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ABSTRACT

We address routing of classical and quantum information over quantum network and show how to exploit chirality (directionality) to
achieve nearly optimal and robust transport. In particular, we prove how continuous-time chiral quantum walks over a minimal graph are
able to model directional transfer of information over a network. At first, we show how classical information, encoded onto an excitation
localized at one vertex of a simple graph, may be sent to any other chosen location with nearly unit fidelity by tuning a single phase. Then,
we prove that high-fidelity transport is also possible for coherent superpositions of states, i.e., for routing of quantum information.
Furthermore, we show that by tuning the phase parameter, one obtains universal quantum routing, i.e., independent on the input state. In
our scheme, chirality is governed by a single phase, and the routing probability is robust against fluctuations of this parameter. Finally, we
address characterization of quantum routers and show how to exploit the self-energies of the graph to achieve high precision in estimating
the phase parameter.
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I. INTRODUCTION
With the advent of near-future quantum technologies, the prob-

lem of transport and routing of energy and quantum information on a
network is quickly becoming crucial. In particular, whenever systems
with quantum properties are employed to store information locally, its
transfer between separate places and its routing toward different target
locations is a nontrivial problem. A common strategy is to couple the
systems to a field (typically photons) and to use the field as a media-
tor.1 However, these protocols may have substantial drawbacks with
respect to noise sensitivity and fidelity of the transferred quantum
state. Moreover, whenever a large number of transfers are required,
the impossibility of amplifying the quantum signal due to the no-
cloning theorem makes these issues even more detrimental.

As a matter of fact, quantum spin chains provide a viable alterna-
tive for the transport of quantum information on a finite 1D lattice.2–4

Since this aspect is fully captured in the single excitation subspace of

these systems, a fully equivalent description can be provided in the
framework of continuous-time quantum walks (CTQW) on graphs.5–7

However, conventional quantum walks do not allow for directional
transport of the excitation because their Hamiltonian generators are
real matrices. In order to overcome these limits, one may employ gen-
eralized quantum walks whose defining Hamiltonians are hermitian
but not required to have only real entries. These are usually termed
chiral quantum walks, where the chirality refers to the fact that their
evolution can break the mirror symmetries of the underlying graph. In
this context, they stand out as the simplest generalization to introduce
routing in a quantum walks framework.8–15

In this paper, we address the problem of optimally routing an
excitation between two different possible target sites on the simplest
graph apt to this task with chiral quantum walks. We make connec-
tions with spin chains, and we also provide an alternative way to trans-
port quantum information exploiting just the degrees of freedom of
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the quantum walk.16–24 This allows us to significantly reduce the
dimensionality of the underlying Hilbert space with respect to a spin
chain, thus improving the resilience to decoherence. We also address
the robustness of transport with respect to optimal values of the phase
and analyze in some detail the characterization of the router, i.e., the
problem of estimating the value of the phase by quantum probing. It is
also relevant to notice that proposals for experimental implementa-
tions of chiral quantum walks, on graphs of the same type as the one
discussed here, have been put forward recently.25

The paper is structured as follows. In Sec. II, we establish notation
and recall some elements of the theory of continuous-time chiral quan-
tum walks. In Sec. III, we introduce the system studied in this work and
present our results about routing of classical and quantum information.
Section IV is devoted to the characterization of the quantum router,
whereas Sec. V closes the paper with some concluding remarks.

II. CONTINUOUS-TIME CHIRAL QUANTUM WALKS
Let us start by introducing the notation that will be used during

the rest of the work. Starting from a connected simple graph G(V,E),
where V ¼ f1;…;Ng with N ¼ jV j specifies the vertices and E the
connections, we define the site basis fj1i;…; jNig such that
hijji ¼ dij; i; j ¼ 1;…;N . Each element jii of the basis represents a
state localized on the vertex i. Given an initial state jwi, a continuous-
time quantum walk (CTQW) is defined as the time evolution of the
state through a unitary operator U ¼ e"iHt , where H is a suitable
Hamiltonian that satisfies the topology of the graph, usually assumed
to be the Laplacian or the adjacency matrix of the graph. Those
choices, however, do not allow for directional transport of the excita-
tion because the Hamiltonian is a real matrix and any transition prob-
ability jhjje"iHt jkij2 is symmetric under the exchange j$ k. In order
to overcome these limits and discuss directionality of quantum trans-
port, one should assume a complex Hermitian Hamiltonian corre-
sponding to chiral quantum walks, which themselves stand out as the
simplest generalization to introduce routing in a quantum walks
framework.11

Earlier works about chiral quantum walks8,9 assumed some spe-
cific form of chiral Hamiltonians, without referring to specific systems
where such interactions may take place. A systematic approach to chi-
ral quantum walks has been then put forward in Ref. 11, introducing a
full characterization of all the possible Hamiltonians describing the
time evolution over a given topology. The elements of those
Hamiltonians satisfy the relations Lij ¼ H2

iidij " jHijj2, where L is the
Laplacian of the graph. This set of equations has an infinite number of
solutions (i.e., of valid Hamiltonians), which are of the form

H ¼
X

j 6¼k2E
eihjk jjihkjþ e"ihjk jkihjj
! "

þ
XN

s¼1
csjsihsj; (1)

where the off-diagonal phases hjk and the diagonal self-energies cs are
free parameters not determined by the sole topology.

A. A remark on the number of independent phases
Among the infinite number of Hamiltonians that are compatible

with a given topology, those with a given set of self-energies csf g may
be transformed one to each other by unitary transformations U that
acts diagonally on the site basis, i.e.,

U jji ¼ ei/j jji j ¼ 1;…;N: (2)

Applying a transformation of this kind to a given Hamiltonian, the
off-diagonal phases hjk are mapped to h0jk ¼ hjk þ ð/j " /kÞ. This
class of transformations changes the transition amplitudes from a site
to another but do not affect the site-to-site transition probabilities
jhjje"iHt jkij2, as it may be easily seen from

jhjje"iH0tjkij2 ¼ jhjjU †
e"iHtU jkij2

¼ jeið/j"/kÞhjje"iHt jkij2

¼ jhjje"iHt jkij2: (3)

In other words, if one is interested only in the site-to-site transi-
tion probabilities, the set of possible Hamiltonians naturally splits
into equivalence classes, and one may employ the most conve-
nient representative by re-phasing sites via a unitary transforma-
tion of the form (2). This also means that if the quantities of
interest are the site-to-site transition probabilities, the number of
independent parameters (phases) at disposal to engineer the
dynamics is smaller than the number of nonzero off-diagonal
elements.

Let us now introduce the total phase along a loop of the graph as
H &

P
j 6¼k hjk, where the sum is performed over the links defining the

loop. Using Eq. (2), it is easy to see that this quantity is invariant under
site re-phasing, i.e., H0 ¼

P
j 6¼k h0jk ¼ H. This means that for graphs

with no loops, e.g., any tree graph, the transition probabilities cannot
be changed using complex Hamiltonians (since all the off-diagonal
phases may be removed by re-phasing). On the other hand, in graphs
with loops, the number of free phases at disposal to engineer the tran-
sition probabilities (e.g., to obtain directionality) is equal to the num-
ber of loops. As we will see in Sec. III, chiral effects induced by off-
diagonal phases are enough to obtain quantum routing of information
even in graphs with a single loop.

III. THE QUANTUM ROUTER
Routing is a fundamental function of any network, classical or

quantum. Indeed, networks where information travels across different
devices have to be equipped with a means of selecting paths through
the network itself.26,27

The goal of this section is to show how a nearly optimal quan-
tum router may be built using chiral quantum walk on a simple
graph. In particular, we consider the minimal structure depicted in
Fig. 1 and show that by tuning the single parameter H & h, one
may route an excitation initially located at site j1i to site j5i or j6i
with high probability. This task is not possible with standard (i.e.,
non chiral) quantum walk, whereas by exploiting chirality, one
may achieve transport with probability very close to unit. In addi-
tion, we show that routing and nearly optimal transport are also
possible for an excitation initially prepared in superposition, i.e.,
any superposition of the form jwi / j1i þ ei/j2i may be sent with
high fidelity to jwi / j5i þ ei/j3i or to jwi / j6i þ ei/j4i by tun-
ing the phase h.

The schematic diagram of our chirality-based minimal-topology
quantum router is shown in Fig. 1. Vertex labels are those used
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throughout the paper. Among the possible bona fide chiral
Hamiltonians of the form (1), we focus on those with

cj ¼ cint for j ¼ 2; 3; 4;

cj ¼ cext for j ¼ 1; 5; 6;

hij ¼ 0 for the links outside the loop;

hij ¼ h=3 for links along the loop:

With this choice, we ensure that the rotational symmetry of the graph
is preserved, and that the only relevant phase is the total phase H & h
along the loop. These features make the structure in Fig. 1 an ideal
candidate to route quantum information and, at the same time, main-
tain the problem analytically treatable.

We now notice that the site-to-site transition probabilities do not
change if we consider a modified Hamiltonian where a term propor-
tional to the identity, e.g., cextI, is added (subtracted). This reveals that
only the difference c & cint " cext is relevant for engineering the
dynamics. We, thus, consider the effective Hamiltonian H ! H
" cextI. The explicit form is given by H ¼ j1ih2jþ ei

h
3j2ih3j

þ e"i
h
3j2ih4j þ ei

h
3j3ih4j þ j3ih5j þ j4ih6j þ h:c: þ cðj2ih2j þ j3ih3j

þ j3ih4jÞ or, in matrix form, by

H ¼

0 1 0 0 0 0
1 c e"i

h
3 ei

h
3 0 0

0 ei
h
3 c e"i

h
3 1 0

0 e"i
h
3 ei

h
3 c 0 1

0 0 1 0 0 0
0 0 0 1 0 0

2

666666664

3

777777775

: (4)

This Hamiltonian reflects the rotational symmetry of the graph,
and we may, thus, assume that its eigenstates satisfy the relations

hEnjkinti ¼ ei
2pkðn"1Þ

3 a;

hEnjkexti ¼ ei
2pkðn"1Þ

3 b;
(5)

where a and b are real numbers, n ¼ 1;…; 6, and jki with kint
¼ 2; 3; 4 and kext ¼ 1; 6; 5 denotes localized states. Using this ansatz,
the eigenvalues of the Hamiltonian are easily found as

En ¼ Sn þ ð"1Þmodðn;2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2n

q
; (6)

Sn ¼
c
2
þ cos

h
3
þ 4p

3
modðn" 1; 3Þ

$ %
: (7)

The eigenvalues are shown as a function of h in Fig. 2 for c ¼ 0; 1; 2.
For increasing c, the three negative eigenvalues tend to coalesce and
vanish as "1=c, whereas the three positive ones increase their magni-
tudes. For negative values of c, the behavior of negative and positive
eigenvalues is reversed.

The corresponding eigenvectors are given by

jEni ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ E2
nÞ

p

1

En

ei
2pðn"1Þ

3 En

ei
4pðn"1Þ

3 En

ei
2pðn"1Þ

3

ei
4pðn"1Þ

3

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

: (8)

Notice that given the parametrization of the Hamiltonian in Eq. (4), in
order to obtain all possible values for the phases on the links, the phase
parameter should take values in the interval h 2 ½0; 6pÞ. However,

FIG. 1. Schematic diagram of a chirality-based minimal-topology quantum router.
Vertex labels are those used in the main text. The overall Hamiltonian of the quan-
tum walker is parametrized by the total phase along the loop, denoted by h, and by
the difference c & cint " cext among the self-energies of the internal and external
links.

FIG. 2. Eigenvalues of H as a function of h for c ¼ 0; 1; 2 (from left to right).
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since the total phase is the only relevant parameter to engineer the
transition probabilities, it is sufficient to consider h 2 ½0; 2pÞ in order
to design a quantum router. Notice also that if one prepares the walker
in an eigenstate, the ratio between the probability of being localized
inside or outside of the loop is given by

RnðhÞ &

X

j¼2;3;4
jhjjEnij2

X

j¼1;5;6
jhjjEnij2

¼ E2
n; (9)

which means that one may estimate the energy of the eigenstate upon
estimating this probability ratio by measuring a dichotomic in–out
observable.

Let us now address the main topic of the paper, i.e., how to
exploit chirality to obtain directionality and, in turn, the effective rout-
ing of classical and quantum information. We start by considering a
walker initially localized in one of the external sites, say j1i, and ana-
lyze the probability of being transferred to one of the other outer states,
i.e., j5i or j6i at some time t. As we will see, it is, indeed, possible to
achieve nearly perfect routing, that is, one may choose where to route
the walker by tuning h and obtain a transition probability very close to
one for short time evolution, i.e., for instants of time reasonably short
compared to the energy gaps of the system.

Upon expanding the unitary evolution operator U ¼ e"iHt

¼
P

n e
"iEnt jEnihEnj and using Eqs. (6) and (8), we obtain

P15ðt; h; cÞ ¼
&&&&
X6

n¼1
e"iEnt

e"i
2p
3 ðn"1Þ

3ð1þ E2
nÞ

&&&&
2

; (10)

P16ðt; h; cÞ ¼
&&&&
X6

n¼1
e"iEnt

e"i
4p
3 ðn"1Þ

3ð1þ E2
nÞ

&&&&
2

: (11)

Both expressions are analytic, but it is not easy to understand their
general behavior due to the high number of oscillating terms. In order
to gain more insight about their properties, we illustrate the behavior
of P15ðt; hÞ & P15ðt; h; c & 0Þ and P16ðt; hÞ & P16ðt; h; c & 0Þ as a
function of time and the total phase in Fig. 3. As it is apparent from
the plots, there are instants of time when one may switch from the sit-
uation P15 ’ 1; P16 ’ 0 to P15 ’ 0; P16 ’ 1 by tuning the total phase
h. In other words, one may route the excitation from site 1 to site 5 or
from site 1 to site 6 just by tuning the parameter h (which itself may
be tuned using an external field).

Upon maximizing P15ðt; hÞ over h at fixed t (or equivalently P16)
and exploiting the symmetry P15ðt; hÞ ¼ P16ðt; 2p" hÞ, one obtains
the optimal values for the routing phase, which turns out to be
h ¼ p=2; 3=2p. This is illustrated in Fig. 4, where we show
P15ðt; hÞ; P16ðt; hÞ and their sum as a function of h for two specific
values of the interaction time.

The routing effect is apparent from the plots. Setting the total
phase to the optimal value, we have P15 ( P16, or vice-versa, and also
have P15 þ P16 ’ 1, i.e., the excitation is effectively routed to the other
outer sites, without being trapped in the loop of the graph (we have
P15 þ P16 ’ 0:88 at t) ¼ 2:629 and P15 þ P16 ’ 0:97 at t) ¼ 18:95).
It is also remarkable that the effect appears at multiple instants of time
(which we refer to as t)), meaning that routing may be implemented
with structures and platforms of different sizes. However, for those
larger values of t), the probability peaks are sharper, i.e., the routing

effects are less robust. Overall, we have a trade-off between the routing
effectiveness and its robustness, making the first values of t) more con-
venient for practical applications. Notice that for h ¼ p=2, the proba-
bility P15 may be written as P15ðt; p=2Þ ¼ 4

9 f ðtÞ
2, where f(t) is a real

function reported in the Appendix. An analogue result may be found
for P16ðt;p=2Þ.

Finally, we remark that the quantum router described in this sec-
tion has been designed setting c ¼ 0, i.e., using only the chiral nature
of the Hamiltonian and without exploiting the degree of freedom
offered by the onsite energies. However, since the Hamiltonian in Eq.
(4) also depends on the diagonal elements, one may wonder about
their potential role in routing information. Investigating the probabili-
ties numerically, we found that by setting c 6¼ 0, one may enhance
routing (i.e., the two probabilities are closer to 1 and 0, respectively)
though the optimal phase and interaction time, which are no longer
the same.

In other words, we have P15ðt);p=2; cÞ=P15ðt);p=2; 0Þ < 1 and
P16ðt); p=2; cÞ=P16ðt); p=2; 0Þ > 18c, where t) is one of the optimal
values of time discussed earlier, but we may find other values of
the parameters, say tM, hM, and cM for which P15ðtM; hM; cMÞ=
P15ðt); p=2; 0Þ > 1 and P16ðtM; hM; cMÞ=P16ðt); p=2; 0Þ < 1. The
two effects are illustrated in the two panels of Fig. 5. In the upper
panel, we show P15ðt);p=2; cÞ and P16ðt);p=2; cÞ as a function of c

FIG. 3. The transition probabilities P15ðt; hÞ (upper panel) and P16ðt; hÞ (lower
panel) as a function of the interaction time t and the total phase h.
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for the two values of t) mentioned earlier. As it is apparent from the
plot, for c 6¼ 0, the performance of the system as a router gets worse
(see the region highlighted in gray). In the lower panel, we instead
compare P15ðt); p=2; cÞ and P16ðt);p=2; cÞ to P15ðtM ; hM; cÞ and
P16ðtM ; hM ; cÞ with tM ’ 31:4 and hM ’ 0:11. In this case, the opti-
mal values of c are different (they are c¼ 0 and c¼ 1, respectively, see
the gray regions), and the c 6¼ 0 case provides a more effecting routing
effect.

Let us now address the routing of quantum information, i.e., of
states exhibiting coherence in the site basis. In particular, we consider
an excitation initially de-localized over the sites j1i and j2i, i.e., pre-
pared in a generic superposition of the form

j/12i ¼
j1iþ ei/j2iffiffiffi

2
p ;

and investigate the possibility of routing the state to the analogue
superpositions of sites j5i and j3i or j6i and j4i, i.e., the states

j/53i ¼
j5iþ ei/j3iffiffiffi

2
p ;

j/64i ¼
j6iþ ei/j4iffiffiffi

2
p :

As we will see, routing of quantum information is, indeed, possi-
ble, and it is even possible to design a universal quantum router, able
to route any superposition of the form j/12i, independently on the
value of the superposition phase /. We set c ¼ 0 and denote the tran-
sition probabilities jh/53jU j/12ij

2 and jh/64jU j/12ij
2 by PRðt; h;/Þ

and PLðt; h;/Þ, respectively.
Using the relations

@th1jUj5i ¼ "ih1jUHj5i ¼ "ih1jU j3i ;
@th1jU j5i ¼ "h1jHU j5i ¼ "ih2jUj5i;

@tth1jU j5i ¼ "h1jHUHj5i ¼ "h2jU j3i;

we may write

PRðt; h;/Þ ¼
1
4
jh1jU j5iþ 2i cos/@th1jU j5i"@tth1jUj5ij2: (12)

In particular, for h ¼ p
2, we have

PR t;
p
2
;/

' (
¼ 1

4
jf ðtÞ þ 2i cos/@t f ðtÞ " @tt f ðtÞj2; (13)

where f(t) is reported in the Appendix.

FIG. 4. The transition probabilities P15ðt; hÞ (dotted red) and P16ðt; hÞ (dashed
blue), together with their sum (solid black) as a function of h for t¼ 2.629 (upper
panel) and t¼ 18.95 (lower panel). Notice that for t¼ 2.629, we have nearly perfect
routing 1! 5 for h ¼ p=2 and 1! 6 for h ¼ 3p=2, whereas for t¼ 18.95, the
two phases are switched.

FIG. 5. (Top) The transitions probabilities P15ðt); p=2; cÞ (black) and
P16ðt); p=2; cÞ (red) as a function of c for t) ¼ 2:629 (solid) and t) ¼ 18:95
(dashed). (Bottom) P15ð2:629; p=2; cÞ (solid black) and P16ð2:629;p=2; cÞ (solid
red) as a function of c, compared to P15ðtM ; hM ; cÞ (dashed black) and
P16ðtM ; hM ; cÞ (dashed red) with tM ’ 31:4 and hM ’ 0:11. The gray regions high-
light where the routing effect is taking place.
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The dependence on the superposition phase / is multiplied by
the time derivative of the amplitude h1jU j5i. When this derivative is
zero (notice that h1jU j5i is a complex number), the transport proba-
bility is independent on /, i.e., it is the same for all the superposition
states of the form j/12i. For those instants of time t), the value of the
transport probability is

PR t);
p
2
;/

' (
¼ 1

4
jf ðt)Þ " @tt f ðtÞjt¼t) j

2: (14)

The first value is t) ¼ 2:629 and coincides with the first instant of
time optimizing routing for localized states. It corresponds to
PR t); p2 ;/
) *

¼ 0:83. Upon sending h into 2p" h, the same line of
reasoning may be applied to PL t); p2 ;/

) *
.

We should remark that the aforementioned setting makes the
probability /-independent but not necessarily optimal for all the value
of /. If the value of / is fixed, a specific optimization may be done sep-
arately. Notice, however, that the differences are not dramatic, and
that the instants of time optimizing the routing for localized states are
also pretty good28,29 for all superpositions. This is illustrated in Fig. 6,
where we show PR t; p2 ;/

) *
for different values of /. The gray areas

highlight the region around t) ¼ 2:629 (light gray), where universality
occurs, and the interval t 2 ½2:35; 2:55* (dark gray), where the maxima
for the considered values of / are found.

Finally, we emphasize once again that chirality is a crucial ingre-
dient to achieve the universal routing of superpositions, which would
not be possible for a non-chiral CTQW, since in that case h¼ 0.

IV. PROBING THE ROUTER PHASE
As we have illustrated in Sec. III, the structure in Fig. 1, when

equipped with the Hamiltonian in Eq. (4), allows one to route classical
and quantum information by tuning (and switching) h, i.e., the total
phase that the walker acquires along the loop. The routing effect
appears robust since the peaks in Fig. 4 are broad compared to the
range of variation of h. However, this is only a qualitative assessment,
and a proper benchmark for robustness may be obtained only by com-
paring those widths to the uncertainty in determining the value of h
for a given physical platform. A question, thus, naturally arises about
the ultimate precision achievable in estimating the total phase by prob-
ing the router. This problem may be addressed by the tools of

quantum estimation theory30,31 and quantum probing.32–37 A natural
characterization scheme is the following: the walker is repeatedly pre-
pared in a known state jw0i and is let to evolve on the graph for a
given interval of time. Then, an observable X is measured, and a set of
M outcomes fx1; x2;…; xMg is collected. Data are distributed accord-
ing to the conditional distribution pðxjh; tÞ ¼ jhxjU jw0ij

2, and the
value of h is inferred using an estimator "h & "hðfx1; x2;…; xMgÞ, i.e., a
function of data.

The ultimate bound on the precision achievable by any procedure
of this kind (i.e., the precision achievable by optimizing over all the
observables and all the possible estimators) is bounded by the quan-
tum Cramèr–Rao bound Var"h + ½MQðhÞ*"1, whereQðhÞ is the quan-
tum Fisher information (QFI) of the family of states jwhi ¼ U jw0i
(usually referred to as a quantum statistical model). In our case, the
QFI is given by38

QðhÞ ¼ 4hw0jDH 2jw0i ¼ 4 hw0jH 2jw0i" hw0jH jw0i
2

) *
; (15)

where

H ¼ "i @hU†
) *

U: (16)

Notice thatH 6¼ H since the dependence of the evolution operator U
on the parameter h is non trivial (we would haveH ¼ H for and evo-
lution operator of the form U ¼ e"iHh). Optimized quantum probes
to characterize the router are, thus, initial preparations jw0i maximiz-
ing the QFI in Eq. (15). Given the unitary nature of the map
jw0i ! jwhi, we expect the QFI to grow asymptotically (i.e., for
t ( 1) as QðhÞ ¼ jðhÞ t2 for all initial states,38–40 with optimal probes
maximizing jðhÞ. Actually, we have not performed an optimization
over all possible initial preparations but rather compared the QFI
obtained for some specific initial preparations, chosen because they
are likely to be easily prepared on physical platforms.

In the upper panel of Fig. 7, we show the function jðhÞ as a
function of h for the localized states jw0i ¼ j1i (blue dotted) and
jw0i ¼ j2i (the upper red curve), and for the flat superposition
jw0i ¼ 1ffiffi

6
p
P6

j¼1 jji (the lower black dashed curve, nearly indistin-
guishable from the x-axes). Results for the other outer and inner local-
ized states are the same. The most convenient setting is, thus, to
prepare the walker in a localized state on one of the sites of the loop
and let it evolves as long as possible. In the lower panel of Fig. 7, we
illustrate the influence of self-energies, i.e., what happens for c 6¼ 0. In
particular, we show the behavior of the QFI for jw0i ¼ j2i. Upon
increasing c, the QFI increases and its dependence on h weakens. For
large c, we have the asymptotic results j ¼ 8=3 t2ð1=3" 1=c2Þ, inde-
pendently on h, a result that may also obtained analytically by expand-
ing the eigenvalues and the eigenvectors of the Hamiltonian at the
leading order in c. In order to achieve the earlier precision, one has to
measure an optimal observable, which is given by the so-called sym-
metric logarithmic derivative (SLD) L ¼ 2i½H ; jw0ihw0j*.

38 In our
case, the SLD at first order in 1=c may be written as

L¼ 2
3
t
$
e"i

h
3 j2ih3jþ ei

h
3 j2ih4jþ 1

c
e"i

h
3 j2ih5jþ e"i

h
3 j2ih6j

+ ,%
þ h:c:

The form is remarkably simple and emphasizes that for large c, only
the internal sites are involved. However, the possibility of implement-
ing the measurement of this observable in practice strongly depends
on the platform under investigation.

FIG. 6. The 12! 53 transition probability PR t; p2 ;/
) *

as a function of the interac-
tion time for different values of / ¼ 0;p=8; p=6;p=4; andp=2 (black, red, blue,
green, and magenta, respectively). The light gray area highlights the region around
t) ¼ 2:629, and the dark gray one the interval t 2 ½2:35; 2:55* (see the text).
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It is also instructive to investigate whether some information
about the value of the total phase may be inferred by measuring the
position of the walker after propagation. Given a walker initially pre-
pared in the state jw0i, the time-dependent probability of detecting
the walker at site j after the interaction time t is given by
qðj; tjh;w0Þ ¼ jhjjU jw0ij

2. The corresponding Fisher information is
given by Fðh; tjw0Þ ¼

P6
j¼1 ½@h qðj; tjh;w0Þ*

2=qðj; tjh;w0Þ. The
Fisher information shows many oscillations and strongly depends on
time and on the actual value of the total phase. Remarkably, though, it
vanishes at any time Fð6p=2; tjj1iÞ ¼ 0 if the initial state corre-
sponds to a walker localized in the first site jw0i ¼ j1i, and the total
phase is h ¼ 6p=2, i.e., the configurations used to build the quantum
router. Physically, this means that in this regime, it is not possible to
extract information about the total phase looking at the position of the
walker. In other words, fluctuations in the total phase around the val-
ues h ¼ 6p=2 do not lead to detectable changes at the output, i.e., the
routing effects are robust against fluctuations of the total phase. This is
confirmed by the fact that Fð6p=2; tjw0Þ ¼ 0 vanishes also for
jw0i ¼ j2i and jw0i ¼ ðj1iþ j2iÞ=

ffiffiffi
2
p

and for larger values of c.

V. CONCLUSIONS
We have addressed the use of chiral quantum walks to route

classical and quantum information over quantum network. In
particular, we have shown that using a minimal graph structure is
enough to model directional transfer of information over a net-
work. Upon tuning the total phase along the loop of the graph,

high-fidelity routing and transport are possible for localized states
and coherent superpositions of them. Furthermore, we have
shown how to achieve universal quantum routing with fidelity
independent on the input state. In our scheme, chirality is gov-
erned by a single phase, and the routing probability is robust
against fluctuations of this parameter. Finally, we have addressed
characterization of quantum routers and evaluated the quantum
Fisher information for different quantum probes, also showing
how to exploit the self-energies of the graph to achieve high preci-
sion in estimating the phase parameter. We have also proved the
robustness of the routing effect against fluctuations of the total
phase.

Our results confirm that chiral quantum walks represent a useful
resource to design quantum information protocols over networks and
pave the way to the design of larger structures to test whether chirality
may be exploited to route information in multiple directions. In partic-
ular, a question arises on whether the basic triangular router analyzed
in this work is still optimal for multiple routing, or larger structures
with possibly more free phases are required.
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APPENDIX: THE FUNCTION F(T) IN EQ. (13)

The function f ðtÞ ¼ frðtÞ þ ifiðtÞ is given by

frðtÞ ¼
sin

ffiffiffi
3
p

t
2

' (
sin

ffiffiffi
7
p

t
2

' (

2
ffiffiffiffiffi
21
p " cos ðtÞ

6
þ 1
6
cos

ffiffiffi
3
p

t
2

' (
cos

ffiffiffi
7
p

t
2
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"
sin
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2
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3
p þ

sin

ffiffiffi
7
p

t
2

' (
cos

ffiffiffi
3
p

t
2

' (

2
ffiffiffi
7
p ; (A1)

FIG. 7. (Top) The function jðhÞ&t(1
QðhÞ=t2 as a function of h for jw0i ¼ j1i (blue

dotted), jw0i ¼ j2i (the upper red curve), and jw0i ¼ 1ffiffi
6
p
P6

j¼1 jji (black dashed,
nearly indistinguishable from the x-axes). (Bottom) The function jðhÞ as a function of h
for jw0i ¼ j2i and c ¼ 0 (solid), c ¼ 3 (dashed), and c ¼ 7 (dotted).
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fiðtÞ ¼
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