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Abstract
We address quantum decision theory as a convenient framework to analyse process
discrimination and estimation in qubit systems. In particular, we discuss the following
problems: (1) how to discriminate whether or not a given unitary perturbation has
been applied to a qubit system; (2) how to determine the amplitude of the minimum
detectable perturbation. In order to solve the first problem, we exploit the so-called
Bayes strategy and look for the optimal measurement to discriminate, with minimum
error probability, whether or not the unitary transformation has been applied to a
given signal. Concerning the second problem, the strategy of Neyman and Pearson is
used to determine the ultimate bound posed by quantum mechanics to the minimum
detectable amplitude of the qubit transformation. We consider both pure and mixed
initial preparations of the qubit and solve the corresponding binary decision problems.
We also analyse the use of entangled qubits in the estimation protocol and found that
entanglement, in general, improves stability rather than precision. Finally, we take into
account the possible occurrence of different kinds of background noise and evaluate
the corresponding effects on the discrimination strategies.

Keywords Quantum decision theory · Quantum hypothesis testing · Process
discrimination · Qubit interferometry

1 Introduction

The existence of non-orthogonal quantum states is one of the fundamental traits of
quantum mechanics and has profound implications on its applications. On the one
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hand, non-orthogonality poses limitations to the fundamental challenge of quantum
state discrimination [1–14] and, on the other hand, it may be exploited as a resource
in quantum technologies, e.g. in quantum cryptography [15–27]. Non-orthogonality
also influences other fundamental tasks in quantum information processing, and in
particular process discrimination [28–36], which itself represents a crucial ingredient
for quantum simulations and quantum interferometry [37–39].

In this paper, we address process discrimination in qubit systems and exploit results
from quantum decision theory in order to optimise the discrimination strategy [40,41],
i.e. to minimise the impact of non-orthogonality, and to derive the corresponding
ultimate bounds to the probability of error in the detection of the perturbation, and
the discrimination precision of the perturbation amplitude. The possible advantages
resulting from the use of entanglement are also explored in details.

The scheme we are going to consider is the following: a single- or two-qubit system
is prepared in a given initial state, then, with a certain unknown probability, it is
subjected to the action of a given unitary operator Uλ = exp{− iGλ}, G being the
generator of the perturbation and λ its amplitude. Finally, the system is measured, in
order to detect whether or not the unitary transformation has perturbed the system. The
problem is equivalent to that of discriminating the unperturbed state of the system from
the perturbed one, while accepting a probability of error. A second, complementary,
goal is to determine the minimum detectable value of the amplitude λ which leads
to discriminable outputs. The precision obtained by using one- or two-qubit will be
compared in order to reveal whether the use of entanglement leads to some advantages,
either in ideal conditions or in the presence of noise.

The paper is structured as follows. In Sect. 2, we establish notation and briefly
review few fundamental results in quantum discrimination theory, also illustrating
the different figures of merit employed in the so-called Bayes and Neyman–Pearson
discrimination strategies. In Sect. 3, we employ Bayes strategy to distinguish between
different processes with minimum error using one- and two-qubit probes, also when
different kind of noise occurs. In Sect. 4, we exploit Neyman–Pearson strategy to
find the ultimate bound to the minimum detectable perturbation, discrimination, also
addressing the use of entanglement and the occurrence of noise. Finally, Sect. 5 is
closing the paper with some concluding remarks.

2 Quantum decision theory

Let us consider a qubit system and assume it may be prepared in one of the two states
{ρ j } j=1,2 with prior probabilities {z j } j=1,2 such that ρ j ∈ L(C2), and

∑
j z j = 1.

Our goal is that of inferring the state of the qubit, basing our decision on the outcome of
ameasurement performed on the system. To this aim, we should implement a detection
scheme, i.e. a POVM (Positive Operator-Valued Measure) Π = {Πk}k=1,2, where the
Πk’s are positive semi-definite, Tr[ρ Πk] ≥ 0, ∀ρ, and sum to the identity

∑
k Πk = I.

As we already mentioned, we cannot, even in principle, perfectly distinguish the
two states, unless they have orthogonal supports. For non-orthogonal states, we cannot
achieve perfect discrimination. However, we may seek for an optimal discrimination
strategy, which minimise/maximise, in average, a given loss/gain function. In the
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following two paragraphs, we briefly review two relevant strategies used in quantum
hypothesis testing, whichwill be also at the basis of our approach to process estimation
in qubit systems.

The first paragraph is devoted to Bayes strategy, which aims to the POVMminimis-
ing the average probability of error in the decision process. Bayes strategy is suitable
for those situations where the two possible outcomes of the measurement are equally
important for the experimenter and thus the two error probabilities should be jointly
minimised. The paradigmatic situation where the Bayes strategy is employed is binary
quantum communication, in which two classical symbols are encoded onto quantum
states of a physical system and quantum decision theory is exploited to determine the
optimal receiver at the output of the communication channel.

On the other hand, there are several situations of interest where one of the two
events, usually referred to the alternative hypothesis, is expected to occur more rarely
with respect to the other one, called null hypothesis. In these cases, the detection of
alternative hypothesis is the main task of the measurement. The so-called Neyman–
Pearson (NP) strategy is relevant for this context, aiming at maximising the detection
probability of the alternative hypothesis while accepting a possible false-alarm prob-
ability, which is the probability of inferring the alternative hypothesis when the null
hypothesis is instead true. A possible paradigmatic situation where NP strategy may
be successfully implemented is the interferometric detection of gravitational waves.

2.1 Bayes discrimination strategy

Bayes strategy aims at minimising the average probability of error of the decision
process [11], i.e. the quantity

qe(Π) =
∑

i ̸= j

z j p (i | j) ,

where p (i | j) = Tr
[
ρ jΠi

]
is the probability of inferring ρi when ρ j is the actual state

of the system. In turn, Bayes strategy is also referred to as minimum error discrimina-
tion strategy [25–27]. Since we are here considering binary decisions, the probability
of error simplifies to

qe(Π) = z1 − Tr [ΛΠ1] = z0 + Tr [ΛΠ0] , (1)

where

Λ = z1ρ1 − z0ρ0. (2)

This operator is hermitian, though not positive definite. It is sometimes referred to as
the Bayesian characteristic operator.

Aswe can see from (1), the probability of error is minimisedwhen themeasurement
operator Π1 is the projector on the positive part of Λ. It is thus a projective valued
measure (PVM) given by Π = {I − Π1,Π1} where Π1 = ∑

λk>0 |λk⟩⟨λk | and
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{λk}k=0,1 are the eigenvalues of Λ. The resulting minimum probability of error may
be written as:

pe ≡ min
Π

qe(Π) = 1
2
(1 − Tr|Λ|) = 1

2
(1 − ∥z1ρ1 − z0ρ0∥1), (3)

where the trace norm ∥A∥1 of an operator is defined as ∥A∥1 = Tr|A| = Tr[
√
A†A].

The quantity pe in Eq. (3) is usually referred to as the Helstrom bound to the error
probability in binary state discrimination. For pure states the Helstrom bound may be
rewritten as

pe =
1
2

[
1 −

√
1 − 4z0z1 |κ|2

]
, (4)

where κ = ⟨ψ1|ψ0⟩ is the overlap between the two states. We can easily see that

for vanishing overlap the probability of error is also vanishing as pe
|κ|→0≃ z0z1 |κ|2,

whereas for large κ (κ → 1), the discrimination process approaches pure guessing
(pe → 1/2).

2.2 Neyman–Pearson discrimination strategy

Neyman–Pearson strategy aims at maximising the detection probability of the alterna-
tive hypothesis, at a fixed value of the false-alarm probability. Let us refer to the two
hypotheses {H0, H1} as the null and the alternative hypothesis, respectively, where
Hj, j=0,1 corresponds to the qubit being in the state ρ j . The basis of NP strategy
is in fact a trade-off between the probability of detection of alternative hypothesis,
p(1|1) ≡ p11, and the false-alarm probability, p(1|0) ≡ p10. A maximum thresh-
old of false-alarm probability is fixed as acceptable, given the nature of the physical
problem where the decision strategy is implemented. The searching of the POVM
maximising the detection probability p11 corresponds to a Lagrange maximisation
problem where the value of p10 is taken as a constraint. The optimal POVM is then
the one maximising the Lagrange functional [4]:

L = p11 − γ p10 = Tr[Γ Π1],

where γ is a Lagrange multiplier and

Γ = ρ1 − γρ0 (5)

is the Lagrange operator. In order tomaximise L , the POVMΠ1 needs to be a projector
on the positive eigenvalues of the operator Γ . The optimal measurement scheme
according to Neyman–Pearson strategy is thus a projective one Π = {I − Π1,Π1}
where Π1 = ∑

g>0 |g⟩⟨g|, g being the eigenvalues of Γ and |g⟩ the corresponding
eigenvectors. We notice that, in solving the eigenvalue problem, different values of
γ correspond to different values of the accepted false-alarm probability and thus to
different Neyman–Pearson strategies.
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Fig. 1 Process discrimination as a binary decision problem. A single qubit initially prepared in the quantum
state ρ0 may, or may not, undergo a unitary transformation Uλ. A detector is placed at the output of the
system to discriminate between the two states and, in turn, whether the unitary transformation has occurred
or not

Once the eigenvalues of Γ are found, the strategy becomes clear: when the mea-
surement of Γ gets a positive outcome, the alternative hypothesis H1 is inferred as
true, otherwise the null hypothesis H0 is inferred. For pure states the detection proba-
bility p11 can be written in terms of p10 after eliminating the Lagrange multiplier γ ,
obtaining:

p11 (p10) =
{[√

p10 |κ|2 +
√
(1 − p10)(1 − |κ|2)

]2
0 ≤ p10 ≤ |κ|2,

1 |κ|2 < p10 ≤ 1.
(6)

Equation (6) shows that we may have unit detection probability as far as we accept a
false-alarm probability larger than the overlap between the two pure states involved in
the problem. As a consequence, as the overlap is large, the detection of the alternative
hypothesis becomes hard, as either the detection probability cannot achieve the unit
value without accepting extremely large margins of error (false alarm).

3 Bayes approach to process detection in qubit systems

3.1 Single-qubit states

In this section, we apply Bayes strategy to quantum binary discrimination to observe
whether or not a given unitary perturbation has been applied to a qubit system. The
detection scheme is schematically illustrated in Fig. 1.

A single-qubit system is initially prepared in an input quantum state ρ0 and it is
then let to evolve through a channel where it may undergo a transformationUλ, being
λ the perturbation amplitude. At the output, i.e .after the (possible) transformation we
want to know whether we have ρ0 or

ρλ = U †
λρ0Uλ (7)

as output state. The problem reduces to discrimination between the two states, and
since they do not have, in general, orthogonal supports, quantum decision theory is
the natural framework to adopt. In the following, we will employ Bayes strategy for
single-qubit signals, as well as two-qubit ones, in order to detect perturbations induced
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by a Pauli matrix and, without loss of generality, we will assume

Uλ = e−iλσ1 = cos λ I − i sin λ σ1 (8)

as the transformation which may take place into the channel. Upon writing the initial
single-qubit state in a Bloch form ρ0 = 1

2 (I + r · σ ), with r = {r1, r2, r3}, σ =
{σ1, σ2, σ3}, the transformed state is given by ρλ = 1

2 (I+rλ ·σ )where the transformed
components are given by

r1λ = r1,

r2λ = r2 cos 2λ − r3 sin 2λ,

r3λ = r2 sin 2λ + r3 cos 2λ. (9)

The characteristic operator in (2) becomes Λ =
(

Λ0 Λ2
Λ∗

2 Λ1

)
, with:

Λ0 = z1 (1+ r3λ) − z0 (1+ r3) ,

Λ1 = z1 (1 − r3λ) − z0 (1 − r3) ,

Λ2 = z1 (r1λ − i r2λ) − z0 (r1 − i r2) . (10)

In this context, z1 and z0 are, respectively, the prior probabilities for the unitary trans-
formation to have effect on the initial quantum state or not (z0 + z1 = 1). Upon
evaluating explicitly trace and determinant of Λ, the probability of error has the fol-
lowing form:

pe =
1
2

[
1 −

√
r2 − 4z1z0

[
r2 −

(
r2 − r21

)
sin2λ

]]
, (11)

in which r2 = |r|2 = r21 + r22 + r23 . If the state is pure, r
2 = 1, we indeed recover

Eq. (4) since we have |κ|2 = 1 − (1 − r21 )sin
2λ. In the limiting cases where both

eigenvalues are positive (negative) discrimination reduces to pure guessing, i.e. the
inference is madewithout looking at data.Wemay summarise the situation as follows:

Tr[Λ] ≤ 0 Tr [*] > 0
Π = {Π0 = I,Π1 = O} Π = {Π0 = O,Π1 = I}
pe = z1 pe = z0

(12)

Let us now assume z1 = z0 = 1
2 (no a priori information about the occurrence of

the perturbation) and rewrite (11) in terms of the initial state purity

pe =
1
2

[
1 −

√(
2µ − 1 − r21

)
sin2λ

]
. (13)

The probability of error achieves its minimum when the input signal is pure (µ = 1),
and its projection on the direction of the generator vanishes, i.e. for pure states lying
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in the orthogonal plane of the generator σ1. In this case we have

pe =
1
2
(1 − |sinλ|) (14)

which only depends on the parameter of the transformation. This is the least possible
error we can get. Any discrimination procedure in the Bayesian sense is thus prepa-
ration dependent, at least for the present single-qubit case. We also note that all the
above results generalise, mutatis mutandis, to any generator σk (k = 1, 2, 3).

3.2 Two-qubit states

Let us now consider the scheme in Fig. 2, where we assume that the qubit which may
possibly subject to the transformation Uλ is initially prepared in an entangled state
with another qubit.

Our goal is to compare the performance of this scheme against those if the single-
qubit one at fixed use of the resource, here intended as the device that may impose
the perturbation. Starting with a singlet state |ψ−⟩ = (|01⟩ − |10⟩) /

√
2, the density

matrix of the corresponding perturbed state may be written as

ρλ = cos2 λ |ψ−⟩⟨ψ−| + sin2 λ |φ+⟩⟨φ+|
+ i sin λ cos λ (|ψ−⟩⟨φ−| − |φ−⟩⟨ψ−|) , (15)

where the perturbation Uλ is acting on the first qubit in the singlet. The Bayesian
characteristic operator is thus given by

Λ = (z1 cos2 λ − z0)|ψ−⟩⟨ψ−| + sin2 λ |φ+⟩⟨φ+|
+ i sin λ cos λ (|ψ−⟩⟨φ−| − |φ−⟩⟨ψ−|) , (16)

Fig. 2 Process discrimination as a binary decision on entangled state: the transformation Uλ that may or
may not perturb the system, is acting on a qubit which is part of a bipartite system prepared in an entangled
state. At the output, a joint detector is placed
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and the corresponding eigenvalues by ξ± = 1
2 [(z1 − z0) ±

√
1 − 4z0z1 cos2 λ]. The

error probability reads as follows:

pe = z1 − ξ+ = 1
2

[
1 −

√
1 − 4z0z1 cos2 λ

]
. (17)

Using entanglement we may thus achieve the ultimate bound in Eq. (14) and, remark-
ably, the same results, i.e. the same value of pe in Eq. (17) is obtained for any initial
two-qubit preparation of the form

|ψ⟩ = 1√
2
[α0|00⟩ + α1|01⟩ + α2|10⟩ + α3|11⟩] , (18)

provided that α0α
∗
2 + α1α

∗
3 = 0. In addition, under the same condition, Eq. (17) also

holds when the perturbation is generated by any of the σk , k = 1, 2, 3. The class of
states in Eq. (18) includes maximally entangled states. Upon comparing Eqs. (18)
with (13), we see that entanglement improves the discrimination process in terms of
stability, since the probability of error does not depend on the projection of the Bloch
vector on the axis corresponding to the generator of the perturbation.

Let us now consider a generic mixture of Bell states:

ρ0 = p0|φ+⟩⟨φ+| + p1|ψ+⟩⟨ψ+| + p2|ψ−⟩⟨ψ−| + p3|φ−⟩⟨φ−|.

After lengthy but straightforward calculation the characteristic operator can be
obtained (not shown here) and, in turn, the following probability of error:

pe =
1
2
[1 − (|p0 − p1| + |p1 − p3|)|sinλ|]. (19)

3.3 Bayes strategy in presence of noise

A possible generalisation of the problem is considering a situation where some source
of noise acts during propagation of the signal. In particular, we focus on the two-qubit
case, assuming that noise occurs to both parties and takes place before the possible
perturbationUλ. A schematic diagram of the experimental protocol is shown in Fig. 3.
We present here the analysis of the effects on the same initial entangled state of four
different kinds of noise: the three formalised by Pauli matrices and the depolarising
noise.

The analysis here presented considers as first case the bit-flip noise, which is
described by the completely positive map

E1(ρ0) =
1∑

i, j=0

Ei j ρ0 E
†
i j , (20)
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Fig. 3 Process discrimination as a binary decision on noisy entangled state. The signal is subject to some
source of noise, which affects both parts of the entangled system, and takes place before the possible
perturbation Uλ. At the output, we have a joint detector

where Ei j are the Kraus operators:

E00 =
√
pq I ⊗ I,

E01 =
√
p(1 − q) I ⊗ σ1,

E10 =
√
(1 − p)q σ1 ⊗ I,

E11 =
√
(1 − p)(1 − q) σ1 ⊗ σ1. (21)

In these equations, p and q are the probabilities for, respectively, the first qubit (which
has probability to undergo the unitary transformation) and the second qubit to be
subject to noise. The probability of occurring noise is assumed as independent on the
two channels. If the initial state is ρ0 = |φ+⟩⟨φ+| , we get

E1(ρ0) = [pq + (1 − p)(1 − q)]|φ+⟩⟨φ+| + [p(1 − q)+ q(1 − p)]|ψ+⟩⟨ψ+|
= (1 − p − q + 2pq)|φ+⟩⟨φ+| + (p + q − 2pq)|ψ+⟩⟨ψ+|. (22)

Using Eq. (19), we obtain:

pe =
1
2
[1 − |(2p − 1)(2q − 1)||sinλ|]. (23)

Similar considerations can be conducted for the phase-flip noise by replacing σ1 in
Eq. (21) to σ3. For the same initial state considered above we get:

E3(ρ0) = [pq + (1 − p)(1 − q)]|φ+⟩⟨φ+| + [q(1 − p)+ p(1 − a)]|φ−⟩⟨φ−|,
(24)

and

pe =
1
2
[1 − |sinλ|]. (25)
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No dependence on the noise is present, i.e. the discrimination power for the studied
protocol is not affected by the presence of phase-flip noise. Analogue results are
obtained when discussing the phase-bit-flip noise, which is described by the same
previous set of Kraus operators by formally replacing σ1 with σ2.

Considering as a last case the depolarising noise

Edp(ρ0) =
p
4
I+ (1 − p)ρ0, (26)

where p is the probability that the state ρ0 is transformed to a maximally mixed state
1
2 I, results of Eq. (19) may be used, leading to

pe =
1
2
[1 − (1 − p)|sinλ|]. (27)

As before, this is independent of the mean value of the generator of the perturbation.
On the other hand, the probability of error depends on the noise parameter p, and
it increases with p. To summarise: when the noise acts on an eigenspace of the per-
turbation generator, the decision process is affected, and accordingly, the probability
of error is increased. On the other hand, when the noise acts on an orthogonal space
of the generator of the perturbation Uλ, the probability of error of making a decision
results unchanged and it achieves its minimal value given in Eq. (25).

4 Neyman–Pearson strategy and theminimum detectable
perturbation

4.1 Pure states

In this section, we address the problem of evaluating the minimum detectable value of
the perturbation amplitude λm, i.e. the minimum value of λ inU (λ) = e−iλσ1 making
ρ0 and ρλ discriminable. To this aim, we have to maximise the detection probability
of the alternative hypothesis, which is the basis of the so-called Neyman–Pearson
strategy, to optimise binary decision.

We start from a single qubit initially prepared in a pure state. In this case, as it was
observed in Sect. 2, the optimal NP strategy may be analytically determined and the
characteristic equation p11 = p11(κ, p10) takes the form of the expression shown in
Eq. (6), where κ = ⟨ψ0|ψλ⟩ = ⟨ψ0|Uλ|ψ0⟩ is the overlap between the initial and the
perturbed states. Given the expression ofU (λ) = e−iλσ1 , it is clear that the eigenstates
of σ1 are not modified by the action of the perturbation (up to an irrelevant phase),
and thus they are not suitable to detect any value of λ.

In order to define the minimum detectable perturbation, it is necessary to define
a criterion to discern the regimes for which the detection probability can be consid-
ered large. The first criterion to be employed is an “absolute” one: a perturbation
amplitude λ is detectable if it leads to a detection probability p11(κ, p10) ≥ 1

2 . A
lower detection rate would indeed make the dataset useless, as no reliable informa-
tion may be extracted in that case. We also address a “relative” criterion, for which
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a perturbation is considered detectable when it leads to p11/p10 ≥ δ ≫ 1. In order
to perform our analysis, we rewrite the expression of p11 = p11(κ, p10) in terms of
α ≡ 1−|κ|2 = (1−r21 ) sin

2 λ. Concerning the expression of the detection probability,
it is clear from Eq. (6) that unit detection probability p11 = 1 is reached whenever
|κ|2 ≤ p10, i.e. (1 − r21 ) sin

2 λ ≥ 1 − p10. In principle, in this regime p11 = 1 is
obtained and thus wemay detect arbitrarily small perturbation. However, the condition
|κ|2 ≤ p10 is λ-dependent and this constraint poses a lower bound on the detectable
amplitude. This is illustrated in the left panel of Fig. 4, where a contour plot of p11 as
function of p10 and α is shown. The good area is the white one above the red straight
line α = 1 − p10.

The other branch of the function is less trivial to analyse. Nevertheless, it is easy
to observe that p11 increases with p10 and α, and then the p11 ≥ 1

2 condition is
satisfied in the area between the above-mentioned line and the curve of equation[√

p10 (1 − α)+ √
(1 − p10)α

]2 = 1/2, p10 ∈
[
0, 1

2

]
, which is the red arc of

Fig. 4 (both panels). The entire set of couples (p10,α) satisfying the absolute criterion
can therefore be graphically represented as the grey-shadowed area in the right panel
of Fig. 4. The above equation may be inverted to make α explicit, leading to α =
1
2 − √

p10 (1 − p10), p10 ∈
[
0, 1

2

]
. The minimum detectable perturbation can then

be calculated upon recalling the expression of α, leading to

λm = arcsin

√
1

1 − r21

[
1
2

−
√
p10 (1 − p10)

]
. (28)

In order to make sense of the right-hand side of Eq. (28), the possible values of r1 must
be restricted to r21 ≤ 1

2 +
√
p10(1 − p10). This is a limitation on the state construction:

if we fix a false-alarm probability p10 ≤ 1
2 , only states satisfying this condition may

lead to a detection probability p11 larger than 1
2 . In the rest of our discussion we

focus on those states, since for p10 ≥ 1
2 we have p11 = 1, and any state preparations

corresponds to an arbitrarily small detectable perturbation. As it was noted above, the
optimal preparation of the input signal corresponds to r1 = 0. In this case, varying
p10 ∈ [0, 1

2 ], we have sin2 λ ∈ [ 12 , 0]. Accepting as instance no false alarm (p10 = 0),
the minimum detectable perturbation parameter is calculated as λm = π/4, whereas
all the unitary transformations with parameter smaller than π/4 cannot be detected.
When instead the accepted false-alarm probability is fixed to 1/2 (the largest possible
value when considering this branch), all the possible transformation parameters are
available: λm = 0. This is yet a relative advantage, because of the trade-off between
sensitivity and false-alarm probability. In particular, for values of p10 ≃ 1

2 we have

λm ≃
√

1
1−r21

[ 1
2 − √

p10 (1 − p10)
]
. If r1 takes its maximum allowed value, that is

r21 = 1
2 + √

p10 (1 − p10), then λm = π/2 independently from the value of the
false-alarm probability.

Let us now address the analysis of the second above-mentioned criterion, for which
the minimum detectable perturbation leading to p11/p10 ≥ δ ≫ 1 is targeted. As
in previous cases, it is easy to address the situation when α ≥ 1 − p10, for which
p11 = 1. In this case, the criterion may be easily inverted and immediately leads to

123



  204 Page 12 of 19 I. Maffeis et al.

0 0.2 0.4 0.6 0.8 1

P
10

0

0.2

0.4

0.6

0.8

1

α

0 0.2 0.4 0.6 0.8 1

P
10

0

0.2

0.4

0.6

0.8

1

α

Fig. 4 The minimum detectable perturbation for pure states (absolute criterion). Left panel: contour plot
p11 as a function of p10 and α. Right: the grey area corresponds to the region where p11 ≥ 1

2 (Color figure
online)

Fig. 5 The minimum detectable
perturbation for pure states
(relative criterion). The grey
area corresponds to the region
where p11/p10 ≥ δ for the
particular case δ = 4

0 1 δ 1
P10
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0.2

0.4

0.6

0.8

1

α

p10 ≤ 1
δ . The corresponding points in the p10 − α plane are shown in Fig. 5. In the

opposite case (α ≤ 1− p10), the inequality [
√
p10(1 − α)+√

(1 − p10)α]2 ≥ δ has
to be solved. After some algebra, we may rewrite this condition as

α ≥ p10
[√

1 − δ p10 −
√

δ (1 − p10)
]2

. (29)
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The entire area for which the detection probability can be considered largewith respect
to p10 is grey coloured in Fig. 5. Upon increasing δ, the area is decreasing in size, the
vertical line moving left.

The minimum detectable perturbation is thus given by

λm = arcsin

√
p10

1 − r21

[√
1 − δ p10 −

√
δ (1 − p10)

]2
, (30)

depending on the fixed value of δ and on the state preparation with respect to the
σ1-axis, r1. The restriction on the possible state preparation reads as follows: r21 ≤
1 − p10[

√
1 − δ p10 − √

δ(1 − p10)]2.

4.2 Mixed states

Following the same steps for mixed states, we are led to diagonalise the Lagrange

characteristic operator Γ = ρλ − γρ0 =
(

Γ0 Γ2
Γ ∗
2 Γ1

)
, which is expressed in terms of

the Bloch representation of the initial and the perturbed states

Γ0 =
1
2
[(1 − γ )+ (r3λ − γ r3)], (31)

Γ1 =
1
2
[(1 − γ ) − (r3λ − γ r3)], (32)

Γ2 =
1
2
[(r1λ − γ r1) − i(r2λ − γ r2)]. (33)

The detection and the false-alarm probabilities are, respectively, given by:

p11 =
1
2

[

1+
(
f (γ ) − γ |κ|2

) √
r2

√
f 2(γ ) − γ |κ|2

]

, p10 =
1
2

[

1 −
(
f (γ ) − |κ|2

) √
r2

√
f 2(γ ) − γ |κ|2

]

,

(34)

where f (γ ) = 1
2 (1+γ ) and |κ|2 = 1− (1− r21

r2 ) sin
2 λ. After careful inspection of the

domains of validity, we may invert the above Equations, obtaining the characteristic
expression p11 = p11(κ, p10) as follows:

p11 (p10) =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 ≤ p10 (γ ) ≤ p10 (γ+)
p∗
11 p10 (γ+) < p10 < p10 (γ−)

p11 (γ−) p10 (γ−) ≤ p10 ≤ 1
1 p10 = 1

, (35)
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Fig. 6 The minimum detectable perturbation for mixed states. The plot shows the characteristic function
of Eq. (35) for an initially mixed state with r2 = 0.8 and |κ|2 = 0.8

where p∗
11 = p10|κ|2 + (1 − p10)(1 − |κ|2) +

√
|κ|2(1 − |κ|2)[r2 − (2p10 − 1)2],

and the two critical values γ± are given by

γ± = 1+ 2

√
r2(1 − |κ|2)
1 − r2

[√
r2 − |κ|2r2 ±

√
1 − |κ|2r2

]
. (36)

The characteristic function is graphically represented in Fig. 6 for fixed values of
r2 and κ , which correspond to fix r21 and λ, i.e. to tuning the initial preparation and
the setup (remind that r2 = 2µ − 1, where µ is the purity of the initial preparation).
The corresponding minimum detectable perturbation is then given by

λm = arcsin

√√√√√ 1

1 − r21
r2

⎡

⎣1
2

−
√
r2 − 1+ 4p10 (1 − p10)

r2

⎤

⎦, (37)

with the condition

r21 ≤ r2

⎡

⎣1
2
+
√
r2 − 1+ 4p10 (1 − p10)

r2

⎤

⎦ . (38)

Once again, this is a restriction on the initial preparation of the system. When the
inequality is saturated, the only parameter that can be detected is λm = π

2 , otherwise
the best preparation is r1 = 0. Of course, λm vanishes as far as p10 approaches the
limiting value p10 = 1

2 .
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4.3 Pure two-qubit states

Here we address possible enhancement coming from coupling the qubit that might
undergo a perturbationUλ to another qubit which is left unperturbed.We will consider
the same setup of the Bayesian analysis, reported in Fig. 2. We obtained before that
for a generic pure state described in the computational basis of two qubits by (18)
and satisfying α0α

∗
2 + α1α

∗
3 = 0 the overlap has a universal value independent of the

preparation; |κ|2 = cos2 λ, and thus α = sin2 λ. If we compare this result with what
we found in the case of generic single-qubit state, we see that they match up whenever
the state is pure and the projection on the generator axis vanishes. The corresponding
minimum detectable perturbation is given by

λm = arcsin

√
1
2

−
√
p10 (1 − p10), (39)

which does not depend on the initial preparation of the system and ranges from 0 to π
4

for p10 ranging from 1
2 to 0. As we already concluded for the Bayesian case, the effect

of entanglement is to enhance the overall stability of the discrimination/estimation
scheme.

4.4 Mixed two-qubit states

Let us consider here a generic Bell-diagonal mixed state ρ0 = p0 |φ+⟩⟨φ+| +
p1 |ψ+⟩⟨ψ+| + p2 |ψ−⟩⟨ψ−| + p3 |φ−⟩⟨φ−|,

∑
k pk = 1. The Lagrange operator

Γ = ρλ − γρ0 for this preparation may be decomposed into a direct sum of two
operators, each one acting on the orthogonal subspaces generated by {|φ+⟩, |ψ+⟩} and
{|φ−⟩, |ψ−⟩}, respectively. In particular, we have

" = "(+) ⊕ "(−), (40)

where

"(+) =
[
p0(cos2 λ − γ )+ p1 sin2 λ

]
|φ+⟩⟨φ+|

+
[
p1(cos2 λ − γ )+ p0 sin2 λ

]
|ψ+⟩⟨ψ+|

+ i sin λ cos λ(p0 − p1) (|φ+⟩⟨ψ+| − |ψ+⟩⟨φ+|) , (41)

and

"(−) =
[
p2(cos2 λ − γ )+ p3 sin2 λ

]
|φ−⟩⟨φ−|

+
[
p3(cos2 λ − γ )+ p2 sin2 λ

]
|ψ−⟩⟨ψ−|

+ i sin λ cos λ (p2 − p3) (|φ−⟩⟨ψ−| − |ψ−⟩⟨φ−|) . (42)
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The two operators may be brought to a 2 × 2 matrix form as

"(±) =
(

Γ
(±)
0 Γ

(±)
2

(Γ
(±)
2 )∗ Γ

(±)
1

)

, (43)

with

Γ
(+)
0 = p0(cos2 λ − γ )+ p1 sin2 λ, Γ

(−)
0 = p2(cos2 λ − γ )+ p3 sin2 λ,

Γ
(+)
1 = p1(cos2 λ − γ )+ p0 sin2 λ, Γ

(−)
1 = p3(cos2 λ − γ )+ p2 sin2 λ,

Γ
(+)
2 = i sin λ cos λ(p0 − p1), Γ

(−)
2 = i sin λ cos λ(p2 − p3). (44)

For the sake of clarity, let us discuss explicitly how to derive the characteristic function.
The relevant quantities for discussing the eigenvalues of " are trace and determinant
of "(±). We have

Tr["(+)] = (p0 + p1)(1 − γ ) (45)

det "(+) = p0 p1[γ 2 − 2γ (1+ Ξ (+))+ 1], (46)

where

Ξ (+) = (p0 − p1)2

2p0 p1
sin2λ. (47)

The two critical values of γ , corresponding to vanishing determinant, are

γ
(+)
± = 1+ Ξ (+) ±

√
Ξ (+)

(
Ξ (+) + 2

)
. (48)

Accordingly, three regimes are identified, summarised as follows:

⎧
⎪⎨

⎪⎩

γ (+) ≤ γ
(+)
− , ζ± ≥ 0 Π = {Π0 = O,Π1 = I4}

γ (+) ≥ γ
(+)
+ , ζ± ≤ 0 Π = {Π0 = I4,Π1 = O}

γ
(+)
− < γ (+) < γ

(+)
+ , ζ− ≤ 0; ζ+ > 0 Π = {Π0 = |ζ−⟩⟨ζ−| ,Π1 = |ζ+⟩⟨ζ+|}

(49)

where ζ± are the eigenvalues of the operator "(+). Upon carrying out the same anal-
ysis for "(−), we identify the critical values for the Lagrange multiplier. Depending
on the initial parameters {pi }i=0,1,2,3, the intervals [γ (−)

− , γ
(−)
+ ] and [γ (+)

− , γ
(+)
+ ] are

contained one in the other. Focusing on the case Ξ (+) ≥ Ξ (−), it is observed that
[γ (−)

− , γ
(−)
+ ] ⊆ [γ (+)

− , γ
(+)
+ ]. The characteristic functionmay then be explicitly param-

eterised by γ as follows:
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Fig. 7 The characteristic
function of Eq. (50) for a
diagonal mixed state with
coefficients p0 = 0.1, p1 = 0.2,
p2 = 0.1 and p3 = 0.6

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p10 = 1 p11 = 1

p10 = 1
2

[
(p0 + p1)+ |p0 − p1| p11 = 1

2

[
(p0 + p1)+ |p0 − p1|

× cos 2λ−γ√
γ 2−2γ cos 2λ+1

]
× 1−γ cos 2λ√

γ 2−2γ cos 2λ+1

]

+ (p2 + p3) + (p2 + p3)

p10 = 1
2

[
1+ (|p2 − p3| + |p0 − p1|) p11 = 1

2

[
1+ (|p2 − p3| + |p0 − p1|)

× cos 2λ−γ√
γ 2−2γ cos 2λ+1

]
× 1−γ cos2λ√

γ 2−2γ cos 2λ+1

]

p10 = 1
2

[
(p0 + p1)+ |p0 − p1| p11 = 1

2

[
(p0 + p1)+ |p0 − p1|

× cos2λ−γ√
γ 2−2γ cos2λ+1

]
× 1−γ cos2λ√

γ 2−2γ cos2λ+1

]

p10 = 0 p11 = 0

(50)

An example of this characteristic function with a particular choice of the preparation
parameters p0, p1, p2, p3 and the perturbation parameter λ is illustrated in Fig. 7.
Similar calculations can be conducted in the other case for which: Ξ (−) ≥ Ξ (+).

Using arguments similar to those developed in this section, we may deal with
discrimination in the presence of noise and find the minimum detectable pertur-
bation also in those cases. Finally, we notice that the use of entanglement can
positively affect the discrimination process of quantum states by confirming the over-
all precision obtained in the single-qubit protocol, while enhancing the stability of
the detection scheme by removing the dependence on the preparation of the initial
state.
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5 Conclusions

In this paper, we have applied concepts and methods from quantum decision theory to
address process discrimination and estimation in qubit systems. In particular, we have
discussed the problem of discriminating whether or not a given unitary perturbation
was applied to a qubit system, as well as the complementary problem of evaluat-
ing the minimum detectable perturbation amplitude leading to discriminable outputs.
Our approach has allowed us to obtain several results which are summarised in the
following.

We have seen that entanglement may represent a resource, in particular for improv-
ing the stability of the discrimination strategies. Using single-qubit pure probes, the
characteristic function for both Bayes and NP strategy does explicitly depend on the
initial preparation, whereas using two-qubit probes this dependence disappears. Bell-
state probes are shown to be optimal for both strategies. Nevertheless, they are not the
only choice, since there exists an entire class of states, depending on the generator of
the unitary perturbation, for which both strategies are optimised. In this sense, it has
been shown that not only Bell states belong to this class, but there exists also a set of
non-balanced states simultaneously optimal for each generator.

A similar analysis has been performed for single- and two-qubit mixed states,
for which we found novel analytic solutions for Bayes error probability and the NP
characteristic function. In this way, we found that optimal preparations correspond to
pure states with a vanishing value of the generator expectation value. We have then
used our results to explicitly discuss the effects of possible background noises on the
discrimination performance of the various strategies and schemes. Overall, besides the
exact quantification of noise effects, we have the rather intuitive conclusion that when
we bring noise into play, it has detrimental effects only when it acts on the eigenspaces
of the generator, whereas it has no effects when acting on orthogonal subspaces.

Acknowledgements MGAP is member of GNFM-INdAM.
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