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Quantum steering refers to the apparent possibility of exploiting quantum correlations to remotely 
influence the quantum state of a subsystem, by measuring local degrees of freedom. In continuous-
variable (CV) quantum information, this notion is strongly linked to the possibility of demonstrating the 
EPR paradox, whence the name EPR steering. Recently, another type of steering with CV Gaussian states 
was proposed under the name of nonclassical steering, stemming from the idea of remotely generating 
Glauber P-nonclassicality by conditional Gaussian measurements on two-mode Gaussian states. In this 
tutorial, we thoroughly illustrate these phenomena, firstly introducing quantum steering in its most 
general setting, and then focusing on Gaussian states and the connection with P-nonclassicality. We 
discuss the strong and weak forms of nonclassical steering, their relation with entanglement and how 
to formulate them in an invariant form with respect to local Gaussian unitary operations. For two-mode 
squeezed thermal states (TMST), we show that EPR steering coincides with nonclassical steering, and in 
particular this implies that a single type of Gaussian measurements is sufficient to check steerability 
for this class, unlike for the more general situation which usually requires the choice of distinct 
measurements.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

The classification of quantum correlations is a very active front 
of research since the early days of quantum mechanics. In this ar-
ticle, we investigate quantum steering and nonclassical steering, a 
class of asymmetric quantum correlations stronger than entangle-
ment [1], but weaker than violation of Bell’s inequality [2,3], that 
was introduced in relation to the EPR argument [4,5], to indicate 
the possibility of one party to collapse (or steer) the wavefunc-
tion of the other party into different quantum states by means 
of suitable measurements. Despite this early appearance, steering 
received firm mathematical bases only recently [6,7], and we re-
fer to this definition as EPR steering, particularly in the context 
of continuous-variable (CV) systems [8]. The central idea of EPR 
steering is to use the influence of the measurements performed by 
one party (say Alice) to convince the other party (say Bob) that 
the shared state was entangled: if the initial correlated state al-
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lows for such a task, it is called steerable by Alice. Steering is now 
widely considered a fundamental resource for quantum communi-
cation tasks [9–14] and many criteria for its detection have been 
explored [15–18].

Independently of quantum correlations, a variety of other con-
cepts of nonclassicality have been put forward [19]; in particular, 
the negativity of the Wigner quasiprobability distribution [20,21]
received considerable attention recently, because it is believed to 
be necessary for universal quantum computation [22,23]. Gaussian 
states are defined precisely by their Gaussian Wigner distributions, 
therefore they cannot exhibit Wigner negativity as a form of non-
classicality. However, it is widely believed that Gaussian squeezed 
states do possess nonclassical features [24,25], which can be cap-
tured by the more general notion of P-nonclassicality. This is also 
the most widespread notion of nonclassicality for CV quantum 
states and it relies upon the negativity of the Glauber P-function 
[26–30], i.e. the expansion of a CV quantum state ρ̂ onto coherent 
states |α〉 (α ∈C) according to:

ρ̂ =
∫

C

d2αP
[
ρ̂

]
(α) |α〉〈α| (1)
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ρ̂ is considered nonclassical whenever the distribution P
[
ρ̂
]
(α)

cannot be interpreted as a valid probability density, either because 
it can be represented by a function that attains negative values, or 
because a regularization of it does [31–37,26,38,30]. The main rea-
son for the wide use of the P-function is that it leads to the most 
physically inspired notion of nonclassicality. It has direct empirical 
consequences, for example in quantum optics, where it is known to 
be necessary for antibunching and sub-Poissonian photon statistics 
[31]. Viceversa, classicality according to the P-function implies the 
empirical adequacy of Maxwell’s Equations for the phenomeno-
logical description of the corresponding state of light. Moreover, 
P-nonclassical states are usually harder to fabricate [39,40], thereby 
giving a resource character to this type of nonclassicality [41,42]. 
Despite their different origins, insightful connections between non-
classicality and quantum correlations are known. Most importantly, 
the multimode extension of Eq. (1) entails that all P-classical 
states are separable or, conversely, that all entangled states are 
P-nonclassical. In Gaussian quantum optics this fact implies, for 
example, that the two output modes of a beam-splitter can be en-
tangled only if there is some P-nonclassicality in the input modes. 
Recently, an attempt was advanced to bridge the standard notion 
of quantum steering with that of P-nonclassicality through the no-
tion of nonclassical steering [43] for two-mode Gaussian states. It 
was shown that for a relevant subclass of them, the possibility 
of generating nonclassicality on one mode by conditioning upon 
Gaussian measurements on the other mode is equivalent to the 
condition of standard quantum steering, while for more generic 
states nonclassical steering splits in two distinct forms: a weak 
type that has little interest as a quantum correlation, and a strong 
type which is sufficient to imply quantum steering, provided that 
tighter conditions are met.

In this tutorial, we provide a step-by-step introduction to quan-
tum steering, first focusing on Gaussian states, and then to non-
classical steering for two-mode Gaussian states, with a special 
emphasis on their similarities, as needed to develop a thorough 
understanding of the hierarchy of quantum correlations for this 
simple and paradigmatic family of quantum states. In Section 2
we introduce the standard notion of quantum steering in all gen-
erality through a thought experiment in which two parties have 
to check that a black box is able to prepare entangled states, but 
only one party can perform trustworthy, generic quantum mea-
surements. We strive to clarify all hidden assumptions. Next, we 
shortly review Gaussian states in Section 3 and we discuss the 
steering inequality for the covariance matrix; in this continuous-
variable context, we refer to the standard notion as EPR steering. 
Nonclassicality and the related notion of nonclassical steering are 
described in Section 4, where the weak and strong type are dis-
cussed and brought together with the idea of EPR steering on a 
common background. In Section 5, the relevant class of two-mode 
squeezed thermal states is introduced to show that EPR steering 
can be demonstrated with a single measurement, and it coincides 
with both strong and weak nonclassical steering for these states.

2. The notion of quantum steering: checking an untrusty device

To illustrate the current definition of quantum steering, we will 
construct a step-by-step scenario in which Alice and Bob share a 
purported quantum state ρ̂ AB and Bob’s measurement apparatus 
is deemed untrustable. In the literature on the subject, all the as-
sumptions necessary to make this construction solid are seldom 
spelled out in full detail as we are instead about to do.

The first assumption is that we have a black box with two out-
puts, A and B , that should emit repeatedly a declared, entangled 
quantum state ρ̂ AB , such that subsystem A goes to Alice and sub-
system B goes to Bob. They both know the declared state ρ̂ AB , 
but they do not trust the black box. Moreover, they both have 

“universal” measuring devices that should be able to perform any 
quantum measurement on their subsystems, but Bob’s device can-
not be trusted for whatever reason. Their task is to check that the 
actual states outputted by the black box are indeed entangled, for 
example because they would like to later use them for a quantum 
cryptography protocol.

Suppose that Bob sets his device to measure the observable X
on his subsystem. Then, if everything is right, he must get the pos-
sible results b according to a probability distribution given by:

p X (b) = TrAB

[(
IA ⊗ !̂X

b

)
ρ̂ AB

]
(2)

where !̂X
b is the POVM element corresponding to a measurement 

of the observable X resulting in the outcome b. If he doesn’t get 
the expected probabilities, for any choice of observables, then he 
will know that either the black box, his device, or both are cor-
rupted. Let us suppose, therefore, that this first test passes, that is, 
all probabilities Bob computes with Eq. (2) are correct. Of course, 
this is not enough to trust the “black box plus Bob’s measurement 
device” assembly, because we are only accessing local degrees of 
freedom of subsystem B of the purported state ρ̂ AB . Alice can do 
the same with her subsystem and, since her device is trustworthy, 
she would conclude that her subsystem is correctly described by 
ρ̂ A = TrB

[
ρ̂ AB

]
. Still, many states besides ρ̂ AB can have the cor-

rect partial trace, without actually being equivalent to ρ̂ AB : Alice 
and Bob must now check correlations between their subsystems. If 
also Bob’s device were trustworthy, they could simply do a full to-
mography and verify if the black box is actually able to prepare the 
purported state. However, with our assumptions, they should find 
another way. After a little thought, they come up with the follow-
ing idea: if the state outputted by the black box is really entangled, 
and if Bob’s device works fine, then a measurement on subsystem 
B should change the quantum state of subsystem A conditioned 
upon the outcome of the measurement. Alice cannot immediately 
check that this influence took place, by the no-signaling theorem, 
but she can do that if Bob tells her the measurement outcome he 
found; indeed, if he measures X and gets b, Alice predicts that her 
quantum state will be:

ρ̂ A|b,X = 1
p X (b)

TrB

[(
IA ⊗ !̂X

b

)
ρ̂ AB

]
(3)

where p X (b) is correctly given by Eq. (2), as previously certified. 
Now, if ρ̂ AB is separable, we could write it as:

ρ̂ AB =
∫

dλ p(λ) ρ̂ A,λ ⊗ ρ̂B,λ (4)

where the integral sign is symbolic and possibly includes discrete 
sums and p(λ) is a probability distribution. In that case, we can 
define p X (b|λ) = Tr

[
!̂X

b ρ̂B,λ

]
and we can write:

ρ̂ A|b,X = 1
p X (b)

∫
dλ p(λ)p X (b|λ) ρ̂ A,λ

=
∫

dλ p(λ|b, X) ρ̂ A,λ (5)

The last step was derived by applying Bayes theorem and defin-
ing p(λ|b, X) to be the probability that a particular value of λ
described the initial factorized state, upon measuring X on Bob’s 
subsystem and getting the result b. Eq. (5) is a local hidden state 
(LHS) model on Alice’s side, since it implies that Alice gets states 
ρ̂ A,λ at each run, according to the probability distribution p(λ), 
and then she makes a Bayesian update to ρ̂ A|b,X after being re-
ported the outcome b from Bob: as far as she is concerned, there 
was no “action at a distance” but simply an updated knowledge of 
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the hidden variable λ that specifies the quantum state of his sub-
system. It must be stressed that Bayes theorem not always applies 
in quantum mechanics, and the operative meaning of the prob-
ability p(λ|b, X) can be obscure with our assumptions. However, 
this is not problematic for us: we are defining that probability 
from measurable quantities and we only care that it is a proba-
bility distribution, which is immediately checked. We now come to 
the final, key point: there exist entangled quantum states ρ̂ AB such 
that the corresponding conditional states ρ̂ A|b,X on Alice’s side can-
not be described by a single LHS model as in Eq. (5) for all possible 
choices of measurements X on Bob’s side. With such states, even 
if they cannot trust neither the black box that prepares them nor 
Bob’s measurement apparatus, they can check that the shared state 
is entangled by picking appropriate choice of measurements X on 
Bob’s side and checking that Alice’s conditional states are the ex-
pected ρ̂ A|b,X . These states are called steerable by Alice. Notice that 
we proved that separable states cannot be steerable, therefore also 
that steering implies entanglement. However, it turns out that a 
generic entangled state ρ̂ AB could have a LHS model for Bob’s con-
ditional states and for all possible measurements on Alice’s side: 
not all entangled states are steerable [7]. Notice also that the LHS 
model does not require us to trust Bob’s apparatus: we simply ask 
if there can be any two probability distributions p X (b|λ) and p(λ)
and ensemble ρ̂ A,λ of density operators making Eq. (5) to hold, 
with the constraint that 

∫
dλ p X (b|λ) = p X (b) but with no further 

requests on how the stochastic map p X (b|λ) was derived.
There are still some hidden assumptions in this picture. A cru-

cial one is that the probability p(λ) according to which the black 
box prepares the factorized state ρ̂ A,λ ⊗ ρ̂B,λ at each run does not 
depend on the choice of measurement X on Bob’s side. If the black 
box were controlled by Bob, for example, this would require that 
it is Alice to decide what measurement she would like him to per-
form, and that she makes her decision only after she got her part 
of the state. If Alice does not believe any assumption about what 
kind of states ρ̂ AB can be prepared by the black box, it is simple 
to argue that it is indeed necessary for Alice to ask Bob to per-
form different kind of measurements. To show that, it is sufficient 
to consider a pure entangled state which can be expanded in two 
different orthonormal, factorized bases:

∑

n

cn|φn〉A ⊗ |un〉B =
∑

m

dm|ψm〉A ⊗ |vm〉B (6)

If Bob were to measure his state in the same {un} basis at each 
run, Alice would simply get a random state from the ensemble ∑

n c2
n|φn〉〈φn|, and Bob’s outcome would tell her the actual value 

of n for that particular run. Clearly, these observations can be ex-
plained also by classical correlations, and they would not convince 
Alice that the original state was indeed entangled. On the other 
hand, if Alice can ask him to measure in the {|vm〉} basis on some 
of the runs, she could check that in those cases she gets differ-
ent conditional states, drawn from the same ensemble (since the 
partial trace must be the same) being resolved in a different way 
by Bob’s outcomes. More in general, it has been shown that two 
POVMs can be used to show steering if and only if they are not 
jointly measurable [44]. In the following, we will see that if Alice 
accepts some assumptions about what kind of states ρ̂ AB can be 
generated by the black box, it can become unnecessary for her to 
choose Bob’s measurement: Bob can choose a single observable to 
be measured on his subsystem at each run to convince her that the 
output state of the black box, among those she considers possible, 
is an entangled one.

While we decided to spell out all the details and hidden as-
sumptions to introduce the definition of quantum steering, it is 
worth mentioning that the notion of “assemblage” can be exploited 

to concisely describe the same phenomenon [45]. In this frame-
work, an assemblage {σ̂ b,X }b := {p X (b)ρ̂ A|b,X }b is provided by the 
set of unnormalized quantum states of Alice’s system that can be 
prepared by conditional measurement of X on Bob’s one and con-
sidering all possible outcomes labeled by b. By fiat, they have 
the property that TrA σ̂ b,X = p X (b), so that they also encode the 
respective probabilities. Moreover, recalling once again that the un-
conditional state of Alice after Bob’s measurement cannot depend 
on his choice because of the no-signaling theorem, we have that 
for two distinct measurement choices X and X ′ , the assemblages 
associated with them satisfy:

∑

b

σ̂ b,X =
∑

b′
σ̂ b′,X ′ = ρ̂ A (7)

The question of steerability of ρ̂ AB by Bob then is equivalent to 
asking whether there exist a set of assemblages that cannot be 
simulated by classical strategies enacted by Bob; if they exist, those 
assemblages would be called steerable. Given an assemblage, its 
steerability can be judged via semidefinite programming [45,46].

3. Gaussian states and conditions for quantum steering

A continuous variable quantum system of n (bosonic) modes 
relies on a Hilber space H which is isomorphic to L2(Rn). How-
ever, it should not be interpreted as a quantum state of n dis-
tinguishable particles, but rather as a tensor product of n Fock 
spaces, one for each mode. A mode represents a possible state 
in which a particle can be created, and for bosonic systems each 
mode can host any number of particles; for example, given a wave 
vector k in a free quantum field theory, there is a mode associ-
ated with it corresponding to particle-like excitations of the field 
having a well-defined momentum equal to k. A convenient de-
scription of such systems can be provided by introducing a vector 
R̂ = (x̂1, p̂1, ..., ̂xn, p̂n)T is of canonical operators (or quadrature 
operators), T denoting transposition, related to the mode creation 
and annihilation operators by:

x̂ j =
â j + â†

j√
2

, p̂ j = −i
â j − â†

j√
2

but it is crucial to stress that quadrature operators do not have the 
meaning of position and momentum operators for distinguishable 
particles.

Given a density operator ρ̂ , i.e. a quantum state of such a 
system, it is convenient to associate with it a function on n-
dimensional phase space, known as the characteristic function [47,
48], which is defined as:

χ
[
ρ̂

]
(&) = Tr[ρ̂ e−i&T R̂] (8)

where & is the vector of the Fourier-conjugate variables of phase 
space. ρ̂ is said to be a Gaussian state if, apart possibly for a 
phase-space-dependent phase factor, it is a Gaussian function of 
the phase space variables.

Let us now consider a bipartite Gaussian state ρ̂ AB , having 
nA ≥ 1 modes controlled by Alice and the remaining nB ≥ 1 modes 
pertaining to Bob, so that n = nA +nB is the total number of modes 
of ρ̂ AB . We write its characteristic function as [47–49]:

χ
[
ρ̂ AB

]
(&) = exp

{
−1

2
&T σ& − i&T 〈R̂〉

}
(9)
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where we introduced the covariance matrix (CM):

σ jk = 1
2
〈{R̂ j, R̂k}〉 − 〈R̂ j〉〈R̂k〉 (10)

with 〈R̂〉 = TrAB [ρ̂ ABR̂] and R̂ j being the j-th entry of the op-
erators vector R̂. It is clear from these definitions that a Gaus-
sian state is fully characterized by the vector 〈R̂〉 ∈ R2n and the 
2n × 2n real symmetric matrix σ . The uncertainty relations (UR) 
for canonically-conjugate variables may be recast into a constraint 
on the CM associated with physical states [50]:

σ + i
2
" ≥ 0 (11)

where " = ⊕n
j=1ω (for n modes) and ω = iσy is the standard 

symplectic form on R2, σy being the second Pauli matrix. The in-
equality in (11) is to be read as a matrix inequality stating that the 
matrix on the left-hand side is a positive-semidefinite matrix. If we 
order the couple of canonically conjugated quadratures in such a 
way that the first nA of them refer to Alice’s modes and the re-
maining ones to Bob’s modes, we can write the CM σ of ρ̂ AB in 
block form:

σ =
(

A C
CT B

)
(12)

where A ≥ 0 (resp. B ≥ 0) is still a valid CM that can be inter-
preted as the covariance matrix of the unconditional state of Al-
ice’s modes ρ̂ A = TrB

[
ρ̂ AB

]
(resp. of Bob’s modes ρ̂B = TrA

[
ρ̂ AB

]
), 

while the 2nA × 2nB matrix C encodes the correlations between 
the two collections of modes. When exploring the steering prop-
erties of ρ̂ AB , we shall limit ourselves to Gaussian measurements. 
This limitation is appropriate for a number of reasons: first of all, 
proving steerability with Gaussian measurements naturally implies 
steerability in the general sense. Secondly, from an experimen-
tal viewpoint, Gaussian measurements are standard in quantum 
optics. Furthermore, this allows a clear and analytical characteri-
zation, as we shall briefly discuss.

We should begin by reviewing the theory of Gaussian mea-
surements on Gaussian states. A positive operator-valued measure 
(POVM) {!̂α} for an n-modes continuous variable quantum sys-
tem defines a Gaussian measurement if all of its operators have 
a Gaussian Wigner function, meaning that to each !̂α one can 
associate an ordinary Gaussian state (albeit not normalized to 1). 
Usually the outcomes α of an n-modes Gaussian POVM are 2n-
dimensional real vectors of expectation values for the Gaussian 
state associated with the measurement operator, while the CM 
of the POVM is constant for all the operators and characterizes 
the type of measurement. Now if Bob were to measure a Gaus-
sian POVM with CM σ M on his nB modes, he would get outcomes 
α ∈ R2nB with a Gaussian distribution pα = TrAB [ρ̂ AB(IA ⊗ !̂α)]
whose covariance matrix is B + σ M , where B is the CM of ρ̂B
according to Eq. (12), while the mean value vector is given by 
〈R̂B〉 = TrB

[
ρ̂BR̂B

]
, where R̂B is the vector of his quadratures 

operators. The conditional state of Alice’s modes after Bob got his 
outcome α is still Gaussian, and we shall denote it by:

ρ̂ A,α = 1
p(α)

TrB

[
ρ̂ AB

(
IA ⊗ !̂α

)]
(13)

Now comes a crucial point about Gaussian quantum steering. Bob 
has to report to Alice his outcome in order for her to check that 
an influence took place on her modes, i.e. that they are actually 
described by the conditional state ρ̂ A,α after she measured. Oth-
erwise, she would find her modes in the unconditional state ρ̂ A

no matter what he did, by the no signaling theorem. However, 
Bob’s outcome will only affect the mean value vector of Alice’s 
conditional state ρ̂ A,α . But the mean value vector can be modified 
arbitrarily by local unitary operations,1 therefore it cannot encode 
quantum correlations between Alice and Bob. The covariance ma-
trix σ A,c of the conditional state ρ̂ A,α , on the other hand, does 
not depend on Bob’s outcome, but just on the initial CM σ and on 
the CM σ M of Bob’s Gaussian POVM. Specifically, leveraging on the 
trace rules for the characteristic functions of positive operators, it 
can be shown that [49,51,52]:

σ A,c = A−CT (B + σ M)−1 C (14)

which takes the form of a Schur complement [53]. To state it yet 
in another way, whenever Bob performs a Gaussian measurement 
with CM σ M on his modes, Alice’s state will have the same CM 
σ A,c independently of the outcome he got, but it will be centered 
at different mean value vectors which are Gaussian distributed so 
that the ensemble of her conditional states reproduces the uncon-
ditional state ρ̂ A , as it must. If she comes to know Bob’s outcome 
at each run, however, she can resolve the ensemble and distinguish 
between the different conditional states ρ̂ A,α .

From this line of reasoning it should be clear that whether the 
initial state ρ̂ AB is steerable by Bob or not is entirely determined 
by its CM σ . Indeed, it has been shown [6,7] that a necessary 
and sufficient condition for steering by Gaussian measurements on 
Bob’s modes is the violation of the following matrix inequality:

σ + i
2

("A ⊕ 0B) ≥ 0 (15)

The idea of the proof is that Ineq. (15) is both necessary and suf-
ficient for the existence of a 2nA × 2nA CM for Alice’s modes, σ U , 
which is physical (σ U + iΩA/2 ≥ 0) and such that σ A,c − σ U ≥ 0
for all possible conditional CMs σ A,c , that is for all possible mea-
surement’s covariance matrices σ M . Then σ U could be exploited 
by Bob to concoct an ensemble {pβ , ρ̂

β

U } of Gaussian states to be 
sent to Alice to simulate his ability to influence her modes at a 
distance. Therefore, if such a matrix σ U exists, no matter what 
kind of Gaussian measurement is performed on Bob’s modes, Alice 
won’t be convinced that the initial state must have been entangled 
and, by definition, ρ̂ AB is not steerable (with Gaussian measure-
ments) by Bob. Conversely, whenever Ineq. (15) is violated (mean-
ing that the matrix on the left-hand side has at least one negative 
eigenvalue) there will exist Gaussian measurements such that the 
corresponding conditional states could not have been simulated by 
a predetermined ensemble chosen by Bob.

Further intuition on Gaussian steering can be gained by consid-
ering the simplest scenario, where ρ̂ AB is a two-mode state with 
mode A sent to Alice and mode B controlled by Bob. Then ρ̂ AB is 
steerable with Gaussian measurements by Bob if and only if there 
is no physical, unique single-mode covariance matrix σ U which is 
narrower, with respect to all possible quadrature combinations of 
Alice’s mode, than all the conceivable conditional covariance matri-
ces. In other words, if any Gaussian function in Alice’s phase space 
which is narrower than the Wigner functions of all possible condi-
tional states at the same time in x̂A and p̂ A is necessarily unphysical, 
then the state is steerable. Since this implies that there exist two 
(incompatible) Gaussian measurements on Bob’s mode such that 
the combined minimal variances of Alice’s conditional states would 
violate the UR, it can be appreciated that Gaussian steering for a 
two-mode state is equivalent to the possibility of showing the EPR 

1 Here by local we mean acting on the collection of modes pertaining to one 
party only.
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paradox with it. Partly due to this connection, and also to clearly 
distinguish the different steering notions by their names, from now 
on we will refer to steering with CV quantum systems as EPR steer-
ing.

4. Steering notion based on P-nonclassicality

In this section, after reviewing the notion of P-nonclassicality, 
we will exploit it to define nonclassical steering for two-mode 
Gaussian states and then compare it to the standard notion of 
quantum steering that was discussed above. The goal is to pro-
vide an intuition for the relations between these different notions 
and also to argue for the application of nonclassicality as a wit-
ness for quantum steering in continuous-variable systems. Indeed, 
the necessity for experimentally accessible properties that would 
allow to demonstrate steering was already pointed out in the orig-
inal paper [6,7] and was later addressed by a number of protocols 
(see [2] and references therein).

The concept of P-nonclassicality of a quantum state relies on 
its Glauber P-function, a member of a continuous family of phase 
space quasiprobability distributions, known as s-ordered Wigner 
functions, that are defined according to [26]:

W s
[
ρ̂

]
(X) =

∫

Rn

d2n&

(2π2)n e
1
4 s|&|2+i&T Xχ

[
ρ̂

]
(&) (16)

for s ∈ [−1, 1] and χ
[
ρ̂
]
(&) is the characteristic function intro-

duced before. For s = 0 one recovers the standard Wigner function, 
which is simply the Fourier transform of the characteristic function 
(9), while for s = −1 Eq. (16) yields the Husimi Q function. The 
case s = 1 corresponds instead to the Glauber P-function, which 
is therefore the most singular of the family and can behave even 
more singularly than a tempered distribution. When the P-function 
(or a regularization of it [26,38,30]) of a CV quantum state ρ̂ at-
tains negative values in some regions of phase space [54], the state 
is termed nonclassical [31–35]. The so-called nonclassical depth of a 
CV state ρ̂ is then the quantity t = 1

2 (1 − sm), where sm is the 
largest real number such that W s

[
ρ̂
]
(X) is nonsingular ∀s < sm . 

Thus ρ̂ is nonclassical if t > 0 and classical if t = 0. It should be 
emphasized that several protocols have been devised to experi-
mentally and theoretically certify the nonclassicality of light states 
(see [55,56] and references therein).

Going back to the characteristic function in Eq. (9) and as-
suming a two-mode Gaussian state ρ̂ AB , it is straightforward to 
conclude from Eq. (16) that the state is nonclassical if and only if 
the least eigenvalue of σ is smaller than 1

2 . Examples of classical 
Gaussian states are coherent and thermal states, while squeezed 
vacuum states are always nonclassical. In the following, we will be 
interested in characterizing how quantum correlations in the joint 
Gaussian quantum state ρ̂ AB may be exploited to influence the 
nonclassicality of one mode (say B) by Gaussian measurements on 
the other one (mode A). In doing so, Local Gaussian Unitary Trans-
formations (LGUTs) do not affect these correlations, and therefore 
we may freely perform LGUTs on the two modes to bring ρ̂ AB into 
a simpler form. In particular, by means of LGUTs a two-mode Gaus-
sian state can always be brought into the so-called canonical form
[57,58,49], for which the CM σ can be decomposed in 2 × 2 diag-

onal blocks σ =
(

A C
CT B

)
with:

A = a · I2 , B = b · I2 , C = diag(c1, c2) (17)

while a, b, c1, c2 ∈ R. We now note that the unconditional state of 
mode A, defined either as the state that Alice uses to describe her 
mode without knowing anything about Bob’s mode or as the state 

she assigns to her mode by assuming that Bob has performed some 
measurement on his mode without letting her know the outcome, 
is given by ρ̂ A = TrB

[
ρ̂ AB

]
and has a CM σ A = A. Since the UR 

imply that a ≥ 1
2 this means that ρ̂ A must be classical. The same 

holds true for mode B , thus we may say that given a two-mode 
Gaussian state ρ̂ AB in canonical form, neither of the two modes 
has any intrinsic nonclassicality. Based on this observation, we can 
ask whether a two-mode Gaussian state in canonical form can be 
used to prepare a nonclassical state of one mode by performing 
a generalized Gaussian measurement on the other mode. We are 
thereby led to the following definition [43]:

Definition 1. A two-mode Gaussian state ρ̂ AB in canonical form is 
called weakly nonclassically steerable (WNS) from mode B to mode 
A (B → A) if there exists a Gaussian positive operator-valued mea-
sure (POVM) {!̂α}α∈C on mode B such that the conditional state 
of mode A

ρ̂c,α = 1
pα

TrB

[
ρ̂ AB

(
IA ⊗ !̂α

)]
(18)

is nonclassical, where pα = TrAB [ρ̂ AB(IA ⊗ !̂α)] is the probability 
of observing the outcome α ∈C.

One must bear in mind that EPR steering is already a nonclas-
sical phenomenon, since it involves quantum correlations whose ef-
fects on the steered side cannot be reproduced by any local hidden 
variable model [6,7]. Notwithstanding this, we introduce here the 
term nonclassical steering because we are bringing in the additional 
notion of P-nonclassicality, which is, by its definition, conceptually 
disjoint from the nonclassical character of quantum correlations. 
Therefore one should not interpret nonclassical steering as a some-
how less classical variant of EPR steering, but rather as a different 
phenomenon that aims at capturing the ability to remotely influ-
ence P-nonclassicality within correlated CV quantum states. Having 
settled their definition, let us now deduce a simple criterion to 
discern weakly nonclassically steerable states, starting with the fol-
lowing proposition:

Proposition 1. The least classical (i.e. with highest possible nonclassi-
cal depth) conditional state ρ̂c,α of mode A attainable with Gaussian 
measurements on mode B of a two-mode Gaussian state ρ̂ AB in canon-
ical form is reached by quadrature detection on mode B, either of the x̂B
quadrature if |c2| ≥ |c1|, or of the p̂B quadrature otherwise.

Proof. Let us denote by σ c the CM of the conditional state, which 
does not depend on the outcome α as discussed previously. There-
fore, ρ̂ AB in canonical form is WNS if and only if there exists a 
Gaussian POVM such that the least eigenvalue of σ c is smaller 
than 1

2 . The effects of the most general Gaussian POVM on a 
single mode may be written as !̂α = D(α)ρ̂G D†(α)/π where 
D(α) = exp{αâ† − α∗â} is the displacement operator and ρ̂G is a 
single-mode Gaussian state with 〈R̂〉 = 0. Furthermore, we may 
choose the following convenient parametrization for the CM σ M

of ρ̂G :

σ M = 1
2µµs

(
1 + κs cosφ −κs sinφ
−κs sinφ 1 − κs cosφ

)
(19)

where µ=Tr[ρ̂2
G ] ∈ [0, 1] is the purity of ρ̂G , µs=[1 +2 sinh2 rm]−1, 

κs =
√

1 − µs
2, rm being the squeezing parameter of the state, 

and φ ∈ [0, 2π) is a phase. As stated by Eq. (14), the conditional 
CM is given by σ c = A − CT

(
B+ σ M

)−1 C. Since A is diago-
nal, the minimum λm (over all possible CMs σ M ) of the smallest 
eigenvalue of σ c is attained for the supremum of the greatest 
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eigenvalue of CT (B+ σ M)−1C, which is positive semidefinite. By 
explicit calculation, this supremum requires φ = 0 if |c2| ≥ |c1|, and 
φ = π otherwise. The resulting expression is a monotonic decreas-
ing function of µs , since one can see by inspection that its first 
derivative with respect to µs is always nonpositive. Therefore, one 
needs to set µs = 0 in order to attain the supremum and in this 
limit the value of µ becomes irrelevant. The limit µs → 0 makes 
the Gaussian POVM !̂α to collapse into the spectral measure of 
the x̂ (resp. p̂) quadrature for φ = 0 (resp. = π ). !

This result immediately leads us to the aforementioned crite-
rion:

Proposition 2. A two-mode Gaussian state ρ̂ AB in canonical form is 
WNS (B → A) if and only if the parameters of its CM, as defined by 
Eq. (17), satisfy:

a − c2

b
<

1
2

, c = max{|c1|, |c2|} (20)

Proof. Let us suppose that c = |c2| ≥ |c1|, so that we can fix φ = 0
in Eq. (19). Then, for µs → 0, one can explicitly compute λm =
a − c2/b. But the initial state ρ̂ AB is WNS if and only if the least 
classical conditional state is nonclassical, which amounts to λm <
1/2, as stated by Eq. (20). Otherwise, if c = |c1| > |c2|, one should 
choose φ = π to arrive at the same conclusion. !

We call this property weak nonclassical steering because it does 
not imply entanglement. Indeed, there are (non isolated) choices 
for the values of a, b, c1, c2 that correspond to physical states (σ >
0 and fulfilling UR) that are separable and WNS, e.g. a = b = 13.9, 
c1 = 4.6, c2 = −13.7. Besides, there exist WNS states with c1c2 >
0, which is a sufficient condition for separability. Intuitively, the 
issue is that a single, optimal Gaussian measurement is sufficient 
for Bob to show Alice that a state is WNS, but the assumption of 
a canonical two-mode Gaussian state is too generic and a single 
choice of measurement cannot be sufficient to demonstrate EPR 
steering, which in turn implies that it cannot prove entanglement. 
In fact, it has been shown [43] that WNS can be achieved with 
Gaussian states with arbitrarily low Gaussian Quantum Discord.

Motivated by these examples, we seek a stronger condition than 
the one provided in Definition 1 to explore other quantum cor-
relations that can arise while studying the remote generation of 
P-nonclassicality with Gaussian states in canonical form. Recalling 
that Proposition 1 identifies quadrature measurements as the best 
Gaussian measurements to induce nonclassicality, we introduce the 
following more stringent notion of nonclassical steering:

Definition 2. A two-mode Gaussian state ρ̂ AB in canonical form 
is called strongly nonclassically steerable (SNS) (B → A) if the mea-
surement of any quadrature on mode B generates a nonclassical 
conditional state of mode A.

Following the proof of Proposition 2, we immediately conclude:

Proposition 3. A two-mode Gaussian state ρ̂ AB in canonical form is SNS 
(B → A) if and only if the parameters of its CM, as defined by Eq. (17), 
satisfy:

a − c′2

b
<

1
2

, c′ = min{|c1|, |c2|} (21)

Proof. The least nonclassical conditional state is reached, among 
all quadrature measurements, by the “wrong” choice of phase (φ =
π for |c2| ≥ |c1| and φ = 0 otherwise). Therefore, it is sufficient to 

demand that the minimum eigenvalue of σ c is less than 1
2 also in 

this case, thereby arriving at Ineq. (21). !

In order to generalize these definitions from two-mode Gaus-
sian states in canonical form to all Gaussian states of two modes, 
we should take into account (local) single-mode squeezing trans-
formations, which may alter the nonclassicality of each mode inde-
pendently of their quantum correlations. However, since any two-
mode Gaussian state can be brought to its unique canonical form 
through LGUTs without altering the correlations, we can extend 
the definitions in the following way:

Definition 3. A generic two-mode Gaussian state ρ̂ AB is called 
weakly (strongly) nonclassically steerable if the unique Gaussian 
state ρ̂ ′

AB in canonical form related to ρ̂ AB by LGUTs is weakly 
(strongly) nonclassically steerable.

The reader might wonder whether a tensor product of two 
single-mode Gaussian states might end up being (weakly or 
strongly) nonclassically steerable according to the above definition, 
a clearly undesirable circumstance. However, this is not possi-
ble: since we defined weak and strong nonclassical steerability 
for generic two-mode Gaussian states by referring to the proper-
ties of the corresponding state in canonical form, any two-mode 
Gaussian state of the form ρ̂ A ⊗ ρ̂B will be associated with a state 
ρ̂ ′

A ⊗ ρ̂ ′
B in canonical form, where ρ̂ ′

A and ρ̂ ′
B are necessarily clas-

sical, as was argued to arrive at Definition 3. Since conditioning 
upon measurements on one mode of a factorized state cannot af-
fect the state of the other mode, ρ̂ ′

A ⊗ ρ̂ ′
B cannot be (weakly nor 

strongly) nonclassically steerable, and by Definition 3 also ρ̂ A ⊗ ρ̂B
will not be.

In order to extend also the results regarding the necessary and 
sufficient conditions for WNS/SNS, we need to specify the effect of 
LGUTs on σ c . Any Gaussian unitary transformation is implemented 
by a symplectic linear transformation in the phase space formal-
ism, and viceversa. Therefore a LGUT on a two-mode system is 
described by an element S A ⊕ S B acting on quantum phase space, 
where S A(B) ∈ SLA(B)(2). The 2 × 2 blocks of a generic σ are trans-
formed according to:

A′ = S AAS T
A B′ = S BAS T

B C′ = S ACS T
B (22)

Let us now suppose that S A ⊕ S B brings the initial σ in canonical 
form, so that A′ = a′I2, B′ = b′I2 and C′ = diag(c′

1, c′
2). The con-

ditional CM σ c resulting from a Gaussian measurement with CM 
σ M on the initial state with CM σ can be rearranged as:

σ c = S T
A

[
A′ −C′ (B′ + σ ′

M
)−1 C′T

]
S A (23)

where the CM of the measurement has been redefined accord-
ing to σ ′

M = S T
Bσ M S B . We see that performing the measurement 

(associated with) σ M on the two-mode state with CM σ is equiv-
alent to perform the modified measurement σ ′

M on the canonical 
form state related to σ and then performing the transformation in-
duced by S A on the resulting conditional CM. This means that we 
can simply factor out the action of S A because it doesn’t interfere 
with the steering process. Meanwhile, as long as S B does not in-
troduce infinite squeezing, we can still approach the desired limit 
of σ ′

M , acting on the state in canonical form, by taking a limit of 
σ M with a suitable phase. Finally, to get the necessary and suffi-
cient conditions for WNS and SNS in the general case, we can now 
rewrite Ineq. (20) and Ineq. (21), replacing a, b, c1, c2 with their 
expressions in terms of symplectic invariants [57] I1 = a2, I2 = b2, 
I3 = c1c2, and I4 = (ab − c1

2)(ab − c2
2), which are indeed invariant 

under LGUTs.
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Proposition 4. A generic two-mode Gaussian state ρ̂AB is weakly non-
classically steerable from mode B → A if and only if its symplectic 
invariants satisfy the inequality:

I1 I2 − I3
2 + I4 −

√(
I1 I2 − I3

2 + I4
)2 − 4I1 I2 I4

2I2
√

I1
<

1
2

, (24)

while it is strongly nonclassically steerable if they satisfy the stronger 
inequality:

I1 I2 − I3
2 + I4 +

√(
I1 I2 − I3

2 + I4
)2 − 4I1 I2 I4

2I2
√

I1
<

1
2

. (25)

Strong nonclassical steering obviously implies weak nonclassi-
cal steering, but it also implies entanglement. We will show this 
implicitly by proving a stronger result:

Theorem 1. A two-mode Gaussian state ρ̂ AB that is SNS B → A is also 
EPR-steerable in the same direction, therefore also entangled.

Proof. As stated in Ineq. (15), EPR steerability B → A of a Gaussian 
state by Gaussian measurements amounts to the violation of the in-
equality σ + i

2 ωA ⊕ 0B ≥ 0 by its CM. Exploiting LGUT-invariance, 
we can restrict the comparison between EPR steerability and SNS 
to Gaussian states in canonical form. In this case, keeping in mind 
that a > 1

2 , violation of the above inequality reduces to [7,59]
(a − c2

1/b)(a − c2
2/b) < 1/4, which is certainly true under the SNS 

Ineq. (21). !

Notice that, by combining Ineq. (24) and Ineq. (25) with the 
EPR steerability B → A criterion for a two-mode Gaussian state in 
canonical form, (a − c2

1/b)(a − c2
2/b) < 1/4, we can readily express 

also Ineq. (15) in terms of symplectic invariants:

4I4 < I2 (26)

which most clearly shows the asymmetric nature of this quantum 
correlation, since I2 = b2 appears on the right-hand side. Again, 
the related inequality for EPR steerability A → B can be obtained 
by replacing I2 with I1 in Ineq. (26).

To sum up, we may say that strong nonclassical steering is the 
strongest quantum correlation considered in this paper for two-
mode Gaussian states: a strongly nonclassically steerable state is 
necessarily also weakly nonclassically steerable and EPR steerable 
in the same direction, therefore also entangled. On the converse, 
weak nonclassical steering is a very weak form of nonclassical cor-
relation: it does not require entanglement, nor a minimal amount 
of Gaussian quantum discord.

It is also remarkable that the quantities on the left sides of (20)
and (21) are precisely conditional variances appearing in the Reid 
EPR-criterion [60,61], whose test is already experimentally acces-
sible [62,63]. The idea is that, when Bob measures either the x̂B
or the p̂B quadrature of his mode, the conditional states of Al-
ice will have minimal variances along orthogonal quadratures; the 
EPR paradox arises if the product of these minimal quadratures is 
less than 1

4 , which naively seems to contradict the Uncertainty Re-
lations.2 As already noted, this is precisely the condition of EPR 
steering (see the proof of Theorem 1). This is also in agreement 
with the well-known result stating that quadrature measurements 
are the best choice for Gaussian EPR steering [64].

2 The contradiction is not real, of course, since the two variances result from dis-
tinct, incompatible measurements on Bob’s mode.

5. Gaussian steering triangoloids

Let us now focus on the relevant class of two-mode squeezed 
thermal states (TMST) [65–67]. The parameters of their CMs are 
given by (r ∈R+):

a = 1
2
(1 + N A + NB) cosh 2r + 1

2
(N A − NB)

b = 1
2
(1 + N A + NB) cosh 2r − 1

2
(N A − NB)

c = c1 = −c2 = 1
2
(1 + N A + NB) sinh 2r (27)

where Ni (i = A, B) denotes the average number of thermal pho-
tons in each mode. Since TMST are all and only those states whose 
CM is in canonical form with the additional constraint that c1 =
−c2 = c, evidently they are also precisely those states in canoni-
cal form for which the conditions for WNS and SNS coincide, by 
Eq. (20) and Eq. (21): the most nonclassical conditional state on 
mode A is obtained by any quadrature measurement on mode B . 
From the proof of Theorem 1, it is also clear that TMST states are 
EPR-steerable from one mode to the other if and only if they are 
nonclassically steerable (strongly and therefore also weakly) in the 
same direction. This observation provides a new, somehow surpris-
ing, role for the notion of P-nonclassicality: it is the property that 
Alice should check, after Bob’s measurement on his mode, to cer-
tify that the shared TMST state is indeed entangled; we note that 
this fact could find applications in one-sided device-independent 
quantum key distribution [9]. Note that the universal steerability 
condition for TMST states becomes:

cosh 2r > 1 + 2N A(1 + 2NB)

1 + N A + NB
(28)

which is readily interpreted as a lower bound on the two-mode 
squeezing needed to make the TMST steerable B → A.

In order to illustrate nonclassical steering for TMST states, we 
employ plots of triangoloids. Consider the conditional CM of mode 
A parametrized by (µc, µsc, φc) as in Eq. (19). For TMST it is possi-
ble to compute the functional dependence of these parameters on 
the initial TMST parameters N A, NB , r and the POVM’s parameters 
µ, µs, φ. In particular φc = φ, thus the phase may be discarded, 
while for the remaining parameters [43]:

µc = 1
2

√
α2 − β2

(c2 − aα)2 − a2β2

µsc =

√
(α2 − β2)

[
(c2 − aα)2 − a2β2

]

a(α2 − β2) − αc2

(29)

where α = b + 1
2µµs

, β = κs
2µµs

and κs =
√

1 − µ2
s . For a fixed TMST 

state, we can thus plot the region of achievable conditional states 
in the (µc, µsc)-space, as obtained by considering all the POVM’s 
parameters µ and µs . These are the curvilinear triangles (trian-
goloids) in Fig. 1, where we also displayed the nonclassical region 
(light-brown region), i.e. those parameters corresponding to non-
classical states of mode A according to [43]:

µsc <
2µc

1 + µc
2 (30)

It follows that the TMST state associated with a given triangoloid is 
nonclassically steerable B → A when the parameters N A , NB and r
of the state are such that the triangoloid intersects the nonclassical 
region, as in the right panel of Fig. 1, because only in that scenario 
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Fig. 1. (Left): Triangoloid for TMST state with N A = NB = 4.5 and r = 1.2, µc is the 
purity of the conditional state, while µsc = (1 + 2 sinh2 rc)

−1 quantifies squeezing 
of the conditional state. The light-brown region contains all nonclassical conditional 
states. (Right): triangoloid for N A = NB = 0.75 and r = 1.2. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

there will be some Gaussian POVM on mode B yielding a nonclas-
sical state of mode A. We shaded the intersection area according to 
the nonclassical depths, with lighter regions for higher t. As it may 
be also appreciated graphically, the decisive point for nonclassical 
steering of a TMST is the blue, lower vertex of the triangoloid, at-
tained by quadrature detection on mode B: if this point is outside 
the nonclassical region, all other points of the triangoloid are out-
side too and an intersection between the nonclassical region and 
the triangoloid will no longer be possible. Notice that the equiv-
alence of EPR steering and nonclassical steering for TMSTs has a 
neat graphical interpretation: the light-brown nonclassical region 
is the largest region such that a TMST whose triangoloid intersects 
it is necessarily entangled. Indeed, suppose that a larger region in 
the (µc, µsc) square exists such that whenever the triangoloid in-
tersects it, one can be sure that the state is entangled; since these 
diagrams can be drawn by Bob from the data gathered by mea-
surements on his mode only, it would mean that the intersection 
with such a larger region would convince Bob that the state was 
entangled, so it must have been steerable. However, we proved 
that the largest region such that an intersection of the triangoloid 
implies steering is precisely the nonclassical region.

The equivalence between nonclassical steering (of the weak 
and/or strong type) with EPR steering for TMST states is insight-
ful yet from another aspect: it shows that EPR steering is possible 
even with a single type of measurement, if Alice (i.e. the steered 
party) is willing to accept some hypotheses about the shared quan-
tum states. In the present case, if she believes that the original 
two-mode state was a TMST Gaussian state and that Bob’s mea-
surement apparatus, as unreliable as it could be, is only capable 
of performing Gaussian measurements, then she will be convinced 
that the TMST state was also entangled if and only if, upon getting 
the outcome from Bob, she finds out that her conditional state is 
nonclassical. To achieve this, it is sufficient for Bob to do a single 
type of projective measurement of a (generic) quadrature on his 
mode and report the outcome: there is no need for Alice to ask 
in advance what kind of measurement he should perform in each 
run.

A thorough description of triangoloids and their role in the 
study of nonclassical steering can also be found in [43], where the 
propagation of a TMST state through a thermal environment and 
its detrimental effect on these quantum correlations was also ex-
plored.

6. Conclusions

In this tutorial, we reviewed the general notion of quantum 
steering, highlighting the implicit assumptions in the thought ex-
periment that is usually brought out to motivate this type of 

quantum correlations, i.e. proving entanglement of shared bipar-
tite states to another party who just trusts her own local mea-
surements. We then specialized this notion to Gaussian states 
and Gaussian measurements, providing intuitive motivation for the 
EPR steering condition for them. Subsequently, we introduced P-
nonclassicality and the related concept of nonclassical steering, 
both of the weak and strong type, which stem from the intuition 
of exploiting P-nonclassicality as a witness of EPR steering in two-
mode Gaussian states. We went on by showing that WNS amounts 
to ask that at least one of such variances is smaller than the vac-
uum value, whereas SNS requires the same to be true for both these 
variances separately. EPR-steerability instead asks that the product
of them is smaller than the value attained by the same quantity on 
the vacuum [68]. After discussing LGUT-invariance and providing 
general criteria for two-mode states, we explored in greater de-
tail the relations between the three steering notions and the Reid’s 
criterion to test the EPR paradox for two-mode states. Finally, we 
applied the concepts to two-mode squeezed thermal states, which 
can be conveniently treated with Gaussian triangoloids diagrams. 
This example showcases the intimate connection between non-
classical and EPR steering, and also provides an instance where a 
single type of measurement is sufficient to demonstrate EPR steer-
ing and therefore to prove to the other party that the shared TMST 
state is entangled, a possibility that could find applications in one-
sided device-independent quantum key distribution [9] with CV 
protocols and quantum optics, especially in light of the quickly 
developing strategies to test P-nonclassicality (see [69] and refer-
ences therein).
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