals cannot emerge in
any system with energy being the only conserved quantity, such
as the ground or Gibbs thermal states54,55. In contrary, long-
range interactions56, density-dependent gauge fields57–60, and
extensive dynamical symmetries61 can facilitate their emergence.
So far, time crystals have been identified for both discrete and
continuous temporal symmetry breakings. The former, which has
been investigated theoretically62–70 and demonstrated
experimentally71–77, can be observed in periodically driven sys-
tems in which an order parameter oscillates with a multiple fre-
quency of the driving field53. The latter, is identified through
dissipative open quantum many-body systems, which includes
both bulk78–80 and boundary time crystals (BTCs)81–83. In con-
trast to dissipative phase transitions, where the Liouvillian gap
closes for both the real and imaginary parts, for BTCs the real
part closes while the imaginary part forms band gaps41,81,84. This
leads to a distinctive feature of BTCs: persistent oscillations in
their stationary dynamics81,85.

The paradigmatic example of a BTC involves a simultaneous
collective driving and dissipation of a system described by a large
spin81. See related works on BTCs in generalized systems86,87.
This model was extensively studied for its quantum optical
properties88,89, along with the critical behavior of the steady-state
of such dynamics90–94, whose signatures have been recently
observed experimentally for a small effective atom number95.
Mean-field analysis of this BTC phase transition has been also put
forward82, the possibility of distinguishing the two phases via
continuous monitoring48,49, and the study of the many-body
quantum correlations building up in the two phases96. Several
open problems still exist: (i) despite analyses that identify the
BTC transition as a second-order type, its critical features (e.g.,
critical exponents) have hardly been investigated; (ii) the possi-
bility of BTC transition as a resource for quantum sensing has not
yet been explored; and (iii) whether a simple physical measure-
ment can reveal the BTC enhanced sensitivity.

In this work, through several finite-size scaling analyses, we
show that the transition from symmetry unbroken into a
boundary time crystal phase can indeed be exploited for

quantum-enhanced sensitivity. This is evidenced as the corre-
sponding quantum Fisher information (QFI) presents a super-
classical scaling Nb with b > 1, in terms of the probe size N, and
thus overcoming the so-called standard quantum limit1–3. We
find the corresponding critical exponents for the QFI through
independent finite-size scaling analyses and establish an equality
among them confirmed by our numerical simulations. This
provides further confirmation for the validity of our analysis.
Finally, we show that a simple measurement can achieve the
aforementioned enhanced precision.

Results
Quantum parameter estimation. In this section, we briefly
review the parameter estimation theory. Quantum parameter
estimation aims to infer an unknown quantity ω encoded in the
quantum state of a probe ρω by performing a proper
measurement97. For a given measurement described by a set of
positive operator-valued measure (POVM) {Πs}, each outcome s
appears with the probability pðsjωÞ ¼ Tr½Πsρω�. The Cramér-Rao
inequality sets a fundamental bound for the estimation of ω for
the given POVM as Var½ω�≥FCðωÞ�198,99, where Var[ω] is the
variance of the estimation and FCðωÞ ¼ ∑spðsjωÞ�1½∂ωpðsjωÞ�2
(∂/∂ω≔ ∂ω) is the classical Fisher information (CFI). Bayesian
estimator and Maximum Likelihood estimator are proven to be
optimal, i.e., to saturate the Cramér-Rao bound, in the asymptotic
limit of large number of measurements, while their near-
optimality properties have been extensively shown in several
experimental instances also in the more practical regime of finite
number of measurements100–102. One can then optimize over all
possible POVMs to achieve the ultimate precision limit deter-
mined by quantum Fisher information (QFI)
FQðωÞ ¼ max

fΠsg
FCðωÞ, resulting in a tighter bound of the Cramér-

Rao inequality Var½ω�≥FCðωÞ�1 ≥FQðωÞ�1. While several
expressions exist for computing the QFI, we use throughout our
work

FQðωÞ ¼ 8 lim
δω!0

1� F ρω�δω; ρωþδω

� �
ð2δωÞ2 ; ð1Þ

where

F ρ1; ρ2
� � ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pqh i
; ð2Þ

is the Fidelity between quantum states ρ1 and ρ2. Note that the
QFI represents the ultimate theoretical sensing precision for a
given probe. This benchmark is of utmost importance as it
determines both the performance achieved by a specific mea-
surement setup and establishes quantum-enhanced sensitivity
concerning a given sensing resource. Both cases are elaborated in
detail later in our work.

The model. We consider a system of N non-interacting spin-1/2
particles forming a pseudospin of length S=N/2. The collective
angular momentum operators are given by Ŝα ¼ 1=2∑jσ

ðjÞ
α , where

σðjÞα (α= x, y, z) is the Pauli matrix at site j. Conventionally, one
can define Ŝ± ¼ Ŝx ± iSy , satisfying ½Ŝþ; Ŝ�� ¼ 2Ŝz , ½Ŝz; Ŝ± � ¼ Ŝ± .

We consider the Hamiltonian of the system to be H ¼ ωŜx, where
ω is the single particle coherent splitting. The evolution of the
open system with collective spin dissipation is given by the
Lindbladian master equation

d
dt

ρ ¼ �iω½Ŝx; ρ� þ
κ

S
Ŝ�ρŜþ � 1

2
ŜþŜ�; ρ

� �� �
¼ L½ρ�; ð3Þ

where L½ρ� is the Liouvillian and κ is the collective dissipation
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rate. Eq. (3) has also been studied in the presence of local
pumping and local anisotropies in the coherent splitting para-
meter, accurately describing some experimental setups103,104. In
such scenarios, the temporal symmetry breaking still survives for
a wide range of noise strengths105. One can interpret the origin of
this master equation by the interaction between our system of N
particles sitting at the boundary of a large bulk with N 0

particles81. This implies that in the thermodynamic limit where
both N 0;N ! 1, the ratio N=N 0 ! 0. The evolution of the
boundary and the bulk is governed by a unitary operation. By
tracing out the bulk degrees of freedom, one gets Eq. (3). At any
time t, the density matrix of the boundary is given by
ρðtÞ ¼ eLtρð0Þ. As ω/κ varies, the steady state ρSS= ρ(t→∞) of
the boundary goes through a phase transition from a static phase
(determined by ω < κ) into a BTC phase with long-lasting total
spin oscillations (determined by ω > κ). In the thermodynamic
limit, the transition is characterized by a spontaneous temporal
symmetry breaking at the transition point ωc= κ81. By numeri-
cally solving (3)106, we focus on sensing the value of ω/κ from the
steady state ρSS across the whole phase diagram.

Boundary time crystals. This section summarizes key features of
the BTCs81. To show the dynamics of the system in two phases, in
Fig. 1a, we depict the z− component of the total spin hŜziðtÞ=N
as a function of time κt for several systems sizes N in the sym-
metry unbroken phase (ω < κ). The evolution is size independent,
reaching its steady state without showing any oscillation. In
contrast, as shown in Fig. 1b, in the BTC phase (ω > κ), the
system shows persistence oscillations and decay gets weaker as
the system size increases. This suggests that in the thermo-
dynamic limit, the oscillations perdure indefinitely. To under-
stand the behavior of the static and the BTC phases, one has to
investigate the Liouvillian eigenvalues. In Fig. 1c, we plot the nine
most relevant eigenvalues of the Liouvillian, i.e., those with
the lowest decaying rate due to smaller real values, in the static
phase for various system sizes. These eigenvalues are real and
non-positive, with one of them being zero determining a unique
static steady state. The eigenvalues with imaginary parts (not
shown in the figure) appear only with large negative real values

and, thus, decay very fast. In contrast, as shown in Fig. 1d, the
imaginary part of the eigenvalues form almost equally separated
bands in the BTC phase, while in the thermodynamic limit, the
real part of the eigenvalues goes to zero. The vanishing real part
of the eigenvalues describes the slowing down of the decay as the
system size increases. On the other hand, the frequency of the
persistent oscillation is determined by the value of the almost
equally separated bands of the imaginary part of Liouvillian’s
eigenvalues.

Characterization of the transition. To characterize the phase
transition that occurs for the steady state, one can investigate
the average steady-state magnetization, namely hŜziSS ¼
hŜziðt ! 1Þ. In the static phase (ω < κ), the steady state mag-
netization hŜziSS takes non-zero values. In the BTC phase (ω > κ),
however, the hŜziðtÞ shows decaying oscillations around its steady
state value hŜziSS, which tends to zero in thermodynamic limit,
i.e., lim

N!1
hŜziSS ¼ 0. In the thermodynamic limit, the decay of

hŜziðtÞ is suppressed, and long-lived oscillations persist with their
time average being zero. In Fig. 2a, we plot jhŜziSSj=N as a
function of ω/κ for several system sizes N. As the system size
increases, the transition from non-zero hŜziSS in the static phase
into zero value in the BTC phase becomes sharper, suggesting a
non-analytic behavior at the thermodynamic limit. This strongly
hints that the transition might be second-order with hŜziSS
playing the role of an order parameter. In the thermodynamic
limit, a second-order phase transition near the critical point is
expected to be described by an algebraically vanishing order

parameter, i.e., hŜziSS � ω�ωc
κ

		 		β which is accompanied by the
emergence of a diverging length scale ξ � ω�ωc

κ

		 		�ν
. The para-

meters ν and β are critical exponents defining the transition’s
universality class. For finite-size systems, the order parameter gets
some corrections and thus follows a conventional ansatz107,108

jhŜziSSj
N

¼ N�β
νf N

1
ν
ðω� ωcÞ

κ

� �
: ð4Þ

Fig. 1 Boundary time crystal phases. Comparison between the static phase (left column, ω= 0.5κ) and the BTC phase (right column, ω= 1.5κ). a, b shows
the z− component of the total spin hŜziðtÞ=N as a function of time κt for several systems sizes N. c, d shows the real and imaginary parts of Liouvillian’s
eigenvalues Ej as a function of 1/N.
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To determine the critical exponents β and ν, in Fig. 2b, we plot

jhŜziSSjN
β
ν
�1 as a function of N1/ν(ω− ωc)/κ for various system

sizes from N= 20 to N= 800. With the help of the Python
package pyfssa109,110, we tune the critical point ωc and the
exponents ν and β such that curves from different system sizes
collapse on each other around the critical point. Our analysis
shows that ωc/κ= 0.995 ± 0.002, ν= 1.453 ± 0.064, and
β= 0.434 ± 0.055. The collapse of curves with different system
sizes shows that the transition is of the second-order, and hŜziSS
can characterize the transition.

Boundary time crystal sensor. While the presence of decoherence
is mostly destructive on the sensing power of quantum
probes111,112, some specific types of decoherence which lead to
dissipative phase transitions might be useful for sensing31,43–47.
The dissipative BTC phases show a second-order transition
behavior88–90,92–94 which makes them even more interesting from
a quantum metrology perspective. To investigate the sensing
capacity of our BTC probe for estimating ω/κ, in Fig. 3a, we plot

the QFI FQðωÞ as a function of ω/κ for various system sizes. Fig 3a
resembles the one obtained in96, where the QFI was evaluated for
a generic spin rotation to characterize the quantum correlations in
the two phases. Two interesting features can be observed: (i) QFI
indeed shows a peak near the transition point; and (ii) the point at
which the QFI peaks, i.e., ω ¼ ωmax, shifts toward ωc= κ as the
system size increases. By taking the peak of the QFI
Fmax

Q ¼ FQðωmaxÞ, one can investigate the scaling with respect to
the probe size N in order to identify a possible quantum-enhanced
precision. In Fig. 3b, we plot Fmax

Q as a function of N, which can be

precisely mapped by a fitting function Fmax
Q � aNb, with

a= 0.846 and b= 1.345. Clearly, Fmax
Q shows quantum-enhanced

sensitivity, i.e., super-linear scaling surpassing the standard
quantum limit, as it diverges with the exponent b > 1 by increasing
the system size. Note that the decoherence induces the BTC phase
transition and thus contributes to achieving quantum-enhanced
sensitivity. In Fig. 3c, we plot ωmax=κ as a function of N, which
shows asymptotic convergence towards ωc= κ through a fitting
function of the form ωmax ¼ κð1� N�0:776Þ.

Fig. 2 Magnetization finite-size scaling analysis. a Average steady-state magnetization jhŜziSSj=N as a function of ω/κ for several system sizes N. b Finite-
size scaling analysis, we plot jhŜziSSjN

β
ν
�1 as a function of N

1
νðω� ωcÞ=κ for various system sizes from N= 20 to N= 800.

Fig. 3 Quantum-enhanced sensitivity. a Quantum Fisher information (QFI) FQðωÞ as a function of ω/κ for various system sizes N. b Peak of the QFI
Fmax

Q ¼ FQðωmaxÞ as a function of N. We fit a function of the form Fmax
Q � aNb, with a=0.846 and b= 1.345. The coefficient b > 1 evidences quantum-

enhanced sensitivity. c ωmax=κ as a function of N, we fit a Pareto function of the form ωmax ¼ κð1� 1
N0:776Þ. dWe plot FQN

�η=ν as a function of N1/ν(ω−ωc)/κ
for various system sizes from N= 6 to N= 500.
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These analyses show that FQ should follow an ansatz of the
following type

FQðωÞ ¼
a

N�b þ c ω�ωmaxðNÞ
κ


 �η ; ð5Þ

for some constants a, b, c and η. At ω ¼ ωmax, one can retrieve
Fmax

Q � aNb. On the other hand, for N→∞, one can get

FQðωÞ � ω�ωc
κ

		 		�η
. To estimate η, one has to perform a finite-size

scaling analysis.

FQðωÞ ¼ N
η
νf N

1
ν
ðω� ωcÞ

κ

� �
: ð6Þ

The second-order nature of the transition implies that all
quantities, including QFI, should show scale invariance near the
transition point. In Fig. 3d, we plot FQN

�η=ν as a function of
N1/ν(ω− ωc)/κ for various system sizes from N= 6 to N= 500.
Using pyfssa109,110, we determine the critical point
ωc/κ= 0.999 ± 0.001, the critical exponent η= 2.031 ± 0.043,
and ν= 1.511 ± 0.035. First, ωc and ν determined from the
finite-size scaling analysis of the plot of the QFI are very close to
the ones from hŜziSS, showing the consistency of our analysis.
Second, since both Eqs. (5) and (6) describe the QFI, they
should be similar. In the limit of large N, where ωmaxðNÞ ’ ωc
in Eq. (5), a calculation shows that the two ansatzes are of the
same form if b= η/ν (see Methods Section). Thus, the three
critical exponents b, η, and ν are not independent. In fact, the
values found for η and ν from the finite-size scaling of Fig. 3d,
perfectly matches with the exponent b computed from an
independent scaling analysis in Fig. 3b, i.e., η/ν= 1.345 ± 0.06
where b= 1.345.

Classical Fisher information. As mentioned before, the optimal
measurement basis that saturates the Cramér-Rao inequality, in
general, depends on the unknown parameter and is highly
entangled, which makes it practically unfeasible. Hence, deter-
mining the estimation performance with a suboptimal yet avail-
able set of measurements is highly desirable. We consider the spin
projection Ŝn̂ ¼ n̂ � Ŝ, where n̂ ¼ ðsin θ cos ϕ; sin θ sinϕ; cos θÞ is
the unit vector in spherical coordinates and Ŝ ¼ ðŜx; Ŝy; ŜzÞ. The
eigenvectors of Ŝn̂ are given by sj i :¼ sðθ; ϕÞ

		 �
for given angles θ

and ϕ, such that Ŝn̂ sj i ¼ s sj i, with s taking values from−N/2
to+N/2. By measuring Ŝn̂, every outcome appears with prob-
ability pðsjωÞ ¼ sh jρSS sj i, and thus, one can get the corresponding
CFI FCðωÞ. In Fig. 4a, we show the CFI FC at ω ¼ ωmax as
functions of the rotated angles θ and ϕ for N= 100. As the figure
shows, a clear maximum of the CFI Fmax

C is obtained for some
optimized θ and ϕ values. No extra information of the CFI for
values π≤ϕ≤2π is found. In Fig. 4b, we plot the dependence of
such optimized tuple θ and ϕ as a function of the system size N.
As seen from the figure, a clear trend towards θ→ π/2 for N≫ 1
is observed, whereas ϕ= π/2. In Fig. 4c, we plot the CFI Fmax

C at
ω ¼ ωmaxðNÞ, optimized over the angles θ and ϕ, as a function of
the system size N. As seen from the figure, the CFI follows the
QFI curve. Indeed, a fitting function Fmax

C � N1:338 reveals
quantum-enhanced sensitivity concerning the system size N even
for the present suboptimal choice of the measurement. To
quantify the efficiency of our simple measurement, in Fig. 4d, we
plot the ratio Fmax=Fmax

Q as a function of the system size N. As
the figure shows, a fair fraction of the ultimate sensing perfor-
mance can be extracted by the simple measurement Ŝn̂.

Time-constrained sensing protocol. We have shown how the
BTC phase transition can be harnessed to obtain a quantum-
enhanced super-linear scaling in the probe size N. This result has
been obtained considering N as the only resource, without putting
any constraint on the time needed for running the metrology
protocol; while this is a sensible assumption both from a funda-
mental and practical point of view, it is similarly important to
consider scenarios where the total time T needed for accom-
plishing the sensing task has to be incorporated into the resource
analysis. In these cases, instead of FQ one has to assess FQ=T as
the main figure of merit16,17,113–116. In criticality-based sensing
scenarios, the relevant time T, that corresponds to the probes’
state preparation, typically increases with N, and thus the scaling
of FQ=T may diminish in contrast to FQ

30,31,39. In our case, an
upper bound for the QFI at fixed evolution time T and probe size
N can be derived analytically117 (see Methods Section). We
indeed obtain that the following inequality has to be always
satisfied FQ=T≲N=2, showing that eventually FQ=T has to fol-
low a linear scaling in N. However, note that the linear scaling of
the ratio FQ=T is a result of the quantum-enhanced sensitivity
and should not be mistaken by standard limit of the QFI with
respect to N. Indeed, for classical sensors in which the Fisher
information scales linearly with N, the normalized FQ=T will
scale sub-linearly with the system size. In our protocol, the time T
needed to reach the steady-state is determined by the smallest real
eigenvalue of the Liouvillian L, which turns out to be the second
eigenvalue E2. In other words, the dominant decay of the
observables is given by expf�jE2jtg (note that E2 is real and
negative), and we can thus identify a typical time scale τ= 1/∣E2∣
that rules the dynamics.

In Fig. 5a we plot ∣E2∣ as a function of the system size N. As it
is common in most of the critical metrology protocols, we find
that the time needed to prepare the critical quantum state
diverges with the probe size. In particular, we have τ � Nb0 with
a certain exponent b0 that we have obtained from a numerical
fit. To properly assess the behavior of the figure of merit
FQðωÞ=T , in Fig. 5b, we have numerically simulated the
dynamics up to a time T= 2τ= 2/∣E2∣ for different values of
N and evaluated the QFI of the corresponding quantum state.
We first observe how these values are approximately equal to
the ones obtained by evaluating the QFI from the critical steady-
state divided by T= 2τ, confirming that at this evolution time,
the steady-state is approximately obtained. Most importantly we
observe that also for our protocol FQðωÞ=T follows an
approximate linear scaling in the probe size N, with a reduced
constant factor respect to the (typically not achievable) upper
bound (16).

Discussion
Decoherence is highly detrimental for a large class of quantum-
enhanced sensing protocols111,112. In practice, such enhance-
ment is already very challenging to achieve, and a non-classical
scaling of the precision may be recovered only for particular
instances of noise or via certain quantum control
strategies15–18,113–116. In this work, we have proposed a
boundary time crystal phase transition for harnessing deco-
herence to achieve quantum-enhanced sensitivity. Our procedure
demonstrates a decoherence-induced sensing scheme and sheds
light on the exotic boundary time crystal phase transition.
Through extensive finite-size scaling analysis, we show that this
transition can truly be characterized as a second-order transition
for which we have determined the critical exponents and
established their relationship beyond mean-field methods.
Practically, our protocol neither demands a sophisticated
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measurement scheme nor any specific initialization. A potential
experimental verification, even if for a small effective atom
number, can be in principle pursued by adapting the experi-
mental setup put forward in95: in this work, the evolution ruled
by the BTC master equation (3) and the corresponding phase-
transition are observed for a cloud of laser-cooled Rubidium
atoms in free space optically excited along its main axis. The total
magnetization hŜzi, is then measured by collecting the emitted
light in an avalanche photodiode. The measurement of the
optimal spin-operator Ŝn̂ described in our paper would thus need
just an extra rotation of the atomic spin.

Methods
Ansatzes consistency. As discussed above, the quantum Fisher
information FQ should satisfy the following ansatz:

FQðωÞ ¼
a

N�b þ c ω�ωmaxðNÞ
κ


 �η ; ð7Þ

for a set of constants a, b, c and η. Eq. (7) satisfies the scaling of
the quantum Fisher information for large but finite system size
N≫ 1 at ω ¼ ωmax and the scaling in the thermodynamic limit

Fig. 4 Sensing precision with a feasible measurement. a Classical Fisher information (CFI) F Cðθ; ϕjω ¼ ωmaxÞ as functions of the angles θ and ϕ at
ω ¼ ωmax for N= 100. b Dependence of the angles θ and ϕ as a function of the system size N. c We plot the CFI Fmax

C and the quantum Fisher information
(QFI) Fmax

Q as a function of the system size N. We fit a function of the form ~Nb, for both the CFI and the QFI, which evidences quantum-enhanced sensing
(i.e., b > 1) even for a suboptimal measurement. d Efficiency ratio Fmax

C =Fmax
Q as a function of probe size N.

Fig. 5 Time-constrained sensing bound. a Absolute value of the second Liouvillian eigenvalue ∣E2∣ as a function of the system size N at ωmax. We fit a
function of the form jE2j � a0N�b0 þ c0 showing that τ−1 ~ ∣E2∣ ~ N−0.49. b We plot different figures of merit as a function of the system size N. Magenta
triangles: ratio FQðωÞ=T where FQðωÞ is the quantum Fisher information (QFI) computed from the quantum state evolved from an initial spin ground state
up to a time T= 2τ= 2/∣E2∣; blue squares: ratio FQðωÞ=T where FQðωÞ is the QFI computed from the steady-state obtained at ωmax, divided by T= 2τ;
green line: the upper bound N/(2κ) reported in Eq. (16).
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N→∞. Factorizing Eq. (7) by Nb, one gets:

FQðωÞ ¼
aNb

1þ cNb ω�ωmaxðNÞ
κ


 �η ; ð8Þ

¼ aNb

1þ c N
b
η ω�ωmaxðNÞ

κ


 �h iη ; ð9Þ

¼ Nbf N
b
η
ðω� ωmaxðNÞÞ

κ

� �
: ð10Þ

The above Eq. (10) is of the same form as the one determined by
the finite-size analysis

FQðωÞ ¼ N
η
νf N

1
ν
ðω� ωcÞ

κ

� �
: ð11Þ

Hence, for consistency purposes, both ansatzes must be equal.
By direct comparison, and assuming ωmax ¼ ωc, one obtains:

b ¼ η

ν
ð12Þ

which settles that the relationship between the three critical
exponents b, η, and ν are not independent. Our numerical
simulations perfectly match both independent analyses,
showing that η/ν= 1.345 ± 0.06 from finite-size scaling is very
close to the exponent b= 1.345 obtained from studying the
peak of the quantum Fisher information as a function of the
system size N.

Time-constrained sensing bound. We now address the scenario
where the time needed to perform the estimation protocol is
somehow constrained, and thus the total time T is also considered
a resource. This is a standard framework in the context of fre-
quency estimation, and one proves that in this case, the proper
figure of merit to be optimized is the ratio between the QFI and
the total evolution time, i.e., FQðωÞ=T16,17,113–116.

As the dynamics encoding our parameter of interest ω is
ruled by the Markovian master equation (3), a bound on the
maximum QFI, corresponding to a quantum state evolved up
to a time T, also considering possible adaptive control
strategies, can be analytically obtained117. In particular, one
can write

FQðωÞ≤ 4max k α̂ k T; ð13Þ
where k Â k denotes the operator norm, and the operator α̂
reads

α̂ ¼ jγ1j2 Îþ γ1γ2
ffiffi
κ
S

p ðŜþ þ Ŝ�Þ þ jγ2j2 κ
S ŜþŜ� : ð14Þ

In particular k α̂ k has to be maximized over the parameters
{γj} that satisfy the relation

Ŝx þ γ1
ffiffi
κ
S

p ðŜþ þ Ŝ�Þ þ γ2
κ
S ŜþŜ� þ γ3Î ¼ 0 : ð15Þ

In order to fulfill Eq. (15) it is straightforward to observe that one
has to fix γ2= γ3= 0 and

γ1 ¼ � 1
2

ffiffiffi
S
κ

r
:

As a consequence one has that k α̂ k¼ ðS=4κÞ needs no further
optimization and, as S=N/2, the upper bound on the ration
between the QFI FQðωÞ and the evolution time T reads

FQðωÞ
T ≤ N

2κ : ð16Þ
We have then demonstrated, that whenever the time T is

considered a resource, one will eventually observe a linear scaling

in the system size N, no matter the values of the parameter ω and
κ ruling the evolution.

Data availability
The data that support the findings of this study can be provided upon reasonable request.

Code availability
The codes for analyzing the data of this study are available online at https://github.com/
vm-physics/Boundary-Time-Crystals.
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