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1. INTRODUCTION

The parametric nonlinear interaction between light
waves [1, 2], as, for example, the creation of the second
harmonic [3], has been studied since the discovery of
the laser. In particular, the interactions of different radi-
ation modes in nonlinear 

 

χ

 

(2)

 

 crystals give rise to sev-
eral interesting effects, such as multiwave mixing, up-
and downconversion, self-phase modulation, cross-
phase modulation, and frequency doubling. At the out-
put of a nonlinear crystal, one may find many different
states of light, which themselves exhibit a rich variety
of phenomena [4–18] both in the classical and in the
quantum domain. As a matter of fact, nonlinear effects
in 

 

χ

 

(2)

 

 crystals represent one of the most efficient sys-
tems to manipulate optical beams, both in the temporal
and in the spatial domain. Indeed, even if 

 

χ

 

(2)

 

 nonlinear-
ity is weak compared to a quasiresonant interaction
with atoms, the excess noise in the process is very low.
The parametric amplification, compared to the laser
mechanism, is broadband and, in the case of pulsed
pumping, may achieve high gain per unit length. More-
over, the gain bandwidth is determined by the disper-
sive properties and by the length of the crystal rather
than by details of a laser transition and does not involve
energy storage.

As mentioned above, nonlinearities of 

 

χ

 

(2)

 

 crystals
are generally small, and, thus, the above effects become
relevant only when high-power beams impinge onto the
crystal. As a consequence, in nonlinear interactions of
this kind, one or more of the involved modes should
provide the energy needed to enhance the nonlinear

effects. Those modes, globally referred to as pumps, are
excited in high-amplitude coherent states by some suit-
able laser source. The pump modes are only slightly
affected by the interactions, and, as a result, the para-
metric approximation is widely used to compute the
dynamical evolution [19]. In the parametric approxima-
tion, which is accurately verified in many regimes, one
assumes that the pump modes remain undepleted
and/or Poissonian during the evolution [20]. This
assumption allows one to ignore the pumps’ evolution
in the classical equations or, in the quantum regime, to
classically treat them as a 

 

c

 

 number, thus neglecting
their quantum fluctuations. As a result, one or more
classical equations may be ignored, whereas, in the
quantum regime, trilinear Hamiltonians are reduced to
quadratic forms in the field operators, and, hence, some
useful mathematical tools, typically decomposition for-
mulas for Lie algebras, can be exploited for calcula-
tions [6, 21–24].

Classical analysis of nonlinear interactions often
provides a good description of experimental results,
while it fails when spontaneous processes become rele-
vant, as, for example, during the process of downcon-
version, which leads to generation of entangled beams
of light. In addition, although the classical approach
cannot account for the genuine quantum properties of
the output beams, it is worthwhile to perform a classical
analysis of the system with the aim of obtaining a reli-
able identification between classical and quantum
parameters, which serves as a guide in order to design
a proper experimental implementation.
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In this paper, we analyze in detail classical three-
and five-mode parametric interactions in 

 

χ

 

(2)

 

 crystals,
as well as the corresponding bilinear two- and three-
mode quantum models. Section 2 is devoted to three-
mode interactions. The classical evolution equations
are explicitly derived and then solved within the para-
metric approximation, taking into account phase mis-
matching either in modulus or in direction. The quan-
tum description of the interaction is given in Section 2.2,
where the generation of entanglement is also analyzed.
In Sections 2.3 and 2.4, we discuss the generation of a
twin beam, with focus on the statistical distributions
and photon correlations, and report experimental
results obtained with BBO crystals. Section 3 analyzes
five-mode interactions, both in the classical and in the
quantum regimes. Applications of five-mode interac-
tions to holography, logic gates, generation of three-
mode entanglement, and telecloning are described with
some details in Sections 3.2, 3.3, 3.4, and 3.5, respec-
tively. Experimental results concerning statistical dis-
tributions and photon correlations of the generated
beams are reported and discussed in Sections 3.6 and
3.7. Finally, Section 4 closes the paper with some con-
cluding remarks.

2. THREE-MODE PARAMETRIC PROCESSES

In this section, we address the interaction among
three modes of the radiation field. First, we analyze in
detail the classical evolution, giving attention to phase-
mismatching effects. Then we describe, within the
parametric approximation, the resulting two-mode
quantum evolution, which leads to the generation of the
so-called entangled twin beam (TWB) state of radia-
tion. Experimental results concerning TWB generation
and measurements of correlation are reported in the last
two subsections.

 

2.1. Classical Evolution

 

A nonlinear optical process may be viewed as being
realized in two steps: first, the intense light emitted by
a laser source induces a nonlinear response [26]. Then,
the medium, in reacting to the external field, modifies
the optical field in a nonlinear way. The relation
between the dielectric polarization 

 

P

 

 and the optical
electric field 

 

E

 

 can thus be written as

(1)

in which 

 

�

 

0

 

 is the vacuum dielectric constant and 

 

d

 

 and

 

χ

 

(3)

 

 are coefficients that describe the second- and third-
order nonlinear effects, respectively [27]. In the follow-
ing we will only consider the second-order nonlinear-
ity.

The propagation of light in an arbitrary homoge-
neous dielectric medium reads as follows:

(2)

in which

(3)

plays the role of a source radiating in a linear medium
of refractive index 

 

n

 

, 

 

c

 

 = 

 

c

 

0

 

/

 

n

 

 is the speed of light in the
medium with 

 

c

 

0

 

 and 

 

µ

 

0

 

 the light velocity and the mag-
netic permeability of free space, respectively.

Suppose that the medium is a 

 

β

 

-BaB

 

2

 

O

 

4

 

 crystal
(BBO), that is, a birefringent uniaxial negative crystal,
and that 

 

E

 

 is a superposition of three plane waves 

 

E

 

1

 

,

 

E

 

2

 

, and 

 

E

 

p

 

 of angular frequencies 

 

ω

 

1

 

, 

 

ω

 

2

 

, and 

 

ω

 

p

 

. In
Fig. 1, the fields 

 

E

 

1

 

 and 

 

E

 

2

 

 are directed along the 

 

x

 

 axis
(ordinarily polarized), while the field 

 

E

 

p

 

 lies in the (

 

y

 

, 

 

z

 

)
plane (extraordinarily polarized) [28]. Let us assume
that the three wave vectors 

 

k

 

j

 

 propagate at different
angles 

 

ϑ

 

j

 

 to direction 

 

z

 

, in the (

 

y

 

, 

 

z

 

) plane of the crystal,
also containing the optical axis. We can thus write the
fields interacting at position 

 

r

 

 = (

 

x

 

, 

 

y

 

, 

 

z

 

) in any plane at
fixed 

 

x

 

, say, 

 

x

 

 = 0, as follows:

(4)

where 

 

A

 

j

 

 = (2

 

η

 

0

 

�

 

ω

 

j

 

/

 

n

 

j

 

)(1/2), 

 

φ

 

j

 

 = 

 

k

 

j

 

z

 

cos

 

ϑ

 

j

 

 + 

 

k

 

j

 

y

 

sin

 

ϑ

 

j

 

 –

 

ω

 

j

 

t

 

, 

 

j

 

 = 1, 2, 

 

p

 

, and , ,  denote the directions of the

P �0χE 2dEE 4χ 3( )EEE …+ + +=

=  �0χE PNL,+

∇2E
1

c
2

----∂2E

∂t
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S µ0

∂2PNL
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E1 r t,( ) x̂
2
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Fig. 1. Noncollinear three-wave interaction in a type-I
uniaxial crystal (X, Y, Z): crystal reference frame with Z par-
allel to the optical axis; (x, y, z), laboratory reference frame
with the (x, y) plane coinciding with the crystal entrance
face; α, tuning angle; ϑCUT, cut angle. The plane (y, z) is the
principal plane for all the interacting waves.
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axes. The total field inside the crystal is given by

(5)

If we suppose that the angular frequencies are commen-
surate, for instance, ω1 + ω2 = ωp (frequency-matching
condition), then, by considering the components of
Eq. (2) in the laboratory frame (x, y, z), we obtain the
following system of equations:

(6a)

(6b)

(6c)

The second members of these equations contain a num-
ber of terms at different frequencies, while each term in
the first members only depends on one of the frequen-
cies ω1, ω2, and ωp. Thus, by equating the terms at the
same frequencies, we get

(7a)

(7b)

(7c)

(7d)

where we have defined

(8a)

(8b)

By substituting into Eqs. (7) the expressions for fields
E1, E2, and Ep given by Eqs. (5) and by assuming that
the complex amplitudes aq(z) are slowly varying with z,
we obtain

(9a)

(9b)

E E1 E2 Ep+ +=

=  E1 E2+( )x̂ Epyŷ Epzẑ c.c.+ + +

∇2
E1 E2+( ) 1

c
2

----
∂2

E1 E2+( )

∂t
2

----------------------------– µ0

∂2PNL x̂⋅

∂t
2

---------------------,=

∇2
Epy

1

c
2

----
∂2

Epy

∂t
2

-------------– µ0

∂2PNL ŷ⋅

∂t
2

---------------------,=

∇2
Epz

1

c
2

----
∂2

Epz

∂t
2

-------------– µ0

∂2PNL ẑ⋅

∂t
2

---------------------.=

∇2
E1

1

c
2

----
∂2

E1

∂t
2

-----------– 4ω1
2

d+Epy d–Epz+[ ]E2*,=

∇2
E2

1

c
2

----
∂2

E2

∂t
2

-----------– 4ω2
2

d+Epy d–Epz+[ ]E1*,=

∇2
Epy

1

c
2

----
∂2

Epy

∂t
2

-------------– 4ωp
2
d+E1E2,=

∇2
Epz

1

c
2

----
∂2

Epz

∂t
2

-------------– 4ωp
2
d–E1E2,=

d+ d22 α ϑp–( )cos d31 α ϑp–( ),sin+=

d– d22 α ϑp–( )sin  – d31 α ϑp–( ).cos=

k̂1 ∇a1 r( )⋅  

= i g+apy r( ) g–apz r( )+[ ]a2* r( )e
iDk– r⋅

,

k̂2 ∇a2 r( )⋅  

= i g+apy r( ) g–apz r( )+[ ]a1
*

r( )e
iDk– r⋅

,

(9c)

(9d)

where Dk = kp – k1 – k2 denotes the phase mismatch,

∇ =  +  and g± = d±[(2�ω1ω2ωp )/(n1n2np)]1/2

are real coupling constants. In order to solve system (9),
it is necessary to make some assumptions; in particular,
we suppose that the field ap remains undepleted during
the interaction, namely, Ap(r) = g+apy(r) + g–apz(r) =
Ap(0). Under this hypothesis, system (9) reduces to two
equations that can be analytically solved:

(10a)

(10b)

in which the parameter Q is defined as

(11)

For historical reasons, a1 and a2 are usually called “sig-
nal” and “idler.” If we inject the crystal with two fields
only, that is, the pump field ap and the seed field a1(0),
the solutions in Eqs. (10a) and (10b) reduce to

(12a)

(12b)

Equation (12b) shows that the generated field a2(r)
depends on the conjugate of the seed field a1(0): as we
have shown in previous works (see, for example, [28,
29]), this dependence can be interpreted as the result of
the holographic nature of three-wave mixing. In fact, if
we put an object on the seed field a1(0) and consider the
pump field ap as the reference field, a2(z), being propor-

k̂p ∇apy r( )⋅  = ig+a1 r( )a2 r( )e
iDk– r⋅

,

k̂p ∇apz r( )⋅  = ig–a1 r( )a2 r( )e
iDk– r⋅

,

ŷ∂y ẑ∂z η0
3

a1 r( ) i
Dk
2

-------– r⋅⎝ ⎠
⎛ ⎞ a1 0( ) Q

Dk̂
2

------- r⋅⎝ ⎠
⎛ ⎞cosh

⎩
⎨
⎧

exp=

+
i
Q
---- ∆ka1 0( )

2Ap 0( )

Dk̂ k̂1⋅
-----------------a2* 0( )+ Q

Dk̂
2

------- r⋅⎝ ⎠
⎛ ⎞sinh

⎭
⎬
⎫

,

a2 r( ) i
Dk
2

-------– r⋅⎝ ⎠
⎛ ⎞ a2 0( ) Q

Dk̂
2

------- r⋅⎝ ⎠
⎛ ⎞cosh

⎩
⎨
⎧

exp=

+
i
Q
---- ∆ka2 0( )

2Ap 0( )

Dk̂ k̂2⋅
-----------------a1* 0( )+ Q

Dk̂
2

------- r⋅⎝ ⎠
⎛ ⎞sinh

⎭
⎬
⎫

,

Q
4 Ap 0( ) 2

Dk̂ k̂1⋅( ) Dk̂ k̂2⋅( )
-------------------------------------------- ∆k

2
– .=

a1 r( ) a1 0( ) Q
Dk̂
2

------- r̂⋅⎝ ⎠
⎛ ⎞cosh

⎩
⎨
⎧

=

+ i
∆k
Q
------ Q

Dk̂
2

------- r̂⋅⎝ ⎠
⎛ ⎞sinh

⎭
⎬
⎫

i
Dk̂
2

------- r̂⋅–⎝ ⎠
⎛ ⎞ ,exp

a2 r( ) =  
2iAp 0( )a1* 0( )

Q Dk̂ k̂2⋅( )
----------------------------------

× Q
Dk̂
2

------- r̂⋅⎝ ⎠
⎛ ⎞ i

Dk̂
2

------- r̂⋅–⎝ ⎠
⎛ ⎞ .expsinh
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tional to (0), reconstructs a real holographic image
of the object.

Moreover, from the solution for field a1(r), we can
derive the gain of the nonlinear interaction

(13)

Since from an experimental point of view we will
observe the amplified field a1(r), we can choose r =

, where L represents the effective length of the
crystal, in which the amplification of the signal occurs.

Note that the conversion efficiency is maximized
when the phase-matching condition is satisfied, that is,
kp = k1 + k2.

2.1.1. Phase mismatching in modulus. As we have
seen in the previous subsection, it is possible to gener-
ate light even in phase-mismatching conditions. In
order to better investigate this point, here we will dis-
cuss separately the cases of phase mismatch in modulus
and in direction, for small deviations from the phase-
matching condition. First, we analyze the case of a non-
collinear interaction for small deviations in the modu-
lus of the wave vectors that interact inside the crystal.
Let us expand the phase mismatching Dk in a Taylor
series up to the second order of the expansion of k1

about  and of k2 about , where each  represents
the central frequency of the field aj:

(14)

in which we suppose that the phase-matching condition
is satisfied for the central frequencies of the interacting
fields; that is,

(15)

Note that the terms of the first order in the squared
brackets represent the group velocities as vg =

a1*

Γ
a1 r( ) 2

a1 0( ) 2
–

a1 0( ) 2
------------------------------------------=

=  
4 Ap 0( ) 2

Q
2 Dk̂ k̂1⋅( ) Dk̂ k̂2⋅( )

--------------------------------------------------- Q
Dk
2

------- r⋅⎝ ⎠
⎛ ⎞ .sinh

2

Lk̂1

ω1 ω2 ω j

Dk
1
c0
---- npωpk̂p n1ω1k̂1– n2ω2k̂2–( )=

=  
1
c0
----

∂n1

∂ω
--------⎝ ⎠

⎛ ⎞
ω1

ω1 n1 ω1( )+ k̂1–
⎩
⎨
⎧

+
∂n2

∂ω
--------⎝ ⎠

⎛ ⎞
ω2

ω2 n2 ω2( )+ k̂2

⎭
⎬
⎫

δω

+
1
c0
----

∂2
n1

∂ω2
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

ω1

ω1 2
∂n1

∂ω
--------⎝ ⎠

⎛ ⎞
ω1

+ k̂1–
⎩
⎨
⎧

–
∂2

n2

∂ω2
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⎝ ⎠
⎜ ⎟
⎛ ⎞

ω2

ω2 2
∂n2

∂ω
--------⎝ ⎠

⎛ ⎞
ω2

+ k̂2

⎭
⎬
⎫δω2

2
---------,

kp ωp( ) k1 ω1( )– k2 ω2( )– 0.=

c0[(∂n/∂ω  + n( )]–1, while those of the second
order are dispersion terms. If we use the result in
Eq. (14) to derive the scalar products appearing in
Eq. (13), we obtain

(16a)

(16b)

in which we have taken into account the terms up to first
order in δω.

If we suppose that the approximation 4|Ap |2/[(Dk ·

)(Dk · )] � 1 holds and consider the relations in
Eqs. (16), Eq. (13) can be written as

(17)

From this expression, we can derive the full width at
half maximum (FWHM) value of δω corresponding to
an amplification gain of Γ = Γ∆k = 0 /2, being the first
exponential on the last line of Eq. (17) the gain in per-
fect phase matching, i.e.,

(18)

The knowledge of the width at half maximum of the
amplified band allows us to calculate the number of

)ωω ω

Dk k̂1⋅ 1
c
---

∂n1
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⎛ ⎞
ω1
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⎛=

+
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ω2
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c
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ω1
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+
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ω2

ω2 n2 ω2( )+ ⎠
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Γ Dk k̂2⋅
Dk k̂1⋅
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2
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× 1
1
2
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4 Ap 0( ) 2
-------------------------------------------- Dk k̂1⋅( )L
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---–
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4
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× 1
1
2
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modes generated by the nonlinear interaction [4]. By
assuming transform-limited pulses for which

(19)

we can define

(20)

where ∆τp is the time duration of the pump pulse cen-
tered at frequency ωp. By substituting Eq. (18) into
Eq. (20), we obtain an expression depending on the
crystal parameters and on the intensity of the pump.
Note that the number of the modes can also be calcu-
lated in the case of cw pumping, in which ∆τp would be
a characteristic time of the measurements, such as the
duration of the observation time.

In Fig. 2, we plot the number of modes as a function
of the frequencies of signal and idler evaluated as frac-
tions of the frequency of the pump field at different
pump intensities. In particular, we can notice that the
number of modes grows both for larger values of the
pump intensity and for frequencies closer to degener-
acy, i.e., when signal and idler have the same frequency.
In addition, when we are far from degeneracy, the
dependence on the intensity of the pump is weaker.

2.1.2. Phase mismatching in direction. Here, we
consider the phase-mismatching condition for small
deviations in the direction of the wave vectors involved
in the interaction. Even in this case, we are looking for
an amplification that is halved with respect to that in
perfect noncollinear phase matching. If we suppose that
δϑ1 is the angular deviation from the phase-matching
condition in which the angle between the vectors k1 and

kp is given by (ϑp – ), while δϑ2 is the angular devi-
ation for the vectors k2 and kp, we can derive the fol-
lowing expressions:

(21a)

(21b)

(21c)

By substituting these expressions in the relation
(Dk · k2)/k2 = (Dk · k1)/k1, which represents the condi-
tion to be fulfilled in order to match the solution in
phase mismatch with that in perfect phase matching, it
is possible to derive the relation between the angular
deviations δϑ1 and δϑ2. By means of trigonometric
considerations, we can simplify this relation as follows:

(22)

∆t FWHM( )∆ω FWHM( ) 8 2,ln=

µ
∆τp

∆τ FWHM( )
--------------------- ∆τp

∆ω FWHM( )

8 2ln
-----------------------,= =

ϑ1

kp k1 � kpk1 ϑp ϑ1–( )cos ϑp ϑ1–( )δϑ1sin+[ ],⋅

kp k2 � kpk2 ϑp ϑ2–( )cos ϑp ϑ2–( )δϑ2sin+[ ],⋅

k2 k1 � k1k2 ϑ2 ϑ1–( )cos[⋅

+ ϑ2 ϑ1–( ) δϑ1 δϑ2–( )sin ].

δϑ1 = δϑ2

kp ϑp ϑ2–( )sin k1 k2–( ) ϑ2 ϑ1–( )sin+

kp ϑp ϑ1–( )sin k1 k2–( ) ϑ2 ϑ1–( )sin+
----------------------------------------------------------------------------------------------

=  –δϑ2

k2

k1
----.

In order to derive the expression of the angular devi-
ations corresponding to an amplification that is halved
with respect to that in perfect noncollinear phase
matching, we consider Eq. (13) and follow the same
procedure as in the previous section, thus obtaining

(23)

where we have again used the equality (Dk · ) =

(Dk · ) and Eq. (22).

Then, the FWHM angular deviation is

(24)

This analysis shows that spatial coherence areas exist in
which the signal is amplified. We also notice that all the
calculations have been developed by considering angu-
lar deviations in the plane (y, z) (see Fig. 1). If we
extend this analysis to the third direction, we obtain a

Γ Dk k̂2⋅
Dk k̂1⋅
----------------- Ap 0( ) L

Dk k̂1⋅( )
Dk k̂2⋅( )

----------------------sinh
2

=

× 1
1
2
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Fig. 2. Number of modes as a function of the frequencies
of signal and idler (as fractions of the frequency of the
pump field) and as a function of the intensity of the pump
(I3 > I2 > I1).
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surprising result: in fact, the spatial coherence areas are
not circular, even if those that are near the principal
plane can be considered as circles with a good approx-
imation.

2.2. Quantum Evolution

Let us now analyze the interaction among the three
modes taking into account quantum fluctuations. As in
the classical case, we denote by a1 the signal, a2 the
idler, and ap the pump. The modes whose frequencies
are linked by the relation ωp = ω1 + ω2 are coupled by
the medium nonlinearity. In the rotating-wave approxi-
mation and under phase-matching conditions, the
Hamiltonian can be written as follows:

(25)

The interaction described by Hamiltonian (25) covers a
considerably rich variety of phenomena, such as gener-
ation of correlated photon pairs by parametric down-
conversion [11–13], phase-insensitive amplification [6,
19], and realization of Bell states [13, 16, 17]. The uni-
tary evolution operator in the interaction picture is

(26)

where τ represents a rescaled interaction time. The
parametric approximation consists of replacing the
pump mode ap with the complex amplitude γ of the cor-
responding coherent state, thus achieving the two-mode
squeezing operator

(27)

where the coupling λ is given by λ = –iτγ. Notice that
the parametric approximation is valid for a wide range
of values of the pump power, including also the case of
a weak pump with small mean photon number. As a
matter fact, the relevant parameter for the validity of the
parametric approximation is the residual degree of
coherence of the pump rather than its depletion [20].

The two-mode squeezing operator yields a suppres-
sion of the quantum fluctuations in one quadrature of
the sum and difference of modes a1 ± a2 [25]. Let us
consider two coherent beams at the input of the system
|ψ0〉 = |α1〉1|α2〉2 = D1(α1) ⊗ D2(α2)|0〉, where D(α) =
exp[αa† – α*a] denotes the displacement operator and
|0〉 denotes the e.m. vacuum. The output state is given
by (we neglect an overall phase)

(28)

where µ = cosh |λ|, ν = sinh |λ| (we assume, without loss
of generality, a real pump amplitude γ) and |ψtwb〉
denotes the so-called twin beam (TWB)

(29)
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which represents the maximally entangled state of the
two modes a1 and a2 (see below). The expression in
Eq. (29), with χ = arg(λ)tanh |λ|, can be easily derived
by factorizing Uλ through the decomposition formulas
for the SU(1, 1) Lie algebra [6, 21, 22], i.e.,

(30)

The mode transformations are given by

(31)

The gain of the device can be defined by taking, as the
initial condition, either the signal or the idler modes
excited in some arbitrary state, and the other mode in
the vacuum. By using Eq. (31), we arrive at the
expression

(32)

where 〈…〉i, o denote the expectation value at the input
and the output, respectively. The first term in Eq. (32)
coincides with the analogous quantity defined in the
classical analysis of the parametric amplifier. On the
other hand, the second term corresponds to the para-
metric downconversion from the vacuum (usually also
referred to as parametric spontaneous emission),
namely, a genuine quantum effect. Indeed, the total
number of photons carried by the twin beam of Eq. (29)
is given by

(33)

The TWB, as well as the state generated by downcon-
version from a coherent seed or a thermal background,
are Gaussian states, i.e., are described by a Wigner
function of the form [30]

(34)

where X = (x1, y1, x2, y2) is the Cartesian description of
the phase space of two modes. The covariance matrix s
is defined as

(35)

λa1
†
a2

† λ*a1a2–[ ]exp a1
†
a2

† λ
λ
------ λtanhexp=

× λcosh
2( ) a1

†
a1 a2

†
a2 1+ +( )log–[ ]exp

× a1a2
λ*
λ

------ λtanh– .exp

Uλ
† a1

a2⎝ ⎠
⎛ ⎞ Uλ

µa1 νa2
†

–

–νa1
† µa2+⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

G j

a j
†
a j〈 〉o a j

†
a j〈 〉 i–

a j
†
a j〈 〉 i

----------------------------------------- λ 1 1

a j
†
a j〈 〉 i

-----------------+⎝ ⎠
⎛ ⎞ ,sinh

2
= =

ψtwb a1
†
a1 a2

†
a2 ψtwb+〈 〉 2 λ .sinh

2
=

W[ ] X( ) 2
π
---⎝ ⎠

⎛ ⎞
2 1

det s[ ]
--------------------e

1
2
--- X X–( )T s 1–

X X–( )–

,=ζρ

σkl s[ ]kl≡ 1
2
--- Rk Rl,{ }〈 〉 Rl〈 〉 Rk〈 〉 ,–=



LASER PHYSICS      Vol. 16      No. 10      2006

CLASSICAL AND QUANTUM ASPECTS 1457

where R = (q1, p1, q2, p2)T is the vector of the quadra-
tures of the two modes, i.e.,

(36)

in which {A, B} = AB + BA denotes the anticommutator
and 〈O〉 ≡  = Tr[ O] is the expectation value of the
operator O, where  is the density matrix of the system.

The mean values of the field are given by  = 〈Rk〉,
whereas the canonical commutation relations are
rewritten as

(37)

where Ωkl are the elements of the symplectic matrix

(38)

Uncertainty relations among canonical operators
impose a constraint on the covariance matrix, corre-
sponding to the inequalities [31]

(39)

Equations (39) follow from the uncertainty relations
for the mode operators and express, in a compact form,
the positivity of the density matrix .

For bipartite and tripartite Gaussian states, the posi-
tivity of the partial transpose (PPT) of the density
matrix is a necessary and sufficient condition for sepa-
rability. In turn, the PPT condition may be written in
terms of the covariance matrix [32]

(40)

where  = LWL denote the modified symplectic
matrix, L = Diag(1, 1, 1, –1) being the matrix describ-
ing the partial transposition in the phase space (time
reversal for one of the modes). For TWB and the dis-
placed TWB of Eq. (28), the covariance matrix reads

(41)

where s3 = Diag(1, –1) is a Pauli matrix and r = |λ|. For
TWB, inequality (40) is violated for any value of λ; i.e.,
TWB are entangled states (actually, TWB are maxi-
mally entangled states; i.e., the violation is maximal for
a fixed number of photons). If the interaction described
by Uλ starts from a thermal background rather than
from the vacuum or from coherent signals, then the
covariance matrix is modified, and, using Eq. (40), one
can show that the corresponding state is entangled only
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if the coupling constant λ exceeds a threshold value
[30].

2.3. Applications: TWB State Generation 

If an intense pump field at frequency ωp enters a sec-
ond-order nonlinear crystal, it generates both the signal
and the idler fields at frequencies ω1 and ω2, with ωp =
ω1 + ω2. The process, well known as spontaneous para-
metric downconversion (SPDC), involves all the wave
vectors that, together with the frequency-matching con-
dition, satisfy the phase-matching condition, i.e., ∆k =
0. In uniaxial crystals, the SPDC consists of the gener-
ation of concentric broadly tunable cones [33], whose
frequencies depend on that of the pump field and whose
apertures depend on the tuning angle. Figure 3a shows
the calculated signal cones at the exit of the crystal for
a fixed value of the tuning angle (α = 34.25°) and of the
wavelength of the pump field (λp = 349 nm). The exper-
imental counterpart of this simulation is shown in
Fig. 3b, which is a picture taken with a digital camera
(Coolpix 990, Nikon, Japan).

(‡) (b)

Fig. 3. (a) Simulated image of the SPDC cones with the tun-
ing angle α = 34.25°; (b) picture of the SPDC cones with the
tuning angle α = 34.25°.
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Fig. 4. Upper panel: pictures of the SPDC cones before the
inversion zone (on the left), in the inversion zone (in the
center), and after the inversion zone (on the right). Lower
panel: radii of the signal cones as functions of the tuning
angle. For α = 35.9°, there is the superposition zone, after
which the frequencies invert their positions.
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It is also interesting to notice that, as α grows, more
and more frequencies appear in the cones. Moreover,
for α = 35.9°, we observe the so-called inversion zone
in which all the frequencies are superimposed (see
Fig. 4, lower panel). Indeed, for greater values of α, we
can observe that the cones corresponding to the lower
frequencies are outside those relative to the higher fre-
quencies (for example, the red cone is outside the green
one). This behavior is shown in detail in the upper panel
of Fig. 4, in which there are three pictures of the cones
before the inversion zone, in correspondence of it and
after it.

To produce the SPDC, we pumped a nonlinear crys-
tal with the frequency-tripled pulses emitted by a con-
tinuous-wave mode-locked Nd:YLF laser regenera-
tively amplified at a repetition rate of 500 Hz (High Q
Laser Production, Austria). The laser delivers ~7.7-ps
pulses at the fundamental frequency. The crystal was an
uncoated β-BaB2O4 crystal (BBO, Fujian Castech
Crystals, Fuzhou, China) cut for type-I interaction
(ϑCUT = 34°), having a cross-section of 10 × 10 mm and
a thickness of 4 mm (see Fig. 5) [34]. The pump beam,
which emerges from the laser slightly divergent, was
focused by lens fp of focal length 500 mm. The crystal
tuning angle was 33.1°; the visible portion of the cones
projected on a screen beyond the BBO is shown in
Fig. 5. We operated the system in a dichromatic config-
uration by choosing the frequency of the laser second
harmonics (λ2 = 523 nm) for the signal and, conse-
quently, the frequency of the laser fundamental (λ1 =
1047 nm) for the idler. For alignment purposes, a por-
tion of the fundamental beam emerging from the laser
was collimated (by a lens of focal length fs = 1000 mm)
and sent to the crystal together with the pump beam so
as to obtain a well-recognizable spot of amplified
seeded downconversion.

As explained in Subsection 2.1.2, the mismatching
in direction is responsible for the existence of spatial
coherence areas in which the amplification of the pro-
cess holds. The components of a TWB state have a spa-
tial divergence that depends on the pump field intensity
(see Eq. (24)) and that are related to each other accord-
ing to Eq. (22). In Fig. 6 (left), we show the single-shot
picture of a portion of the signal cone taken with the

digital camera, in which we can clearly distinguish the
presence of the coherence areas. In the right part (top)
of the same figure, one can see a magnified single
coherence area around λ2 (green light) and (bottom) the
intensity map of a typical coherence area taken with a
CCD camera (TM-6CN, Pulnix, United Kingdom;
operated at high resolution).

To spatially select the components of the twin beam
at the wavelengths 1047 and 523 nm, we used two pin-
holes, P1 and P2, located on the outputs of the seeded
process. Their dimensions were determined by study-
ing the size of single-shot coherence areas as functions
of the pump power and of the distance from the crystal.
In particular, to realize a compact setup, we decided to
place at the same distance (72.5 cm from the BBO) two
pinholes having different dimensions (diameter
�3.5 mm on the signal and �7 mm on the idler). The
light selected by the pinholes and filtered was then
focused by two lenses ( f1 and f2, with focal length
25 mm) on two p–i–n photodiodes (85973-02,
Hamamatsu, Japan: 1-ns time response, 500-µm-diam-
eter sensitive area on the green; and G8376-05,
Hamamatsu, Japan: 5-ns time response, 500-µm-diam-
eter sensitive area on the IR) having nominal quantum
efficiencies of η1 = 0.78 and η2 = 0.92, respectively.
Each current output was integrated over a synchronous
gate of suitable time duration (40 ns) by a synchronous
gated integrator (SGI) in external trigger modality;
each SGI output was then digitized by a 13-bit con-
verter (SR250, Stanford Research Systems, with
50-mV full scale), and the counts were stored in a
PC-based multichannel analyzer.

The measurements were performed by inserting a
variable filter (VF in Fig. 5) in front of the photodiode
that detects the signal and by carefully adjusting it to
balance the quantum efficiencies of the detection
branches of the setup. Thus, the overall quantum effi-
ciency of the apparatus turned out to be η1tot � η2tot =
0.67.

2.4. Experimental Results

First, we verified the linearity of the gated integra-
tors and measured the conversion coefficients (α1 =

Pin 2
fs

fp BBO

P2

P1

f2

f1 Pin 1

VF
Laser

Nd:YLF SGI

Computer

Fig. 5. Experimental setup for measurements on the TWB:
BBO, nonlinear crystal; P1, 2, pinholes; fp, s, 1, 2, lenses;
Pin 1, 2, p–i–n photodiodes; SGI, synchronous gated inte-
grator.

Fig. 6. Left: single-shot picture of a portion of the signal
cone. Right, top: magnification of a single coherence area
around λ2. Right, bottom: intensity map of a typical coher-
ence area used to estimate its dimensions.
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6.7182 × 10–8 V and α2 = 8.3043 × 10–8 V) by linking
each output voltage to the number of electrons forming
the photocurrent output pulse of the detector at each
laser shot. The relations among the statistical distribu-
tions of the number of photons incident on the detector,
pph(n), that of the number of detected photons, pel(m),
and that of the output voltages, pout(v), are given by

(42)

(43)

where α is the measured conversion coefficient men-
tioned above and C is a normalization coefficient. If we
limit our analysis to the first two momenta of the distri-
butions, we obtain the following relations between the
different quantities:

(44)

(45)

where V is the output voltage of the digitizer, M is the
total photoelectron number, and N is the total photon
number. Note that, in general, the statistical distribution
for the measured outputs is different from that of the
incident photons. As we will see below, in our measure-
ments, the statistical distributions of the detected pho-
tons and that of the voltage outputs are multithermal,
with the duration of the pump longer than the coherence
time (see Eq. (20)). However, if the mean photon num-
ber is large enough, in the expression for the variance
of the detected photons

(46)

in which µ is the number of temporal modes, we can
neglect the second term, and the dependence of the
photoelectron statistics on that of the photons is simply
linear.

In Figs. 7a and 7b, we show the recorded signal and
idler outputs of the photodiodes for the same sequence
of pump-laser shots, together with the noise of the
detectors. We notice that the variance of the output volt-
age corresponding to the measurements performed in
the presence of the TWB is greater than that relative to
the noise measurements, since the statistics of signal
and idler are multithermal. Moreover, the correspond-
ing normalized probability distributions reported in
Figs. 8a and 8b for the same data are well fitted by mul-
tithermal distributions [33], i.e., those obtained by the
convolution of µ equally populated thermal modes

(47)
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Fig. 7. (a) Output voltages for the signal beam at λ2 =
523 nm for a sequence of laser shots and of dark measure-
ments; (b) output voltages for the idler beam at λ1 =
1047 nm for the same sequence of laser shots and of dark
measurements.
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Fig. 8. (a) Histogram of the photoelectron distribution of the
signal beam output at λ2 = 523 nm together with the corre-
sponding multithermal fit. The conversion coefficient that
links the voltage output of the digitizer to the number of
electrons forming the photocurrent output pulse of the
detector at each laser shot is α2 = 8.3043 × 10–8 V. (b) His-
togram of the photoelectron distribution of the idler beam
output at λ1 = 1047 nm together with the corresponding
multithermal fit. The conversion coefficient that links the
voltage output of the digitizer to the number of electrons
forming the photocurrent output pulse of the detector at
each laser shot is α1 = 6.7182 × 10–8 V.
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where VT = αMT is the mean output corresponding to
the mean value MT of overall detected photons. Equa-
tion (47) holds in the high-intensity regime, which is
the present experimental condition. In fact, by using the
measured conversion coefficients on the detection arms
of signal and idler, we obtained M1 = 7.225 × 106 and
M2 = 7.212 × 106 as the mean number of detected pho-
tons. As it is well known from the theory of photodetec-
tion [4], the number of detected modes can be inter-
preted as the ratio of the time characteristic of the mea-
surement (in our case, the time duration of the pulse)
and the coherence time characteristic of the field to be
measured (in our case, the inverse of the temporal band-
width of the spontaneous parametric downconversion)
[33]. The continuous lines superimposed to the histo-
grams of the experimental data in Figs. 8a and 8b show
the convolution integrals, optimized for the number of
temporal modes, of the theoretical distribution in
Eq. (47) with the system impulse response evaluated
from measurements performed in the absence of inci-
dent light. As expected, the signal and idler distribu-
tions are well fitted by multithermal distributions hav-
ing the same number of modes (µ = 14). Note that the
probability distributions for signal and idler are very

similar to each other. In order to quantify the correla-
tion, we use the function [4]

(48)

where 〈…〉 denotes the average over the complete set of
data; Ij(k) is the number of detected photons j = 1, 2 for

the kth shot; and σ(Ij) =  =

 is the corresponding rms,

where  =  and ηj is the quantum efficiency. In
particular, ε = Γ(0) is the correlation coefficient

(49)

Note that, in the case of a multithermal statistics, the
correlation coefficient for the TWB state reads as fol-
lows:

(50)

which, in the limit of intense fields, tends to 1 for any
value of ηj. In Fig. 9, we show the correlation function
for the data of Figs. 7a and 7b: the contribution of the
noise of the apparatus has been subtracted from the
measured variances of the experimental data. We
obtained ε = 0.97, to be compared with a theoretical
value of about 1. Note that subsequent shots result to be
uncorrelated.

3. FIVE-MODE PARAMETRIC PROCESSES

In this section, we analyze the parametric interac-
tion taking place among five modes of the field in a sin-
gle crystal in suitable phase matching. First, we derive
the classical equations of motion and solve them within
the parametric approximation. We theoretically show,
and experimentally demonstrate, that, for a single sig-
nal at the crystal input, two holographic replicas are
obtained at the output. In addition, the implementation
of several kinds of all-optical logical gates is analyzed.
Then, the generation of three-mode entanglement is
discussed in detail, and its application to 1  2 tele-
cloning is described. Finally, the experimental realiza-
tion of five-wave interactions is demonstrated, and the
results for the photon correlations are reported.

3.1. Classical Evolution

A scheme to realize multiple nonlinear processes is
represented by two interlinked χ(2) interactions occur-
ring in a single crystal in type-I noncollinear phase-
matching geometry. In this system, the choice of non-
collinear phase matching provides remarkable flexibil-
ity to our experimental setup.
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Fig. 9. Correlation function between signal and idler beams
as a function of the delay in the laser shots.
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The process involves five fields aj that are fre-
quency-matched as follows: ωp1 = ω0 + ω2, ω1 = ω2 +
ωp2 (see Fig. 10). The fields, which propagate inside the
crystal at angles ϑj with respect to the normal to the
crystal entrance face, are chosen so as to allow the two
interactions to be simultaneously phase-matched:

 =  +  and  =  + , where  are the
wave vectors in the medium, ordinary (o) and extraor-
dinary (e), corresponding to frequencies ωj.

We note that it is possible to satisfy these conditions
with a number of different sets of frequencies and inter-
action angles depending on the choice of the nonlinear
medium. In particular, to obtain a compact interaction
geometry, we realized experiments in which ωp1 = ωp2

and  || , thus implicitly neglecting walk-off in
the crystal.

In general, the process is described by a set of five
noncollinear equations; however, since the internal
angles ϑj are quite small, the collinear approximation
holds. Under this hypothesis, the complex field ampli-
tudes aj obey

(51a)

(51b)

(51c)

(51d)

(51e)

where c1 and c2 are coupling parameters

(52)

(53)

where η0 is the vacuum impedance,  is the refrac-
tive index at ωj , α is the tuning angle of the crystal, and
d22 and d31 are the relevant elements of the χ(2) tensor.

In order to obtain an analytical solution of Eqs. (51),
it is also necessary to suppose that two of the interact-
ing fields are nondepleted pump fields (parametric
approximation), so that only the three remaining fields
evolve as they propagate inside the crystal [40]. We
note that any of the five interacting fields could be taken
as undepleted pump, but, as for the experiments shown
in the following, we considered ap1 and ap2 as the
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pumps, and we present the analytical solution for the
other three fields, namely, a0, a1, and a2:

(54a)

(54b)

(54c)

in which g0 = c1ap1, g1 = c2ap2, and Γ = (|g1 |2 – |g0 |2)1/2.

3.2. Applications: Holography

The analytical solution in Eqs. (54) shows that each
of the three evolving fields, namely, a0, a1, and a2,
depends on the others and on the pump fields. In this
property, we directly recognize the holographic nature
of the nonlinear process: generated fields are phase-
conjugate with respect to a0(0), i.e., a1(z) ∝ (0) and

a2(z) ∝ (0). We can thus consider the seed field as an
object field at ω0 and expect that the fields a1(z) and
a2(z) reconstruct two real holographic images [28].

In order to verify this behavior, we constructed an
experimental setup (see Fig. 11) in which the nonlinear
medium was a type-I β-BaB2O4 crystal (BBO, cut angle
32°, cross-section 10 × 10 mm, and thickness 4 mm,
Fujian Castech Crystals, Inc., Fuzhou, China), while
the interacting fields were provided by the harmonics of
a multimode Q-switched amplified Nd:YAG laser (7-ns
pulse duration, Quanta-Ray GCR-4, Spectra-Physics,
CA) at the wavelengths λ0 = λ2 = 1064 nm, λ1 =
355 nm, and λp1 = λp2 = 532 nm. The pump fields at the
wavelengths λp1 and λp2 were superimposed in a single
beam with mixed polarization. In addition, to calculate
the interaction angles, we assumed that the wave vec-
tors kp1 and kp2 were normal to the crystal entrance
face. To satisfy the phase-matching conditions, the
other interacting fields must form with the normal the
following internal angles: ϑ0 = –ϑ2 = 10.6°, ϑ1 = 3.5°,
with a crystal tuning angle α = 37.74°. Since our BBO
crystal was cut at 32°, it had to be rotated to allow phase
matching, with the only consequence of reducing the
effective aperture of the crystal, which nevertheless
remained wide enough to be considered as an infinite
plane [29].
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As the object O, we inserted a regular plastic net
(80-µm-diameter wires spaced by 120 µm) on the beam
at λ0 at a distance of d = 20 cm from the BBO. In this
way, the field diffracted by the net entirely covered the
BBO crystal. In Figs. 11b and 11c, we show the holo-
graphic images of the net as detected by a CCD camera
(PE2015, Pulnix, United Kingdom) along the direction
of the output fields at λ2 at a distance of 20.5 cm � d
(Fig. 11b) and at λ1 at a distance of 58 cm � 3d
(Fig. 11c). The distances fit those expected [28], and
the transversal dimensions are the same as those of the
original object, again in very good agreement with the-
ory [29].

3.3. Applications: All-Optical Logic Gates

The dependence of each of the evolving fields on the
others and on the pump fields allows us to control the
output fields by means of the input ones, and, for this
reason, this scheme is suitable for the implementation
of several kinds of all-optical devices, such as logic
gates, looping circuits, and switches with an excellent
optical resolution due to the holographic nature of the
process [38].

In particular, the interlinked interactions allow the
realization of all the logic functions of two variables, by
encoding binary data inputs as amplitude modulation of
the fields injected into the crystal. The outputs of the
device, also being fields modulated in amplitude, carry
data that can be read or reused as the inputs of another
similar device.

Here, we present, both theoretically and experimen-
tally, the possibility to use this scheme to produce, in a
single type-I BBO crystal, the basic logic gates AND,
OR, and NOT.

To do this, we calculate the squared amplitudes of
the evolving fields for the initial conditions of interest.

As a first case, we consider the solution for field
a1(z) in Eq. (54b) under the hypothesis of a crystal
seeded only by field a0(0), while a1(0) = 0 and a2(0) = 0:

(55)

We note that the term within squared brackets is a mul-
tiplicative constant which is different from zero pro-
vided |g0 |2 ≠ |g1 |2; so, apart from a scaling factor, the
generation of field a1(z) only depends on the presence
of the seed a0(0) and of the two pump fields through g0
and g1. This means that, for fixed values of a0(0), g0,
and g1, a1(z) assumes the value expected from the the-
ory [35], while, when one of the input field is absent,
a1(0) vanishes.

From Eq. (55), we can deduce a boolean expression
between binary numbers Aj corresponding to the
squared amplitudes |aj |2, by setting Aj = 1 (with j = 0,
p1, p2) if |aj(0)| ≠ 0 and Aj = 0 if |aj(0)| = 0, that is, when
the corresponding field is absent. Thus,

(56)

where the symbol · represents the boolean operator
AND. In this context, A1, which corresponds to |a1(z)|2,
also represents a binary number, having possible values
equal to 0 or 1.

As a second case, we consider the solution for field
a2(z) in Eq. (54c) with a2(0) = 0 as the initial condition:

(57)

The fraction on the right-hand side is a scaling factor,
similarly to the previous case, while the term
2Re[ (0)a1(0)] is an interference contribution
that becomes relevant only under strong conditions of
phase stability and spatiotemporal superposition
among the fields. Due to the multimode nature of our
laser source, in our experimental setup, we could not
achieve such conditions, and, thus, we can neglect the
interference term and treat the two interactions seeded
by a0(0) and a1(0) as independent.

By taking into account Eqs. (52) and (53), the bool-
ean expression we can extract from Eq. (57) is

(58)

where the symbol + represents the boolean operator OR.
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As a third case, we set a0(0) = 0, a1(0) = 0, and g0 =
0 (i.e., ap1(0) = 0), as the initial condition and obtain the
following expression for the squared amplitude of
a2(z):

(59)

Equation (59) shows that, when the product |g1|z
approaches π/2, field a2(z) becomes completely
depleted by the interaction, while, when it exceeds π/2,
the efficiency of the depletion is reduced again.

By associating the binary numbers A2 and Ap2 to the
field amplitudes |a2(z)|2 and |ap2 |2, respectively, Eq. (59)
supplies the following boolean relation:

(60)

where the superscript “– ” means the NOT operator.
Implementing the NOT gate is thus a task requiring

that only one input be encoded as amplitude modula-
tion on the pump field ap2, whereas the seed field a2(0)
should have a flat wave front.

We decided to realize the optical gates AND, OR,
and NOT by encoding the data only on the pump fields
ap1 and ap2, to have all the inputs at the same wave-
length. The other fields required by the interactions,
a0(0) and a1(0), have a flat wave front and do not carry
any logical data. Under these assumptions, Eqs. (56)
and (58) reduce to

(61a)

(61b)

For the implementation of these gates, we used the laser
source just described above, and, in particular, we
adopted the same interaction angles.

As depicted in Fig. 12, the harmonic outputs of the
laser, which emerge in a single beam about 8 mm in
diameter, were split into different directions by har-
monic separators. The polarization of the second-har-
monic field was projected along the ordinary and
extraordinary axes by a thin-film plate polarizer in
order to modulate the amplitudes of the two polariza-
tion components independently of each other. The two
components then recombined in a second thin-film
plate polarizer placed just before the BBO.

Typical energies of the input fields were E0 ~ 30 mJ,
E1 ~ 10 mJ, E2 ~ 10 mJ, Ep1 ~ 140 mJ, and Ep2 ~ 115 mJ
(apart from the realization of the NOT gate in which
Ep2 ~ 200 mJ).

The binary numbers were encoded by using copper
masks (~0.5 mm in thickness) having suitable holes
(with a diameter of about 1 mm and an interspace of
about 0.4 mm). Since we operated in positive logic, the
transmission of light through the holes encoded the
logic value 1. Each mask placed on fields ap1 and ap2
carried four bits, two equal to 0 and two equal to 1. For
the implementation of the AND and OR gates, the mask

a2 z( ) 2
g1 z( ) a2 0( ) 2

.cos
2

=

A2 Ap2,=

A1 Ap1 Ap2,⋅=

A2 Ap1 Ap2.+=

on ap1 had two holes vertically aligned on the right part
of the beam, while the mask on ap2 had two holes hori-
zontally aligned in the top part of the beam. For the
NOT gate, we used only one mask placed on ap2 with
the two holes vertically aligned.

Figure 12 shows the setup for the realization of the
AND gate. The mask on beam ap1 was located at a dis-
tance of dO, kp1 = 33 cm from the BBO, and the mask on
beam ap2 at a distance of dO, kp2 = 21.5 cm. At these dis-
tances, we could neglect the diffraction effects of the
holes and consider the transmitted beams as collimated
[36]. The beams after the masks were superimposed at
the BBO location in order to carefully match the bits of
each input. Due to the geometry and the relative posi-
tion of the masks, the superimposition realized all the
possible permutations of the input values.

In Fig. 13c, we show the intensity modulation of the
generated field a1(z) as detected with a CCD camera
(interlaced, pixel dimensions 6.3 × 9.8 µm, model
PE2001, Pulnix Europe, Basingstoke, United King-
dom) operated in low-resolution acquisition mode
(pixel dimensions 25.2 × 39.2 µm). Note that, in all the
experiments described in this work, it was not neces-
sary to locate the detector at particular distances from
the BBO, since the diffraction effects on the output
beams were negligible.

We also detected with the CCD camera the images
formed on the BBO entrance face of the fields transmit-
ted by the masks. To do this, we realized a 2f-imaging
system with a lens of focal length f = +210 mm. Images
of the intensity distributions of fields ap1 and ap2,
recorded by averaging 50 pulses, are displayed in
Figs. 13a and 13b.

The implementation of the OR gate required two
seed fields, i.e., a0(0) and a1(0) (see Fig. 12), to gener-
ate field a2(z), which depends on fields ap1 and ap2 as
shown in Eq. (57). The masks placed on the pump fields
were the same as in the previous case and located at the
same distances from the BBO. We observed the output
of the OR gate along the propagation direction of field
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Fig. 12. Experimental setup for the implementation of the
AND and OR gates. BBO, β-BaB2O4 crystal cut at 32°. The
inputs are encoded on fields ap1 and ap2 as binary digits Ap1
and Ap2, and the outputs are read on fields a1(z) and a2(z),
respectively.
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a2(z) generated into the crystal. In Fig. 13d, we show
the intensity profile of the generated field a2(z) aver-
aged over 50 pulses as detected by the CCD camera. We
must remark that, due to the particular encoding of the
data, only the spot located at the upper right corner of
Fig. 13d is generated by the simultaneous presence of
four fields according to Eq. (57), while the other spots
are generated by two fields only.

We implemented the NOT gate by the sum-fre-
quency generation of field a1(z), with ap2 as the pump,
a2(0) as the seed, and a0(0) = a1(0) = ap1 = 0 (see
Eq. (54b)). As depicted in Fig. 14, the mask on field ap2

was located at a distance of dO, kp2 = 8.5 cm from the
BBO and the seed field a2(0) propagated from the laser
with a wave front flat in its central part. The flat beam
is the fundamental output of the laser and remains col-
limated over a very long distance at the energies used in
the present work. For this reason, we decided to avoid
the introduction of any optical system to modify and/or
improve the beam quality. The residual irregularity of
the beam profile is apparent in the results. Due to the
high intensity of the modulated field ap2, the initially
flat field a2(0) emerged depleted from the nonlinear
crystal according to Eq. (59), with |g1|z � 0.7. The
obtained depletion of field a2(0) was about 40%. In
Fig. 15a, we show the 1 : 1 intensity map of field ap2 at
the entrance face of the crystal as obtained through the
2f-imaging system described above. In Fig. 15b, we
show the intensity profile of field a2(z) recorded by the
CCD: the image reveals an intensity map somehow
complementary to that of input ap2. Finally, Fig. 15c
displays the intensity map of field a1(z), which repre-
sents the replica of the input.

Note that we only show averaged images of the
AND and OR gates, since the results appear more
clearly. Nevertheless, the noise was low enough to
allow the correct logic values of the outputs to be read
shot by shot, so that each gate can be obtained with sin-
gle-shot interactions, as in the case of the NOT gate.
For this reason, we can assert that our apparatus can
return the outputs of the logic gates in a time as short as
the pulse duration [37].

In all these experiments, we used masks that heavily
shielded the input fields. However, by applying the
Rayleigh criterion to the crystal entrance face, it is pos-
sible to encode as many as 104 bits on a mask located at
1 cm from the BBO, so that data can be encoded at high
density. Moreover, diffraction caused by masks is
rather irrelevant, since the two interlinked interactions
produce holographic images and optical resolution can
be increased.

As a further application, we have also implemented
an all-optical half-adder that is able to operate in paral-
lel on two pairs of single-digit binary numbers. In par-
ticular, we realized the sums 1 + 0 and 1 + 1 by encod-
ing the data on four fields, that is, on the two pump
fields (ap1 and ap2) and on two seed fields (a0(0) and
a1(0)), and reading the result of the half-adder on the
generated fields a2(z) (SUM, i.e., less significant bit)
and a1(z) (CARRY, i.e., most significant bit). In addi-
tion, by duplicating the interlinked interactions in
another crystal, these output fields can be frequency-
converted to implement an all-optical looping circuit
(see [38]).
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3.4. Three-Mode Entanglement 
by Parametric Interactions

We now turn to the quantum analysis of the five-
mode interaction described in the previous sections and
show how to realize a compact scheme to generate
three-mode entanglement. As we have seen, the out-
most used source of two-mode CV entanglement is the
twin beams, which belong to the class of bipartite
Gaussian states. In a group-algebraic language, they are
the coherent states of the group SU(1, 1), i.e., the states
evolved from vacuum via a two-boson unitary realiza-
tion of the group. Within the class of Gaussian states,
the simplest generalization of twin beams to three
modes is the coherent states of the group SU(2, 1).
Indeed, these states can be generated by multimode
parametric processes with Hamiltonians that are at
most bilinear in the fields. In particular, these processes
involve three modes of the field, a0, a1, and a2, with
mode a0 that interacts through a parametric-amplifier-
like Hamiltonian with the other modes, whereas the lat-
ter interact with each other via a beam-splitter-like
Hamiltonian. A particular representative of such a type
of Hamiltonians is given by the following:

(62)

The earliest studies on the dynamics and quantum prop-
erties of the states realized via Hamiltonian (62) can be
traced back to the works in [39]. The relevance in
studying in detail the dynamics generated by the
Hamiltonian above lies in the fact that it can be realized
in a variety of different contexts, from quantum optics
[40–44] to condensate physics [45]. Studies have also
been performed in which the coupling between two
optical modes and a vibrational mode of a macroscopic
object, such as a mirror, has been considered [46].
Recently, ions trapped in a cavity have also been dem-
onstrated to realize Hamiltonian (62) for a suitable con-
figuration [47]. In particular, the experimental realiza-
tion we are more interested in involves the interlinked
simultaneous interactions between three optimal
modes, taking place in a single nonlinear χ(2) crystal,
which we discussed in detail in Section 3.1 [35]. It is

H int γ 0a0
†
a2

† γ 1a1
†
a2 H.c.+ +=

immediate to see that Hamiltonian (62) admits the fol-
lowing constant of motion:

(63)

In the following, we take the vacuum |0〉 ≡ |0〉0 ⊗ |0〉1 ⊗
|0〉2 as the initial state. In this way, we describe a spon-
taneous three-mode process, analogous to the sponta-
neous downconversion leading to TWB, which cannot
be described by the classical Eqs. (54). For vacuum
input, we have ∆ = 0, i.e., N0(t) = N1(t) + N2(t) ∀t. The
expressions for Nj(t) can be obtained by the Heisenberg
evolution of the field operators which, in turn, can be
calculated from the equations of motion generated by
Hamiltonian (62):

(64a)

(64b)

(64c)

The above equations represent the quantum counterpart
of Eqs. (51), where we made use again of the paramet-
ric approximation for the pump field and the effective
coupling constants γ0 and γ1 have been accordingly
defined. This system of differential equations can be
Laplace-transformed in the following algebraic system:

(65a)

(65b)

(65c)

where the Laplace transform of aj(t) is given by

(66)

The determinant of system (65) is

(67)
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ȧ0
† iγ 0*a2,=
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† µ( )+ iγ 0*ã2 µ( ),=
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ã j µ( ) te
µt–

a j t( ).d

0

∞

∫≡

δ µ µ Γ+( ) µ Γ–( ),=

(‡)

2

1

3

1

0 2 3

m
m

mm
1 2 3

mm

2

3

1

0

m
m

10 2 3
mm

(b) (c)

Fig. 15. Intensity maps (four gray levels) of the images detected by the CCD camera: (a) pump field ap2 (average over 50 shots) at
the BBO crystal entrance face; (b) depleted field a2(z) (single-shot) giving the output of the NOT gate; (c) generated field a1(z) (aver-
age over 50 shots) giving the replica of the input field ap2.
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where Γ ≡ ; therefore, its solution reads

(68a)

(68b)

(68c)

The solution of system (64) follows from antitrans-
forming Eqs. (68). We have (omitting the time depen-
dence of the coefficients for brevity)

(69a)

(69b)

(69c)

where the coefficients are given by
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(70i)

and Ω ≡ iΓ = . Finally, the average num-
ber of photons in each mode is

(71a)
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ã0
† µ( ) 1

δ
--- γ 1

2 µ2
+( )a0

†
0( )[=

+ γ 0*γ 1*a1 0( ) iγ 0*µa2 0( )+ ],
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We see that, when |γ1|2 > |γ0 |2, the dynamics is oscilla-
tory; conversely, when |γ0 |2 > |γ1|2, an exponential
behavior is found (for a comparison between these two
regimes, see [44], in which, in a quantum optical frame-
work, the quantum dynamics of the pumps sustaining
the interaction is also taken into account).

Let us now calculate explicitly the expression in the
Fock representation of the state |Y2〉 = U(t)|0, 0, 0〉
evolved from vacuum via Hamiltonian (62). We can
rewrite Eq. (62) as follows:

(72)

with the definitions K  a0a2 and J  . To calcu-
late the evolved state, we can proceed by factorizing the
temporal evolution operator of the system; to this end,

we introduce the operators J1   + , J2 

 – , and M  a0a1, which form with K and J
a closed algebra. Actually, the temporal evolution oper-
ator can be written in the following way:

(73)

which allows us to calculate the evolution of a generic
initial state as a function of βi. Notice that the factoriza-
tion above holds for a generic SU(2, 1) evolution, not
only for the one generated by Hamiltonian (62). By
starting from vacuum, one obtains the class of coherent
states of SU(2, 1) group |Y2〉:

(74)

Notice that normalization imposes that

(75)

Since we are interested in the entanglement properties
and applications of the states |Y2〉, we can take the coef-
ficients β1 and β2 as real numbers. In fact, one can put
to zero the possible phases associated to them by per-
forming a proper local unitary operation on mode a1
and a2, which, in turn, does not affect the entanglement
of the state. Remarkably, the coefficients β1 and β2 can
be easily expressed in terms of the photon number

N1

γ 0
2 γ 1

2

Ω4
-------------------- Ωtcos 1–[ ]2

,=

N2

γ 0
2

Ω2
---------- Ωt( ).sin

2
=

H int γ 0K† γ 1*J h.c.,+ +=

=̇ =̇ a1a2
†

=̇ a0a0
†

a2
†
a2 =̇

a2
†
a2 a1

†
a1 =̇

U t( ) e
β1K†

e
β2M†

e
β3 J†

e
β4 J1e

β5 J2e
β6 J

e
β7K

e
β8M

,=

Y2| 〉 e
β1K†

e
β2M†

e
β3 J†

e
β4 J1 0 0 0, ,| 〉=

=  e
β4e

β1K†

β2
p

p p 0, ,| 〉
p

∑

=  e
β4 β1

qβ2
p p q+( )!

p!q!
------------------- p q p q, ,+| 〉.

p q,
∑

e
β4 1 β1

2
– β2

2
– .=



LASER PHYSICS      Vol. 16      No. 10      2006

CLASSICAL AND QUANTUM ASPECTS 1467

mean value of each mode Nk = 〈Y2 | |Y2〉 (k = 1, 2)
and N0. By virtue of the identity

(76)

and using Eq. (75), one has

(77)

where {n} = {n1, n2} and the sums over n are extended
over natural numbers. The constant of motion (63) with
∆ = 0 (vacuum input) now allows one to re-express the

normalization coefficient as  = (1 + N0)–1/2, from

which, in turn, it follows that βk = .

The Wigner function associated with the coherent
state of SU(2, 1) can now be obtained by recalling that,
being evolved with a bilinear Hamiltonian from the
vacuum, the states |Y2〉 are pure Gaussian states. As a
consequence, they are completely characterized by
their covariance matrix s2. In order to calculate s2, let
us explicitly evaluate the following expectation value
over the state |Y2〉:

(78)

where we repeatedly used the identity (76). Analo-

gously, one finds that 〈 〉 = 0, whereas 〈 〉 =

〈 〉 =  and 〈a1a2〉 = 0. As a consequence,
recalling the Cartesian decomposition of position and
momentum operators, the expression for the covariance
matrix of a SU(2, 1) coherent state follows by substitu-
tion

(79)

where the entries are given by the following 2 × 2 matri-
ces (h = 0, …, 2, k = 1, 2):

(80)

(81)
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(82)

with 1 = Diag(1, 1) and � = Diag(1, –1).
The main feature of the states |Y2〉 is that they are

fully inseparable, i.e., inseparable with respect with any
grouping of the modes. This can be explicitly demon-
strated by considering the positive partial transpose cri-
terion for each possible grouping of the modes, whose
application is in turn straightforward in terms of the
covariance matrix s2 given in Eq. (79). Furthermore,
the state |Y2〉 allows for high violations of tripartite Bell
inequalities, as pointed out in [48, 49].

The explicit calculation above now allows one to
calculate the state |Y2, α〉 generated by Hamiltonian
(62) starting from a coherent state of amplitude α in one
of the modes, rather than from the vacuum. This may be
of interest from the experimental point of view, since
seeding a crystal with a coherent beam is a useful tech-
nique to align the setup and allows the verification of
the classical evolution of the interacting fields, as we
have seen in Section 3.1. Seeding mode a0 and recalling
Eq. (73), we have

(83)

Furthermore, the populations with initial vacuum Nj =

〈Y2 | |Y2〉 and initial seed Njα = 〈Y2, α| |Y2, α〉
are related as follows (k = 1, 2):

(84)

As we have already noticed, the state |Y2〉 is fully
inseparable. The same property also holds for the state
|Y2, α〉, since the latter is endowed with the same cova-
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riance matrix of |Y2〉 [59], i.e., Eq. (79). However,
notice that the state |Y2, α〉 no longer belongs to the
class of coherent states of SU(2, 1) (Eq. (63) is no
longer satisfied starting from vacuum). This is due to
the fact that the generators themselves of the harmonic
oscillator algebra (to which the displacement operator
D0(α) belongs) do not belong to the algebra of SU(2, 1),
as we can see from Eq. (73).

Another interesting class of tripartite states for CV
systems has been proposed by van Loock and Braun-
stein [50], and its experimental realization has been
reported in [51]. This type of state is a very natural and
scalable way to produce multimode entanglement using
only passive optical elements and single squeezers.
They are generated with the aid of three single-mode
squeezed states combined in a “tritter” (a three-mode
generalization of a beam splitter). The evolution is then
ruled by a cascade of single- and two-mode quadratic
Hamiltonians, not belonging, however, to the SU(2, 1)
group. Being generated from vacuum, the three-mode
entangled states, which we denote with t, are Gaussian
with covariance matrix

(85)

where � = cosh2r + sinh2r , � = cosh2r –

(1/3)sinh2r , � = – coshrsinhr, and r is a general-

ized squeezing parameter. Notice that, by calculating
the average photon numbers from the covariance matrix
st, it immediately follows that the state t does not
belong to the class of the coherent states of SU(2, 1),
since Eq. (63) is not satisfied.

The covariance matrix (85) is symmetric under per-
mutation of the modes. With a slightly different genera-
tion strategy, one can recover the covariance matrix (79)
(asymmetric under permutation), still within a cascad-
ing interaction scheme [52]. Consider in fact a two-
mode squeezing interaction between modes a0 and a2
(which, in turn, can be produced by mixing two
squeezed vacua in a balanced beam splitter):

(86)

followed by a two-mode mixing interaction between
modes a1 and a2:

(87)
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Physically, this simply means inserting a beam splitter
on one mode of a twin beam. By defining λ0 = reiϕ, µ =
coshr, ν = eiϕsinhr, and λ1 = φeiθ, the evolved state in
the Fock representation reads as follows:

(88)

where we have disentangled the two-mode mixing
operator. It is now straightforward to obtain the follow-
ing expression:

(89)

For real coupling constants (e.g., θ = ϕ = 0), one regains
the expression in Eq. (74), with N0 = ν2, N1 = ν2sin2φ,
and N2 = ν2cos2φ. As a consequence, the covariance
matrix (79) is recovered.

3.5. Applications: Symmetric and Asymmetric 
Telecloning

Let us now consider an application of the tripartite
entangled state |Y2〉 introduced above to quantum
information processing. Suppose that one wants to
remotely clone an unknown quantum state to two dis-
tant receivers, and he is not able to directly transfer
either the original state or the two copies (for the case
in which direct transmission is a possible option, see
[53]). Quantum mechanics allows this goal to be
achieved in two steps. One may first locally produce
two copies of the original state by means of a cloning
protocol. Then, the teleportation of each copy allows
one to attain the transfer of information. This strategy
has the obvious advantage of using only bipartite entan-
gled sources. Of course, an analogous strategy in which
the original state is first teleported and then cloned can
be taken into account. However, in any of the two cases
and even in the absence of losses, the receivers are not
left with two optimum clones of the original state, due
to the nonunitary fidelity of the teleportation protocol in
the case of finite energy. This obstacle may be circum-
vented by pursuing a one-step strategy consisting of a
nonlocal cloning. By this, we mean that the cloning
process is supported by a tripartite entangled state,
which is distributed among all the parties involved.
This so-called telecloning process is thus nonlocal in
the sense that it proceeds along the lines of a natural
generalization of the teleportation protocol to the
many-recipient case [54]. Recall that CV teleportation
is based on the twin beams, i.e., the coherent states of
the group SU(1, 1), which provide the shared entangle-
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ment needed to support the protocol. Thus, in order to
implement a multipartite version of the teleportation
protocol, one is naturally led to consider as shared
entangled states the ones introduced above, i.e., the
coherent states of the group SU(2, 1). In the following,
we will analyze in detail the case of 1  2 teleclon-
ing, both when the tripartite state used to support the
telecloning protocol is generated from vacuum and
from a coherent seed. Both symmetric and asymmetric
cloning will be considered, and the question of the opti-
mality of the protocol will be addressed.

A schematic diagram of the telecloning process is
depicted in Fig. 16. After the preparation of the state
|Y2〉, a joint measurement is made on the mode a0 and
the mode b to be telecloned, which corresponds to the

measurement of the complex amplitude Z = b + , as
in the case of the teleportation protocol. The whole
measurement is described by the POVM Π(z) acting on

the mode a0, namely, Π(z) = π–1D(z) D†(z), where

in is the state to be teleported and cloned. The proba-
bility distribution of the outcomes is given by

(90)

The conditional state of the mode a1 and a2 after the
outcome z is given by

(91)

After the measurement, the conditional state should be
transformed by a further unitary operation, depending
on the outcome of the measurement. In our case, this is
a two-mode product displacement

(92)

This is a local transformation, which generalizes to two
modes the procedure already used in the original con-
tinuous variable teleportation protocol. The overall
state of the two modes is obtained by averaging over the
possible outcomes:

(93)

where τz = Uz z .
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If b is excited in a coherent state σ = |α〉〈α|, then the
probability of the outcomes is given by

(94)

Moreover, since the POVM is pure, the conditional
state is also pure. In this way, we find that z = |ψz〉〉〈〈ψz |
is the product of two states, namely,

(95)

where we recall that βh = , with h = 1, 2.

Correspondingly, we have τz = Uz |ψz〉〉〈〈ψz |  with

(96)

The partial traces 1 = Tr2[ 12] and 2 = Tr1[ 12] read
as follows:

(97)

Upon changing the integration variable, we obtain the
following expression for the clones:
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where we have defined
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From expression (98), one immediately recognizes that
the clones are given by thermal states th(nh) with mean
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Fig. 16. Schematic diagram of the 1  2 telecloning
scheme described in the text.
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photon number nh, displaced by the amount α, namely,

(100)

As a consequence, we see that the protocol acts like
a proper covariant Gaussian cloning machine [55] and
that the noise introduced by the cloning process is
entirely quantified by the thermal photons nh, which, in
turn, depend only on the value of the mean photon num-
bers Nh of the shared state. Furthermore, this implies
that the two clones can either be equal to one each other
or different. In other words, a remarkable feature of this
scheme is that it is suitable to realize both symmetric
cloning, when N1 = N2 = N, and asymmetric cloning,
N1 ≠ N2. This arises as a consequence of the possible
asymmetry of the state that supports the teleportation.

Let us first consider the case of symmetric cloning.
For a given generation process of the state |Y2〉, we
pointed out that the symmetric condition N1 = N2 = N
has to be satisfied in order to produce two equal clones.
For example, if one considers the interaction in
Eq. (62), this condition is achieved when the coupling
constants γ0 and γ1 are set such that

(101a)

(101b)

according to Eqs. (71). The fidelity of the clones is
given by (we put n1 = n2 = n)

(102)

As we expect from a proper cloning machine, the fidel-
ity is independent of the amplitude of the initial signal,
and, for 0 < N < 4, it is larger than the classical limit
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F = 1/2. In Fig. 17, the behavior of the fidelity versus
the average photon number N is shown in the relevant
regime. We can see that the fidelity reaches its maxi-
mum F = 2/3 for N = 1/2. For example, when |Y2〉 is
produced via Hamiltonian (62), this means that optimal
cloning is achieved when the coupling constants are

chosen such that |γ0/γ1| = (6 – )1/2 � 0.586, accord-
ing to Eqs. (101). The total mean photon number
required to reach optimal telecloning is thus N0 + N1 +
N2 = 2; hence, as we stated above, it can be achieved
without the need of infinite energy. This is an extremely
interesting feature of the telecloning protocol, which,
as already noticed, cannot be achieved via local cloning
and teleportation. The scheme presented is the ana-
logue of that in [52]. There, the telecloning is supported
by a state |Y2〉 produced by means of a cascading pro-
cess, as described above [see, in particular, Eq. (89)].
Of course, both the protocols described here and in [52]
achieve optimality by relying on minimal energetic
resources; i.e., the total mean photon number is 2 in
both cases.

Let us now consider the asymmetric case. For N1 ≠
N2, the fidelities of the two clones are given by Fh =
(1 + nh)–1, i.e.,

(103)

where h, k = 1, 2 (h ≠ k). A question arises as to whether
it is possible to set the values of N1 and N2 in order to
obtain a fidelity larger than the bound F = 2/3 for one of
the clones, say 1, while accepting a decreased fidelity
for the other clone. For instance, if the state |Y2〉 is gen-
erated via interaction (62), one can vary the mean pho-
ton number in each mode by tuning the coupling con-
stants γ0 and γ1 [see Eqs. (71)], which, in turn, can be
done by acting on the pump intensities. In particular, if
we impose F2 = 1/2, i.e., the minimum value to assure
the genuine quantum nature of the telecloning protocol,
we can maximize F1 by properly choosing the states
|Y2〉. The maximum value turns out to be F2, max = 4/5,
and it corresponds to the choice N2 = 1/4 and N1 = 1.
More generally, one can fix F2; then, the maximum
value of F1 is obtained choosing N1 = (1/F2 – 1) and
N2 = (4/F2 – 4)–1. The relation between the fidelities is
then

(104)

which shows that F1 is a decreasing function of F2 and
that 2/3 < F1 < 4/5 when 1/2 < F2 < 2/3 (see light gray
area in Fig. 18).

The comparison with the general bound for 1  2
cloning of coherent states given in [56] allows us to
conclude that the protocol described realizes an optimal
asymmetric cloning of coherent states. The sum of the
two fidelities F1 + F2 = 1 + 3F1F2/4 is maximized in the

32
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Fig. 17. Fidelity of symmetric clones versus the average
(equal) photon number N of modes a1 and a2.
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symmetric case in which the optimal fidelity F1 = F2 =
2/3 can be reached. The role of 1 and 2 can be
exchanged, and the above considerations still hold.

We now show that the protocol above can also be
implemented when the state that supports teleportation
does not belong to the class of coherent states of SU(2,
1). In particular, we focus our attention on the case in
which the support’s state is generated by Hamiltonian
(62) starting from a coherent state in one of the modes,
rather than from the vacuum, i.e., the state |Y2, α〉 in
Eq. (83). As we saw in Section 3.1, this is relevant from
an experimental point of view.

The analysis of the scheme follows the lines of the
protocol described above. Recalling Eqs. (83) and (84),
the state |Y2, α〉 is given by

(105)

whereas conservation law (63) implies that

(106)

A more useful expression for state (105) is the following:

(107)

where fj(t), j = 0, 1, 2, are given in Eqs. (70). Expres-
sion (107) can be easily derived by using the Heisen-
berg equation of motion for the field mode a0(t) (see
Eqs. (69)). The joint measurement described by the
POVM Π(β) now gives the following probability distri-
bution:

(108)

where we have calculated the trace over the shifted
Fock basis defined by |ψn〉0 ≡ D0(α f0)|n〉0, and |ψn〉j ≡
Dj(−α* )|n〉j , j = 1, 2. Notice that, in Eq. (108), Nj =

〈Y2 | |Y2〉 are the average photon numbers for the
initial vacuum state, i.e., the quantities given in
Eqs. (71). Recall that the latter are connected with the

populations for seeded crystal Njα = 〈Y2, α| |Y2, α〉
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through Eqs. (84). The conditional state of the modes a1

and a2 after the outcome β is now
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If the reference mode b is excited in a coherent state s =
|z〉〈z |, then the distribution of the outcomes is given by
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As above, the conditional state is pure: β = |ψβ〉〉〈〈ψβ|,
with
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i.e., the product of two independent coherent states.
The amplitudes are given by
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where the quantities βh (with h = 1, 2) are again given

by βh = . We now need a unitary transfor-
mation acting differently on the modes a1 and a2, with
respect to the previous section. The following displace-

β
1

P β( )
------------Tr1 Y2 α,| 〉 Y2 α,〈 |Π β( ) �1 �2⊗ ⊗[ ]=

=  
1

P β( )
------------ 1

π 1 N0+( )
------------------------

N1
p k+( )/2

N2
q l+( )/2

1 N0+( ) p q k l+ + +( )/2
----------------------------------------------

pqkl

∑

× p q+( )! k l+( )!
p!q!k!l!

------------------------------------- ψk l+〈 |D β( )σT
D† β( ) ψ p q+| 〉

× ψ p ψq,| 〉 ψk ψl,〈 |.

ζρ

Pz β( ) 1
π 1 N0+( )
------------------------

β z* α f 0–+
2

1 N0+
-----------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

.exp=

ζρ

ψβ〉| 〉 ζ1β| 〉1 ζ2β| 〉2,⊗=

ζ1β z β* α* f 0*–+( )β1 α* f 1*,–=

ζ2β z β* α* f 0*–+( )β2 α* f 2*,–=

Nh/ 1 N0+( )

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

F1

F2

Fig. 18. Relation between the fidelities of the two clones in
the asymmetric telecloning protocol (see text for details).

0



1472

LASER PHYSICS      Vol. 16      No. 10      2006

ALLEVI et al.

ment transformation does not depend on the initial
amplitude z and allows cloning at a distance:

(113)

Indeed, the output conditional state coincides with that
of Eq. (96), such that the partial traces are identical to
those given in Eq. (100). For N1 = N2 = N, we obtain
symmetric clones with the same fidelity as in Eq. (102).
Furthermore, conditions (101) still hold. Notice also
that the protocol for asymmetric cloning can be
straightforwardly extended to the present seeded
scheme. In addition, it is possible to extend the protocol
above to the case of 1  m telecloning of generic
Gaussian pure states, both for the case of symmetric
and completely asymmetric cloning [57]. The effect of
noise on the protocol has also been studied, showing
that optimality can still be attained even in the presence
of losses in the propagation line between the sender and
the receivers, for propagation times diverging as the
number of modes m increases [57].

We finally mention that other possible applications
of the tripartite entangled state |Y2〉 have been studied.
The conditional state generation of two-mode states,
both Gaussian and non-Gaussian, has been analyzed in
[40, 49]. In the latter case, an enhancement of nonlocal
correlation has been pointed out with respect to a stan-
dard twin beam. The application of the telecloning pro-
tocol described above to quantum information distribu-
tion in an amplitude-modulated communication sce-
nario has also been pointed out in [53], showing the
advantages of such a scheme with respect to a local
strategy.

3.6. The Three-Mode State Generation

In Section 2.3, we described the production of the
SPDC obtained by sending an intense pump beam into

Uβ D1
† β* β1α* f 0*– α* f 1*–( )=

⊗ D2
† β* β2α* f 0*– α* f 2*–( ).

a BBO crystal. In particular, we showed the depen-
dence of the characteristic cones on some parameters,
such as the tuning angle α and the signal wavelength.

The generation of a three-mode state is more com-
plex to explain due to the presence of two pump fields
instead of only one [58].

To better understand this process, it is convenient to
assume that the wave vector kp1 relative to the pump
field ap1 is normal to the crystal entrance face and prop-
agates along the z axis of the medium. With reference
to Fig. 19, we assume that the wave vector kp2 corre-
sponding to the other pump field ap2 lies in the plane
(y, z) formed by the optical axis (OA) of the crystal and
the wave vector kp1. We indicate as ϑj the angles in the
plane (y, z) formed by each wave vector with kp1 and as
βj the angles of each wave vector with respect to this
plane. Under these hypotheses, we have βp1 = ϑp1 = 0
and βp2 = 0. In order to calculate a set of internal angles
suitable for the realization of the process, it is conve-
nient to write the projection of the phase-matching con-
ditions along the three Cartesian axes (x, y, z). We thus
obtain two systems, each formed by three equations,
i.e.,

(114a)

(114b)

(114c)

for the SPDC and

(115a)

(115b)

(115c)

for the other interaction. In addition, we have the fol-
lowing definitions:

(116a)

(116b)

As we have eight variables and only six equations, we
can solve the two systems by taking ϑp2 and α as
parameters [58]. In particular, we can study the solu-

k0 β0sin k2 β2sin+ 0,=
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tions for the angles ϑj and βj as functions of ϑp2 and for
a given value of the tuning angle α. For some angles,
two solutions exist instead of one: for example, we
obtain two values for each βj, so that we have a symme-
try with respect to the (y, z) plane just as in the TWB
generation. Moreover, we have two solutions for ϑ0 and
ϑ2: this means that we also have a symmetry with
respect to the z axis. Obviously, as for the SPDC gener-
ation, these solutions are coupled in order to fulfill
Eqs. (114). For each pair of ϑ0 and ϑ2, there are two
possible choices of ϑp2, but once we have fixed it only
one solution for ϑ1 exists. For the sake of clarity, let us
first discuss the solutions in the plane (y, z): in particu-
lar, for λ0 = 778.2 nm, λ1 = 394.4 nm, λ2 = 632.8 nm,
λp1 = 349 nm, and λp2 = 1047 nm, four sets of angles ϑj

exist that simultaneously satisfy systems (114) and
(115). To realize the interactions, we chose the follow-
ing configuration: ϑ0 = –1.35°, ϑ1 = –6.45°, ϑ2 = 1.09°,
ϑp2 = −19.10°, with α = 33.75° and ϑCUT = 38.4°. By
applying Snell’s law to the set, for a crystal with ϑCUT =
38.4°, we obtain the external angles, i.e., ϑ0ext = –2.26°,
ϑ1ext = –10.71°, ϑ2ext = 1.85°, ϑp2ext = –32.15°, calcu-
lated with respect to the propagation direction of pump
a4 outside the crystal.

In order to study the process in space, it is worth-
while to analyze the dependence of all the angles (βj

and ϑj) on the parameters α, ϑp2, and also on λ0. For
example, Fig. 20 displays the solution for the internal
angles ϑ0, ϑ1, ϑ2, and ϑp2 as functions of α for λ0 =
778.2 nm, while Fig. 21a is a plot of the generated field
a1 on a plane beyond the BBO and orthogonal to the
propagation direction of the pump ap1.

Notice that, for fixed values of the tuning angle and
of the angle ϑp2, this field, which consists of two poly-
chromatic half-moons, is symmetric with respect to the
plane (y, z) and that only one solution exists in the plane
itself, represented by a spot, having the wavelength λ1 =
394.4 nm. Figure 21b is a picture of the half-moons
taken on a screen located outside the crystal. Note that,
in the picture, a small portion of the cones is also visible
on the left. The agreement between simulation and
experiment is very good, even if not all the simulated
states were recorded by the camera.

3.7. Experimental Setup

In order to realize the two interlinked interactions
from vacuum, we used the frequency-tripled continu-
ous-wave mode-locked Nd:YLF laser regeneratively
amplified described in Section 2.3 [58]. In particular,
we exploited the third-harmonic pulse as the pump field
ap1 to generate the spontaneous parametric downcon-

version process (interaction  =  + ) and the
fundamental pulse as the pump field ap2 to generate the

kp1
e

k0
o

k2
o

sum-frequency between a portion of a cone and the

infrared field itself (interaction  =  + ).

For alignment purposes, we first realized the seeded
process: to this end, we chose as the seed the light pro-
duced by a He–Ne continuous-wave laser (Melles-
Griot, 5-mW max output power) at a wavelength of
λ0 = 632.8 nm. This choice allowed us to realize a non-
degenerate interaction scheme in which the three evolv-
ing fields were at different frequencies with respect to
each other or to the pumps, namely, λ0 = 632.8 nm,
λ1 = 446.4 nm, and λ2 = 778.2 nm.

As depicted in Fig. 22, the third harmonic extracted
from the Nd:YLF laser was focused by lens fp1 of focal
length 500 mm into a type-I BBO crystal (Fujian
Castech Crystals, Fuzhou, China, ϑCUT = 34°, cross-
section of 10 × 10 mm and 4 mm in thickness) in order
to generate the SPDC. Simultaneously, we sent the fun-
damental of the laser to the crystal at an of angle ϑp2ext =
–34.8° with respect to the ultraviolet pump field (see
Fig. 22). Since this field also emerges from the laser
slightly divergent, we focused it by means of lens fp2
having a focal length of 500 mm. For alignment pur-
poses, we used as seed field the light emitted by the He–
Ne laser described above; we corrected the divergence

k1
e

k2
o
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o

12

6

0

–6

–12

–18

–24
33 34 35 36 37 38 39

α, deg

 Internal angles, deg

ϑ0 ϑ1 ϑ2 ϑp2

Fig. 20. Internal angles ϑj with j = 0, 1, 2, p2 as functions of
the tuning angle α.
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Fig. 21. (a) Simulated image of the two half-moons outside
the crystal; (b) picture of the two half-moons.



1474

LASER PHYSICS      Vol. 16      No. 10      2006

ALLEVI et al.

of the beam by means of lens fs = 400 mm, and then we
sent it to the BBO with an external angle of ϑ0ext =
−2.54° with respect to the pump field ap1.

By means of the two interlinked seeded interactions,
we obtained two new fields, i.e., field a2 (ϑ2 = 3.35°)
generated by the difference frequency between the
ultraviolet pump field and the seed field and then field
a1 (ϑ1 = –12.78°) produced by the sum-frequency
between field a2 and the infrared pump field. Note that,
as the pump fields were sufficiently intense, the process
starting from the vacuum also took place.

In order to check whether the generated fields
belonged to an entangled triplet, we performed prelim-
inary intensity correlation measurements among the
generated fields. As for the TWB state, the position of
the seeded spots is crucial for the correct selection of
the twin coherence areas belonging both to the cones

and to the half-moon. In order to choose the dimensions
and the distances of the pinholes from the BBO, we fol-
lowed a procedure analogous to that described for the
TWB. However, it was not possible to study the depen-
dence of the speckle dimensions on the pump energy, as
this process, which involves two nonlinear interactions
from the vacuum, is less efficient than the SPDC, and,
thus, the CCD cannot resolve the coherent areas on the
half-moon. Nevertheless, we analyzed the dependence
of each of the three generated fields on the distance
from the BBO, again represented by a direct linear pro-
portionality. By taking into account this result, together
with the fact that the divergence of the fields scales
according to the ratio of the involved wavelengths, we
assumed that, for an equal choice of the pinholes on two
of the three fields, the ratio of the distances from the
BBO must scale as the inverse ratio of the wavelengths.
By exploiting this relation, we decided to place the
detectors at three different distances from the crystal
and to use pinholes having different dimensions. In par-
ticular, we put a pinhole with a size of 2.5 mm at a dis-
tance of 81 cm from the crystal to detect field a0, a pin-
hole with a size of 2 mm at a distance of 72 cm to detect
field a1, and a pinhole with a size of 2 mm at a distance
of 53.5 cm to detect field a2. The light was suitably fil-
tered before each pinhole and focused on each p–i–n
photodiode (Pin 0, 1, 2 in Fig. 22) by a lens ( f0 = f1 =
25 mm, f2 = 50 mm) located just beyond the spatial
selector. The overall quantum efficiencies of the detec-
tion branches were η0 = 0.44, η1 = 0.72, and η2 = 0.43.
As for the TWB, each current output was integrated
over a synchronous gate of suitable time duration
(40 ns) by a synchronous gated integrator (SGI) in
external trigger modality; each SGI output was then
digitized by a 13-bit converter (SR250, Stanford
Research Systems, with 50-mV full scale), and the
counts were stored in a PC-based multichannel ana-
lyzer.

Fig. 22. (a) Experimental setup: BBO, nonlinear crystal; F0,
F1, F2, cutoff filters; P0, P1, P2, pinholes; f0, 1, 2, p1, p2, s,
lenses; Pin 0, 1, 2, p–i–n photodiodes; SGI, synchronous
gated integrator. (b) Scheme of the interaction outside the

crystal; ϑjext, external phase-matching angles; , wave

vectors of the interacting fields.
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3.8. Experimental Results

In Figs. 23a–23c, we show the recorded outputs of
the photodiodes for a sequence of laser shots, together
with the noise of the detectors. In particular, the traces
of the three generated fields have a variance character-
istic of multithermal statistics. In fact, the correspond-
ing normalized probability distributions reported in
Figs. 24a–24c for the same data are well fitted by mul-
tithermal distributions obtained by the convolution of µ
equally populated thermal modes. In this case, the num-
ber of modes for the three fields is given by 27 temporal
modes in the coherence area of field a0, 32 temporal
modes in the coherence area of field a1, and 32 temporal
modes in the coherence area of field a2.

A preliminary criterion to identify the three parties
of the triplet is given by the calculus of the correlation
function (see Eq. (48)); however, it represents a neces-
sary but not sufficient condition to establish the entan-
gled nature of the three modes [58].

Moreover, we have to remember that, according to
Eq. (63), by taking the vacuum as the initial state, at any
time t ≠ 0, the mean photon number on mode a0 is the
sum of the mean photon numbers on modes a1 and a2.
The coherence areas are thus correctly selected when
the correlation coefficient ε (see Eq. (49)) between the
photons detected on mode a0 and the sum of the pho-
tons detected on the other two modes is maximum.

In the case of multithermal statistics, the correlation
coefficient for the three-mode state can be written as
follows:

(117)

in which

(118a)

(118b)

εTRI

η0 1 N1 N2+ +( ) η1N1 η2N2+( )

σ0
2δ2( )

1/2
----------------------------------------------------------------------------,=

σ0
2 η0 N1 N2+( ) 1 η0 N1 N2+( )+[ ],=

δ0
2 η1N1 η2N2+( ) 1 η1N1 η2N2+ +( ).=

Note that, in the limit of intense fields, εTRI approaches
unity for any value of ηj .

In Fig. 25, we show the correlation function for the
detected photons plotted as a function of the delay in
the laser shots. Note that the experimental correlation
coefficient is ε = 0.914 and that subsequent shots result
to be uncorrelated. The correlation is smaller than the
theoretical unit value. In order to reduce the added
noise, we will modify the experimental conditions to
improve the selection of the coherence areas. More-
over, we will exploit the remarkable flexibility of the
interacting scheme realized in a single crystal to choose
the best conditions for detecting the outputs and for
eliminating the presence of spurious light that would
impinge on the detectors in spite of the filters. Finally,
in order to verify the existence of quantum correlations,
we may implement measurements at a lower number of
detected photons, with a suitable change of the detec-
tion chain in order to reduce the detection noise. An
alternative interaction scheme will also be used, in
which the interlinked interactions will take place in two
distinct nonlinear crystals in a cascading geometry: this
should help in finding the correlated parties of the trip-
lets.
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4. CONCLUSIONS

In this paper, we have analyzed in detail three- and
five-mode parametric interactions in χ(2) crystals,
reviewing their description and applications. Concern-
ing three-wave interactions, we have derived classical
equations of motion and then solved them within the
parametric approximation, taking into account phase
mismatching both in modulus and direction. Moreover,
we have considered the corresponding two-mode quan-
tum model obtained under phase-matching conditions.
The evolution from the vacuum or from a coherent seed
signal has been explicitly evaluated, and the resulting
entangled states have been characterized. The condi-
tions for the experimental generation of a twin beam by
type-I nonlinear interactions in a noncollinear phase-
matching geometry in BBO crystals have been dis-
cussed, and the experimental results obtained for the
photon distribution, as well as for the photon correla-
tion, have been reported.

Five-mode interactions taking place in a single crys-
tal have also been considered. In particular, we focused
on schemes employing type-I noncollinear phase-
matching geometry, which provides remarkable flexi-
bility in the choice of experimental parameters. Classi-
cal equations of motion have been derived and solved
under phase-matching conditions and within the para-
metric approximation, showing that, for a single seed
signal at the crystal input, two holographic replicas
should be expected at the output. Experimental results
are also reported confirming the holographic properties
in very good agreement with the theory. In addition, the
implementation of several kinds of all-optical devices,
such as logic gates, looping circuits, and switches, is
analyzed both theoretically and experimentally, show-
ing an excellent optical resolution due to the holo-
graphic nature of the process. The generation of entan-
glement by three-mode bilinear interactions in the
quantum regime has been extensively described and
discussed, also illustrating a possible application in the
implementation of a 1  2 telecloning protocol. The
experimental realization of five-wave interactions has
been demonstrated using the fundamental and third
harmonics of a continuous-wave mode-locked Nd:YLF
laser as the pump fields. Experimental results for the
photon correlations show a good agreement with the
theory.

We conclude that parametric interactions in χ(2)

crystals represent powerful tools for the optical manip-
ulation of information both in the classical and the
quantum regimes.
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