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We demonstrate a state reconstruction technique which provides either the Wigner function or the density
matrix of a field mode and requires only avalanche photodetectors, without any phase or amplitude discrimi-
nation power. It represents an alternative to quantum homodyne tomography of simpler implementation.
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I. INTRODUCTION

The characterization of states and operations at the quan-
tum level plays a leading role in the development of quantum
technology. A state reconstruction technique is a method that
provides the complete description of a physical system upon
the measurements of an observable or a set of observables
#1$. An effective reconstruction technique gives the maxi-
mum possible knowledge of the state, thus allowing one to
make the best, at least the best probabilistic, predictions on
the results of any measurement that may be performed on the
system. At a first sight, there is an unavoidable trade-off
between the complexity of the detection scheme and the
amount of extractable information, which can be used to re-
construct the quantum state #2$. Currently, the most effective
quantum state reconstruction technique for the radiation field
is quantum homodyne tomography !QHT" #3,4$, which re-
quires the measurement of a continuous set of field quadra-
ture and allows for the reliable reconstruction of any quantity
expressible in terms of an expectation value #5–10$. A ques-
tion arises on whether the trade-off may be overcome by a

suitable experimental configuration or it corresponds to some
fundamental limitations. Here we demonstrate that no spe-
cific discrimination power is required to the detector in either
amplitude or phase and that full state reconstruction is pos-
sible by a suitable processing of the data obtained with de-
tectors revealing light in the simplest way, i.e., on/off detec-
tors, such as single-photon avalanche photodiodes. Of
course, some form of phase and/or amplitude modulation is
necessary, which, in our scheme, is imposed to the field be-
fore the detection stage. In fact, our technique is built on the
completeness of any set of displaced number states #11–16$
and the reliable maximum likelihood reconstruction of arbi-
trary photon-number distributions #17$ from on/off data.

The paper is structured as follows. In Sec. II we describe
our reconstruction method, whereas in Sec. III the experi-
mental setup used in the reconstruction is described in some
details. Results are illustrated in Sec. IV and the error analy-
sis is reported in Sec. V. In Sec. VI we discuss few additional
topics while Sec. VII closes the paper with some concluding
remarks.

II. STATE RECONSTRUCTION BY ON/OFF
MEASUREMENTS

We start to describe our reconstruction technique by ob-
serving that the modulation of a given signal, described by
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the density matrix !, corresponds to the application of a
coherent displacement !probe" !!=D!!"!D†!!", !!C. In
practice, it can be easily obtained by mixing the state under
investigation with a known coherent reference in a beam
splitter !BS" or a Mach-Zehnder interferometer #18$. Upon
varying amplitude and phase of the coherent reference and/or
the overall transmissivity of the interferometer, the modula-
tion may be tuned in a relatively broad range of values. The
main idea behind our method is simple: the photon distribu-
tions of coherently modulated signals, i.e., the diagonal ele-
ments pn!!"= %n&!!&n' of the density matrix !!, contain rel-
evant information about the complete density matrix of the
original signal !. Upon measuring or reconstructing the
photon distribution pn!!" for different values of the
modulation one has enough information for full state recon-
struction. By rewriting the above relation as pn!!"
=(km Dnk!!"!kmDmn!!", the off-diagonal matrix elements
may be recovered upon inversion by least-squares method,
i.e., #14$

%m + s&!&m' = N"
−1(

l=1

N"

(
n=0

n̄

Fnm
!s" !&!&"pn!&!&ei"l"eis"l,

where N" is the number of modulating phases, n̄ is the trun-
cation dimension of the Fock space, and F depends only on
&!& #14$. State reconstruction by the above formula requires,
in principle, only phase modulation of the signal under in-
vestigation. Maximum likelihood methods and iterative pro-
cedures may be also used #19$. On the other hand, the
Wigner function may be reconstructed using its very defini-
tion in terms of displacement #20$,

W!!" = Tr#D!!"!D†!!"!− 1"a†a$ = (
n

!− 1"npn!!" .

As a matter of fact, the measurement of the photon distribu-
tion is challenging as photodetectors that can operate as pho-
ton counters are rather rare and affected either by a low
quantum efficiency #21$ or require cryogenic conditions, thus
impairing common use #22,23$. Therefore, a method with
displacement but without photocounting has been used so far
only for states in the 0–1 subspace of the Fock space #16$.
On the other hand, the experimental reconstructions of
photon-number distributions for both continuous-wave and
pulsed light beams are possible using simple on/off single-
photon avalanche photodetectors. This requires the collection
of the frequencies of the off events, P0,k=(n=0

# !1−$k"npn, at
different quantum efficiencies of the detector, $k. The data
are then used in a recursive maximum likelihood reconstruc-
tion algorithm that yields the photon-number distributions as

pn
i+1 = pn

i (
k=1

K

)Akn/(
j

Akj*!P0,k/p0,k#+pn
i ,$" ,

where Akn= !1−$k"n and p0,k is the probability of off events
calculated from the reconstructed distribution at the ith itera-
tion #24$. The effectiveness of the method has been demon-
strated for single-mode #17$ and multimode fields #25$ and
also applied to improve quantum key distribution #26$.

Since the implementation of the modulation is relatively
easy, we have thus a reconstruction technique which pro-
vides the quantum state of radiation modes and requires only
avalanche detectors, without any phase or amplitude dis-
crimination power. Here, we develop the idea into a proper
reconstruction technique and demonstrate the reconstruction
of the Wigner function #27$ and the density matrix for dif-
ferent states of the optical field.

III. EXPERIMENTAL SETUPS

We have performed two experiments for the reconstruc-
tion of the Wigner function and the density matrix. In Fig. 1
we sketch the corresponding experimental setups: the upper
panel for the measurement of the Wigner function and the
lower panel for the density matrix. The first set of measure-
ments was performed on ps-pulsed light fields at 523 nm
wavelength. The light source was the second-harmonic out-
put of a Nd:YLF mode-locked laser amplified at 5 kHz !High
Q Laser Production" delivering pulses of -5.4 ps duration.
The field, spatially filtered by means of a confocal telescope,
was split into two parts to give both signal and probe. The
photon-number distribution of the probe was kept Poisso-
nian, while the coherent photon-number distribution of the
signal field was modified in order to get suitable states of
light. In particular, we have generated two phase-insensitive
classical states, namely, a phase-averaged coherent state and
a single-mode thermal state. The first one was obtained by
changing the relative phase between signal and probe fields
at a frequency of -300 Hz by means of a piezoelectric
movement !Pz in the upper panel of Fig. 1", covering
1.28 %m span. On the other hand, to get the single-mode
thermal state we inserted Arecchi’s rotating ground glass
disk on the pathway of the signal field followed by a pin hole
that selected a single coherence area.

FIG. 1. !Color online" Schematic diagram of the two experimen-
tal setups. Upper panel: Nd:YLF, pulsed laser source; P, polarizer;
HPD, hybrid photodetector; SGI, synchronous gated integrator; and
ADC, analog-to-digital converter. Lower panel: He-Ne, cw laser
source; IF, interference filter; and APD, single-photon avalanche
photodiode. F, neutral-density filter; BS, beam splitter; Pz, piezo-
electric movement; and R, rotating ground glass plate. Components
in dotted boxes are inserted or activated when necessary.
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Signal and probe fields were mixed in an unpolarizing
cube BS and a portion of the exiting field was sent, through
a multimode optical fiber !600 %m core diameter", to a hy-
brid photodetector module !HPD mod. H8236-40,
Hamamatsu, maximum quantum efficiency $HPD=0.4 at 550
nm". Although the detector is endowed with partial photon
resolving capability, we used it as a simple on/off detector by
setting a threshold at the value corresponding to zero de-
tected photons. Its output current pulses were suitably gate
integrated by a SR250 module !Stanford Research Systems,
CA" and sampled to produce a voltage, which was digitized
and recorded at each shot. In order to modulate the amplitude
of the probe field, a variable neutral-density filter was placed
on its pathway. The maximum overall detection efficiency,
calculated by including the losses of the collection optics,
was $max=0.29. We used a polarizer put in front of the fiber
to vary the quantum efficiency of the detection chain from
$max to 0.

IV. RESULTS

Here we illustrate the reconstruction obtained for the
Wigner function and the density matrix of phase-averaged
coherent states and thermal states, as obtained by our method
after recording the on/off statistics of amplitude- and/or
phase-modulated signals.

In Fig. 2 we report the reconstructed Wigner functions for
a phase-averaged coherent state with real amplitude z.2.1
and a thermal state with average number of photons nth
.2.4. The Wigner function of the vacuum state is also re-
ported for comparison. As it is apparent from the plots all the
relevant features of the Wigner functions are well recovered,
including oscillations and the broadening due to thermal
noise. In this case raw data are frequencies of the off event
!collected over 30 000 laser shots" as a function of detector
efficiency, taken at different amplitudes of the modulating
field, whereas the intermediate step corresponds to the recon-
struction of the pn!!". The insets of Fig. 2 display pn!!" for
the phase-averaged coherent state at two values of the modu-
lation.

The second set of measurements has been performed to
achieve state reconstruction with phase modulation. Here the
light source was a He-Ne laser beam attenuated to single-
photon regime by neutral-density filters. The spatial profile
of the beam was purified from non-Gaussian components by
a spatial filter. Beyond a beam splitter, part of the beam was
addressed to a control detector in order to monitor the laser
amplitude fluctuations, while the remaining part was sent to
a Mach-Zehnder interferometer. A piezomovement system
allowed changing the phase between the “short” and “long”
paths by driving the position of the reflecting prism with
nanometric resolution and high stability. The beam on the
short arm represented the probe, while the beam on the long
arm was the state to be reconstructed. In the first acquisition
the signal was the coherent state itself, while in the second
acquisition it was a pseudothermal state generated as de-
scribed above. The detector, a Perkin-Elmer single-photon
avalanche photodiode !SPCM mod. AQR-12, Perkin Elmer"
with quantum efficiency $max=0.67, was gated by a 20 ns

time window at a repetition rate of 200 kHz. To obtain a
reasonable statistics, a single run consisted of five repetitions
of acquisitions lasting 4 s each. In the bottom part of Fig. 3
we report the reconstructed density matrix in the Fock rep-
resentation !diagonal and subdiagonal" for a coherent state
with real amplitude z.1.8 and a thermal state with average
number of photons equal to nth.1.4.

As it is apparent from the plots the off-diagonal elements
are correctly reproduced in both cases despite the limited
visibility. Here the raw data are frequencies of the off event
as a function of the detector efficiency, taken at different
phase modulations, ", whereas the intermediate step corre-
sponds to the reconstruction of the photon distribution for the
phase-modulated signals. In our experiments we used N"
=12 and &!&2=0.01 for the coherent state and &!&2=1.77 for
the thermal state. The use of a larger N" would allow the
reliable reconstruction of far off-diagonal elements, which is
not possible in the present configuration. In the insets of Fig.

FIG. 2. !Color online" State reconstruction by amplitude-
modulation and on/off measurements. In the main plot we report the
off frequencies as a function of the quantum efficiency as obtained
when the signal under investigation is a phase-averaged coherent
state and for different values of the probe intensity &!&2. The two
insets show the reconstructed photon distributions for &!&2=5.02
and &!&2=10.69, corresponding to the off distributions indicated by
the arrows. The vertical black bars denote the mean value of the
photon number for the two distributions !%a†a'=11.3, upper and
%a†a'=18.0, lower". In the lower left plot we report the correspond-
ing reconstructed Wigner function. In the lower right plot we report
the Wigner functions for signals in !blue" thermal state and !yellow,
with sharper peak" vacuum.
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3 we report the reconstructed distributions at the minimum
and maximum of the interference fringes.

V. ERROR ANALYSIS

The evaluation of uncertainties on the reconstructed states
involves the contributions of experimental fluctuations of on/
off frequencies as well as the statistical fluctuations con-
nected with photon-number reconstruction. It has been ar-
gued #28,29$ that fluctuations involved in the reconstruction
of the photon distribution may generally result in substantial
limitations in the information obtainable on the quantum
state, e.g., in the case of multipeaked distributions #30$. For
our purposes this implies that neither large displacement am-
plitudes may be employed nor states with large field and/or
energy may be reliably reconstructed, although the mean val-
ues of the fields measured here are definitely non-negligible.

On the other hand, for the relevant regime of weak field or
low energy, observables characterizing the quantum state can
be safely evaluated from experimental data, including, e.g.,
the parity operator used to reconstruct the Wigner function in
the phase space. In our experiments, the errors on the recon-
structed Wigner function are of the order of the size of the
symbols in Fig. 3 whereas the absolute errors &nm= &!nm

expt

−!nm
theor& on the reconstruction of the density matrix in the

Fock basis are reported in Fig. 4.

VI. DISCUSSIONS

We have so far reconstructed the Wigner function and the
density matrix for coherent and thermal states. The extension
to highly nonclassical states does not require qualitative
changes in the setups. The only difference stays in the dis-
placement, which should be obtained with high transmissiv-
ity beam splitter in order to avoid mixing of the signal #18$.

As our method involves a beam splitter where the signal
interferes with a reference state in order to obtain the dis-
placement, we have optimized the effectiveness of mode
matching and of the overall scheme by standard visibility
test. We note that in this point our technique is similar to
QHT, where the signal is amplified by the mixing at a beam
splitter with a strong local oscillator. The main difference
with standard QHT, however, is the spectral domain of the
measurement, which for QHT is confined to the sideband
chosen for the measurement, while it is not in our case. The
use of pulsed temporal homodyning #31–35$ would remove
this limitation of QHT. However, this technique is still chal-
lenging from the experimental point of view and thus of
limited use. The effect of photodetector efficiency should be
also taken into account. This is a crucial issue for QHT,
which may even prevent effective reconstruction #36$. For
the present on/off reconstruction, it does not dramatically
affect the accuracy #24$. Notice also that any uncertainty in
the nominal efficiency $max of the involved photodetectors
does not substantially affect the reconstruction #24$.

We stress that our method is especially suited for low
excited states, as it does not involve intense fields and deli-
cate balancing to reveal the relevant quantum fluctuations.

FIG. 3. !Color online" State reconstruction by phase-modulation
and on/off measurements. In the upper plot we report the off fre-
quencies as a function of the quantum efficiency as obtained when
the signal under investigation is a coherent state and for different
phase shifts. The two insets show the reconstructed photon distri-
butions for the two phase-modulated versions of the signal corre-
sponding to maximum and minimum visibilities at the output of the
Mach-Zehnder interferometer. The vertical black bars denote the
mean value of the photon number for the two distributions, %a†a'
=3.5 and %a†a'=2.9. In the lower left plot !left" we report the cor-
responding reconstructed density matrix in the Fock representation
!diagonal and subdiagonal elements". In the lower right plot we
report the density matrix for the signal excited in a thermal state.

FIG. 4. !Color online" Absolute difference &nm= &!nm
expt−!nm

theor&
between reconstructed and theoretical values of the density matrix
elements for the coherent !left" and thermal !right" states used in
our experiments.
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VII. CONCLUSIONS

In conclusion, we have demonstrated a state reconstruc-
tion technique providing Wigner function and density matrix
of a field mode starting from on/off photodetection of
amplitude- and/or phase-modulated versions of the signal un-
der investigation. Our scheme is little demanding as to the
detectors, with the amplitude and phase control required for
full state characterization transferred to the optical setup and
appears to be reliable and simple especially for states with

small number of photons. We foresee a possible widespread
use in emerging quantum technologies such as quantum in-
formation, metrology, and lithography.
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