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In discrete-time quantum walk (DTQW) the walker’s coin space entangles with the position space after the
very first step of the evolution. This phenomenon may be exploited to obtain the value of the coin parameter θ

by performing measurements on the sole position space of the walker. In this paper, we evaluate the ultimate
quantum limits to precision for this class of estimation protocols and use this result to assess measurement
schemes having limited access to the position space of the walker in one dimension. We find that the quantum
Fisher information (QFI) of the walker’s position space Hw (θ ) increases with θ and with time, which, in turn,
may be seen as a metrological resource. We also find a difference in the QFI of bounded and unbounded DTQWs
and provide an interpretation of the different behaviors in terms of interference in the position space. Finally, we
compare Hw (θ ) to the full QFI Hf (θ ), i.e., the QFI of the walkers position plus coin state, and find that their ratio
is dependent on θ , but saturates to a constant value, meaning that the walker may probe its coin parameter quite
faithfully.
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I. INTRODUCTION

Quantum walk is the quantum analog of random walk
which, in turn, provides a relevant model for the dynamics
of various classical systems [1,2]. Quantum superposition
and interference strongly affect the dynamics of a quantum
walker and this leads to a quadratically faster spread in
position space when compared to a classical walker [3–9].
This feature made quantum walks a powerful tool in quantum
computation [10–14], as well as to model the dynamics of
different quantum systems, such as energy transport in pho-
tosynthesis [15,16], quantum percolation [17,18], and graph
isomorphism [19].

As in classical random walk, quantum walk has also
been developed in two forms, continuous-time and discrete-
time quantum walk (DTQW). Both the variants have been
shown to efficiently implement any quantum computational
task [19,20]. Continuous-time quantum walk is defined only
on position Hilbert space, whereas discrete-time quantum
walk is defined on a joint position and coin Hilbert space,
thus providing an additional degree of freedom to control
the dynamics. Upon tuning the different parameters of the
evolution operators of DTQW, one may control and engineer
the dynamics in order to simulate various quantum phenom-
ena such as localization [21–23], topological phase [24,25],
neutrino oscillation [26,27], and relativistic quantum dy-
namics [28–34]. Quantum walks have been experimentally
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implemented in various physical systems such as NMR [35],
photonics [36–39], cold atoms [40], and trapped ions [41,42].

Evolution in discrete-time quantum walk is defined by
unitary coin operation followed by a unitary position shift
operator. The shift operator evolves the walker in a super-
position of the position states, with amplitudes governed by
the operation on coin Hilbert space. The most general unitary
coin operator in one dimension has three independent param-
eters [43] and provides an ample control over the dynamics,
but already one- and two-parameter coins are extremely useful
in simulating various physical systems in one dimension.
For example, different combinations of evolution parameters
in split-step DTQW describe topological phases [24,25] and
neutrino oscillation [26,27]. Indeed, coin parameters play a
relevant role in the evolution of the state of the walker in
the position space and, in turn, in controlling and engineering
DTQWs. In this framework, a precise knowledge of the coin
parameters is crucial information for quantum simulations and
for further development in the use of quantum walks to model
realistic quantum dynamics.

In the past, it has been determined that one coin parameter
determines the group velocity of the walker’s spread in posi-
tion space [44]. Therefore, by studying the standard deviation
or group velocity of DTQW with one coin parameter, one can
determine the value of parameter θ for unbounded DTQW.
But the same does not hold for bounded or multiparameter
coin QW. Fisher information (FI) measures the amount of
information that can be obtained about the unknown parame-
ters in the system by performing measurement on the system,
individually. Therefore, it can be used to obtain informa-
tion of all the coin parameters when the coin operator is a
general SU(2) operator with three-parameters coin operation,
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multicoin operation, or the bounded case. Here, we first
develop a technique to calculate Fisher information in DTQW
using a one-parameter coin operator, and then extend to two-
coin quantum walk. In this paper, we first consider a coin
operator with one parameter θ and address the evolution of
bounded and unbounded DTQWs in one dimension. Our aim
is to design optimal estimation techniques for the coin param-
eter based on measurements performed on the sole position
space of the walker. Our approach belongs to the class of pro-
tocols usually referred to as quantum probing [45–56], which
proved useful to precisely extract information upon exploit-
ing the inherent sensitivity of quantum systems to external
perturbations.

We use the FI to quantify the information about a pa-
rameter θ which may be extracted by performing a given
measurement on a quantum system. In particular, we consider
the FI Fw(θ ) of the generic measurement performed on the
walker’s position degree of freedom. The maximum of Fw(θ )
over all the possible measurements is the so-called quantum
Fisher information Hw(θ ) (QFI), which quantifies the ultimate
quantum bound to the extractable information, i.e., the overall
information encoded onto the state of the system. We also
evaluate the full QFI Hf (θ ), i.e., the QFI of the position
plus coin state, in order to assess the overall performances
of measurements on the sole position space of the walker,
compared to measurements having access to the full quantum
state. Our results show that the walker QFI Hw(θ ) increases
as t2, as it happens for the full QFI Hf (θ ), meaning that the
walker is a good probe for its coin operation parameter θ .
Additionally, the walker’s position QFI Hw(θ ) increases with
θ and then decreases slowly up to π/2 (and then mimics in
the mirrored way, due to symmetry in the coin operator up
to π ). Finally, we analyze in some detail the performances
of position measurement on the walker; i.e., we assess how
much information on the coin parameter may be extracted
by looking at the probability distribution of the walker at a
given time. We also present QFI in position space for split-step
quantum walk, where we have two coin parameters; we can
see that QFI Hw(θ ) helps us to estimate the coin parameters.

The paper is structured as follows. In Sec. II, we describe
bounded and unbounded DTQWs and the evolution operators
governing their dynamics. In Sec. III we review quantum
estimation theory, describe a method to numerically calculate
the walker’s quantum Fisher information in DTQWs, and
illustrate the main results of our analysis. Section IV closes
the paper with some concluding remarks.

II. EVOLUTION IN DISCRETE-TIME QUANTUM WALK

DTQW of a single walker on a one-dimensional lattice is
defined on the Hilbert space H = Hc ⊗ Hp where Hp and Hc
are the position and the coin Hilbert spaces of the walker,
respectively. The basis states of the coin Hilbert space are
{|↑⟩ , ⟨↓|}, which may be seen as the internal states of the
walker. The position Hilbert space is spanned by the basis |x⟩
where x ∈ Z. The initial state of the system is usually taken in
the form

|#in⟩ = α |↑⟩ + β |↓⟩ ⊗ |x = 0⟩ , |α|2 + |β|2 = 1. (1)

Here α and β are the amplitudes of the states |↑⟩ and |↓⟩,
respectively. The evolution operator for discrete-time quan-
tum walk is defined by the action of unitary quantum coin
operation followed by a position shift operator. The single-
parameter coin operator is given by

Cθ =
(

cos θ −i sin θ
−i sin θ cos θ

)
⊗

∑

x

|x⟩ ⟨x| (2)

whereas the shift operator S is defined with reference to
the size of the region accessible by the walker. Unbounded
DTQWs are defined on a position Hilbert space of infinite
size. The walker has no boundary condition on probability
amplitude, and the position shift operator is given by

Sx =
∑

x

|↑⟩ ⟨↑| ⊗ |x − 1⟩ ⟨x| + |↓⟩ |↓⟩ ⊗ |x + 1⟩ ⟨x| . (3)

In Fig. 1 we show the probability distribution after 200 time
steps for an unbounded DTQW using different values of
coin parameter θ . The smaller the value of θ , the larger
the spread of the probability distribution. Bounded DTQWs
evolve instead on finite position Hilbert spaces, characterized
by a finite number of sites and boundary conditions. In turn,
the position shift operator is bounded between [−a, a] with
boundary condition |#a+1⟩ = |#−a−1⟩ = 0, where a ∈ Z. In
formula,

Sx = |↓⟩ ⟨↑| ⊗ |−a⟩ ⟨−a| +
a∑

x=−a+1

|↑⟩ ⟨↑| ⊗ |x − 1⟩ ⟨x|

+
a−1∑

x=−a

|↓⟩ ⟨↓| ⊗ |x + 1⟩ ⟨x| + |↑⟩ ⟨↓| ⊗ |a⟩ ⟨a| . (4)

The insets of Fig. 1 show the probability distribution after
200 time steps for a bounded DTQW and for different values
of θ . The position space is bounded between –50 and 50.
In this case the shape of the probability distribution arises
from the interplay of the coin operator and the bounded
nature of the position space, and the spread cannot be simply
characterized as a function of θ , as it was for unbounded walk.

In general, after t steps in the evolution, the overall state of
the particle will be of the form

|#t ⟩ = (Sx Cθ )t |#in⟩ =
∑

x

(Ax,t |↑⟩ + Bx,t |↓⟩) ⊗ |x⟩, (5)

where Ax,t and Bx,t are the amplitudes of the states |↑⟩ and |↓⟩
at position x at time t , respectively. The A and B coefficients
are in turn linked by the iterative relations

(
Ax,t
Bx,t

)
=

(
cos θ −i sin θ

0 0

)(
Ax+1,t−1
Bx+1,t

)

+
(

0 0
−i sin θ cos θ

)(
Ax−1,t−1
Bx−1,t−1

)
(6)

for both unbounded and bounded discrete-time quantum walk
(when the walker is away from the boundary). Therefore, the
probability of finding the particle at position x and at time t is
given by

P(x, t ) = |Ax,t |2 + |Bx,t |2. (7)
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FIG. 1. Probability distribution of unbounded DTQW in one
dimension after 200 time steps for different values of θ . The insets
show the corresponding distributions for a DTQW bounded in the
region [−50, 50]. In both cases the initial state of the system has
been set to 1√

2
(|↑⟩ + |↓⟩) ⊗ |x = 0⟩ ≡ |+⟩ ⊗ |0⟩.

III. QUANTUM ESTIMATION IN DISCRETE-TIME
QUANTUM WALK

The Fisher information provides a measure of the amount
of information that the observable X carries about a parameter
ξ , usually a quantity of interest, influencing its probability
distribution p(x|ξ ) [57]. In more detail, the Fisher information
F (ξ ) of a conditional distribution p(x|ξ ) is given by

F (ξ ) =
∫

dx p(x|ξ )
[
∂ ln p(x|ξ )

∂ξ

]2

, (8)

where, as mentioned above, p(x|ξ ) is the probability of ob-
taining the outcome x from the measurement of X when
the true value of the parameter is ξ . If the available data
for the observable X are coming from M repeated indepen-
dent measurements of X , i.e., x = (x1, x2, . . . , xM ), then the
overall probability of the sample (the likelihood) is p(x|ξ ) =

(M
k=1 p(xk|ξ ), which depends upon the parameter ξ to be

estimated. An estimator ξ̂ (x) is a function of the data sample,
which provides an estimate of the value of the parameter
ξ . Since data fluctuate, the value of the estimator fluctuates
as well. The variance Varξ ξ̂ of ξ̂ provides a measure of
the precision of the overall estimation procedure (i.e., the
measurement of X followed by the data processing ξ̂ ). The
Cramer-Rao theorem states that the Fisher information poses
a bound of the variance of ξ̂ :

Varξ ξ̂ ! 1
MF (ξ )

. (9)

The larger the value of F (ξ ), the greater the amount of infor-
mation about ξ that may be, in principle, extracted from the
measurement of X . The actual information on ξ obtained from
measuring X instead depends on the estimator. An estimator
saturating the Cramer-Rao bound of Eq. (9) is said to be
efficient. In the following, we assume that an efficient esti-
mator is available and compare the performances of different
measurements in terms of their Fisher information.

Let us now move to quantum measurements: According
to Born’s rule the conditional distribution p(x|ξ ) may be
written as p(x|ξ ) = Tr[(x ρξ ], where (x is the probability
operator-valued measure of the measured quantity X , and the
dependence on ξ is encoded onto the preparation of the system
undergoing the measurement, i.e., the density ρξ . An upper
bound on the Fisher information of any quantum measurement
may be obtained by introducing the symmetric logarithmic
derivative (SLD) Lξ , which satisfies the relation

1
2 (Lξρξ + ρξ Lξ ) = ∂ρξ

∂ξ
. (10)

Then, since ∂ξ p(x|ξ ) = Tr[∂ξρξ(x] = Re(Tr[ρξ(xLξ ]), the
Fisher information may be rewritten in terms of Lξ and an
upper bound on Fisher information, usually referred to as
quantum Fisher information, may be found:

F (ξ ) " H (ξ ) ≡ Tr
[
ρξ L2

ξ

]
, (11)

where Lξ is given in Eq. (10). For a pure state, ρ2
ξ = ρξ and

therefore ∂ξρξ = (∂ξρξ )ρξ + ρξ (∂ξρξ ) implies Lξ = 2∂ξρξ .
Hence, encoding ρξ = |ψξ ⟩⟨ψξ |, the SLD reduces to Lξ =
2∂ξρξ .

A. The full QFI Hf (θ) in discrete-time quantum walk

The density matrix of the full (coin plus position) state
in the complete Hilbert space H = Hc ⊗ Hw at time t is
given by

ρθ = |#θ ⟩ ⟨#θ | ≡
(

|ψ↑
θ ⟩

|ψ↓
θ ⟩

)(
⟨ψ↑

θ |
⟨ψ↓

θ |

)T

(12)

where the size of the vector |ψ↑
θ ⟩ and |ψ↓

θ ⟩ is equal to the
dimension of the walker’s position Hilbert space Hw and the
dimension of ρθ is 2N where N is the dimension of Hw. This
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FIG. 2. The full QFI Hf (θ ) as a function of time for different
values of θ . The initial state of the system is |+⟩ ⊗ |0⟩. The full QFI
Hf (θ ) is the same for bounded and unbounded DTQWs.

implies that ∂θρθ may be written as

∂θρθ = |∂θ#θ ⟩ ⟨#θ | + |#θ ⟩ ⟨∂θ#θ |

=
(

|∂θψ
↑
θ ⟩

|∂θψ
↓
θ ⟩

)(
⟨ψ↑

θ |
⟨ψ↓

θ |

)T

+
(

|ψ↑
θ ⟩

|ψ↓
θ ⟩

)(
⟨∂θψ

↑
θ |

⟨∂θψ
↓
θ |

)T

(13)

and |∂θ#θ ⟩ at time t is given by

|∂θ#θ (t )⟩ = Sx Cθ |∂θ#θ (t − 1)⟩ + Sx(∂θCθ ) |#θ (t − 1)⟩
(14)

where

∂θCθ =
(

− sin θ −i cos θ
−i cos θ − sin θ

)
⊗

∑

x

|x⟩ ⟨x| . (15)

As a consequence, if at a given time t we have the ampli-
tude #x = (ψ↑

x ; ψ↓
x ) = (Ax,Bx ), then the iterative form for

|∂θ#θ (t )⟩ is given by
(

∂θAt,x

∂θBt,x

)
=

(
cos(θ ) −i sin(θ )

0 0

)(
∂θAt−1,x+1

∂θBt−1,x+1

)

+
(

0 0
−i sin θ cos θ

)(
∂θAt−1,x−1

∂θBt−1,x−1

)

+
(

− sin θ −i cos θ

0 0

)(
At−1,x+1

Bt−1,x+1

)

+
(

0 0
−i cos θ − sin θ

)(
At−1,x−1

Bt−1,x−1

)
. (16)

Upon substituting Eqs. (12) and (13) in Eq. (11) we obtain
the quantum Fisher information Hf (θ ) in the complete Hilbert
space H = Hc ⊗ Hw, i.e., the information extractable from
the full quantum state of the walker’s position plus coin
system. In Fig. 2 we show Hf (θ ) for unbounded and bounded
DTQWs after 200 time steps. The full QFI Hf (θ ) increases as
t2 with time and it is the same for bounded and unbounded
DTQWs.

B. The walker’s position space QFI Hw (θ) in
discrete-time quantum walk

The density matrix of the sole position space of the walker
is obtained by tracing out the coin degree of freedom from
Eq. (12). We have

ρw(θ ) = |ψ↑
θ ⟩ ⟨ψ↑

θ | + |ψ↓
θ ⟩ ⟨ψ↓

θ | (17)

and, in turn,

∂θρw(θ ) = |∂θψ
↑
θ ⟩ ⟨ψ↑

θ | + |ψ↑
θ ⟩ ⟨∂θψ

↑
θ |

+ |∂θψ
↓
θ ⟩ ⟨ψ↓

θ | + |ψ↓
θ ⟩ ⟨∂θψ

↓
θ | , (18)

which is equal to tracing out the coin from the derivative of
the full density matrix in complete Hilbert space; i.e., tracing
out the coin from Eq. (13),

∂θρw(θ ) = Trc[∂θρθ ]. (19)

The density matrix in position space will be in a mixed state.
In the mixed state, ρ2

w(θ ) = ρw(θ ) + ρ1(θ ), where ρ1(θ ) =
ϵ
2

∫
dθ [λρw(θ ) + ρw(θ )λ] + O(ϵ2). Here ϵ represents the

fluctuation in the measure of how mixed the density matrix
in position is and λ can be calculated by taking the partial
derivative of [ρ2

w(θ ) − ρw(θ )] with respect to θ when the
fluctuation is very small. The value of λ is [∂θρw(θ ) − 1/2]
when [∂θρw(θ ) − ρw(θ )] → 0. Therefore the SLD is Lθ =
2∂θρw(θ ) + ϵλ. This implies that

L2 = 4[∂w(θ )ρw(θ )]2+2ϵ{λ∂θρw(θ )+[∂θρw(θ )]λ} + O(ϵ2),

L2 ≈ 4[∂θρw(θ )]2 + 2{[L − 2∂θρw(θ )]∂θρw(θ )

+ ∂θρw(θ )[L − 2∂θρw(θ )]},
L2 ≈ −4[∂θρw(θ )]2 + 2[∂θρw(θ )L + L∂θρw(θ )], (20)

and therefore quantum Fisher information in the mixed state
can be given by

Hw = Tr[ρw(θ )L2]

≈ −4Tr{ρw(θ )[∂θρw(θ )]2} + 2Tr{ρw(θ )

× [∂θρw(θ )L + L∂θρw(θ )]}
= 2Tr{∂θρw(θ )[Lρw(θ ) + ρw(θ )L]}

− 4Tr{ρw(θ )[∂θρw(θ )]2}
= 4Tr{[∂θρw(θ )]2[I − ρw(θ )]}. (21)

This expression for quantum Fisher information for the mixed
state is obtained with an approximation that the higher powers
of ϵ are very small and thus ignoring them.

Figure 3 illustrates the behavior of Hw(θ ) as a function
of time for different values of θ and for both bounded and
unbounded DTQWs. As we have seen for the full QFI Hf (θ ),
also Hw(θ ) increases as t2. For t large enough (say, t > 10),
we have Hw(θ ) = κt2, with the constant depending only on
θ , κ ≡ κ (θ ). However, some striking differences between
the two cases appear after 2a time steps, [−a, a] being the
spatial interval for bounded DTQW. Those differences may
be traced back to interference [58] and recurrence [59,60] in
the position space. In order to illustrate this phenomenon, in
Fig. 4 we show the time evolution of the so-called degree of
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FIG. 3. The walker’s position space QFI Hw (θ ) as a function of
time for different values of θ . Due to interference effects, we see clear
differences between the walker’s position space QFIs of bounded and
unbounded DTQWs. The initial state of the system in both cases is
|+⟩ ⊗ |0⟩.

interference in the position Hilbert space, i.e., the quantity

µx,t+1 = | sin θ cos θ [ρ↑↓
t (x + 1, x + 1) − ρ

↑↓
t (x − 1, x − 1)]

+ sin θ cos θ [ρ↓↑
t (x + 1, x + 1)

− ρ
↓↑
t (x − 1, x − 1)]|, (22)

defined for any site x at the time t + 1. As it is apparent
by comparing Figs. 3 and 4, the difference between Hw(θ )
of bounded and unbounded DTQWs starts to appear in cor-
respondence of the time step for which also the degrees of
interference of the two cases start to differ, since the inter-
ference at a position x at time t in bounded walk is not only

FIG. 4. Density plot of the degree of interference µ for bounded
and unbounded DTQWs as a function of the time steps and the
position. Panels (a) and (b) describe the behavior of µ for θ =
π/8: left panel for unbounded and right panel for bounded DTQW,
respectively. Similarly, (c) and (d) correspond to the dynamics for
θ = π/4 and (e) and (f) correspond to θ = 3π/8. The bounded
walker is moving in the interval [−50, 50]. The initial state of the
walker is |+⟩ ⊗ |x = 0⟩.

FIG. 5. Ratio of quantum Fisher information in position Hilbert
space Hp to quantum Fisher information in complete Hilbert space
H = Hc ⊗ Hp for unbounded discrete-time quantum walk for 200
time steps and different values of θ . The initial state of the walker is
|+⟩ ⊗ |x = 0⟩.

due to the neighboring sites but also due to the multiple sites.
For example, in Fig. 4(b), it can be seen that for θ = π/8
the degree of interference initially spreads over the position
space with time and then starts to come back at the initial
position state. After t = 100 time steps, interference between
the reflected waves dominates, as we have seen for the QFI
Hw(θ ). A similar behavior (see Fig. 3 and the other panels of
Fig. 4) may be observed for the other values of θ .

Figure 5 shows the ratio Hw(θ )/Hf (θ ) between the QFI of
the walker’s position space and the full QFI. As it is apparent
from the plot, after an initial transient the ratio saturates to
a constant value. More explicitly, this means that performing
measurements involving the sole position degree of freedom
of DTQW provides a considerable information about the
coin parameter [quantified by Hw(θ )], when compared to
the full information that is in principle available [quantified
by Hf (θ )]. Notice that by measurements performed on the
position degree of freedom we do not mean just position
measurement (the performances of which are investigated in
the next subsection) but rather any possible measurement on
the walker’s position Hilbert space.

Figure 6 shows the walker QFI Hw(θ ) as a function of θ ,
for different, fixed, numbers of time steps for both unbounded
and bounded DTQWs. It shows that Hw(θ ) increases with θ

FIG. 6. The walker’s position space QFI Hw (θ ) as a function of
θ evaluated after a different number of time steps. The differences
between the QFI Hw (θ ) of unbounded and bounded DTQWs is again
due to interference effects in bounded DTQW. The initial state of the
walker is |+⟩ ⊗ |x = 0⟩.
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FIG. 7. QFI in position space (Hw) as a function of time steps
and θ for DTQW. The initial state of the walker is |+⟩ ⊗ |x = 0⟩.

initially and than slowly decreases up to θ = π/2. For θ rang-
ing from θ = π/2 to θ = π the behavior is mirrored, because
of the symmetry of the quantum coin operation between. As
it may be seen from the plots the behaviors of the QFI for
unbounded and bounded DTQWs are very similar, except for
a few more oscillations seen in the bounded case. In other
words, the boundless DTQW is not particularly detrimental
for its use as a probe for the coin parameter. Figure 7 shows
QFI in position space Hw of DTQW in one dimension for the
estimation of the coin parameter as a function of time step,
and coin parameter θ is shown. This shows that for every coin
parameter the QFI in position space increases with time step
and therefore probability distribution measurement in position
space after a larger time step will give a better estimation of
coin parameter θ .

C. The FI of the walker’s position measurement in
discrete-time quantum walk

We now turn our attention to the performance of a spe-
cific measurement, perhaps the most natural one, i.e., the
measurement on the position of the walker. The conditional
probability of finding the walker at position x at time t ,
given that the value of the coin parameter is θ , is given by
p(x|θ ) = Tr[(xρw(θ )] where {(x} = {|x⟩⟨x|} is the set of
position projection operators and ρw(θ ) is the density matrix
of the walker, i.e., the statistical operator of Eq. (17). In other
words, the position distribution of the walker is given by the
diagonal elements of the density matrix ρw(θ ) in the position
representation.

Since ρw(θ ) is carrying information on θ at any time,
measuring the position provides information about the value
of θ . In order to quantify this information, i.e., to quantify
how much information about θ may be obtained by looking at
the walker’s probability distribution, one has to evaluate the
position Fisher information using Eq. (8), i.e.,

Fx(θ ) =
∑

x

[∂θ p(x|θ )]2

p(x|θ )
. (23)

FIG. 8. The Fisher information Fx (θ ) (left panels) and Fxl (θ )
(right panels) as a function of time for unbounded DTQW and
different values of θ . The initial state of the walker is |+⟩ ⊗ |x = 0⟩.
Both sets of plots are for unbounded DTQW with Fx (θ ) referring to
the information extractable by a full position measurement, whereas
Fxl (θ ) quantifies the information that may be gained by measure-
ments with limited access to the position of the walker (see text for
details). The insets of the right panels are legends for the region S,
accessible by the measurement.

According to the quantum Cramer-Rao bound we have
Fx(θ ) " Hw(θ ), and, thus, besides the absolute value of Fx(θ ),
we are interested in investigating how far Fx(θ ) is from
its bound Hw(θ ); i.e., we want to compare the information
extracted from position measurement to the maximum infor-
mation available measuring the sole walker.

The behavior of Fx(θ ) as a function of time is illustrated
in the left panels of Fig. 8 for different values of θ . The FI
Fx(θ ) oscillates in time, with the envelope increasing as t2,
i.e., Fx(θ ) shows the same scaling as Hw(θ ) and Hf (θ ). The
right panels illustrate instead the behavior of Fxl (θ ), which is
the Fisher information of limited position measurement, i.e.,
measurement performed with detectors not able to access (i.e.,
to look at) all the possible walker’s sites, but rather only to a
subset S, even though the DTQW is defined on an unbounded
position space. According to Eq. (8) we have

Fxl (θ ) =
∑

x∈S

[∂θ p(x|θ )]2

p(x|θ )
, (24)

where the position distribution is still given by p(x|θ ) =
Tr[(xρw(θ )], however with x ∈ S. In the right panels of Fig. 8
we show the behavior of Fxl (θ ) as a function of time for
different values of θ and S. The overall message is that for
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FIG. 9. The ratio Fx (θ )/Hf (θ ) between the position Fisher information and the full quantum Fisher information as a function of time
and for different values of θ . The insets show the ratio Fx (θ )/Hw (θ ) between the position Fisher information and the walker’s position space
quantum Fisher information. All the plots refer to unbounded DTQW. The initial state of the walker is |+⟩ ⊗ |x = 0⟩.

short time, when the walker has negligible amplitude to be
outside S, there are little differences between Fx(θ ) and Fxl (θ ),
whereas for a number of time steps of the order of |S| the
walker is walking beyond S and striking differences start to
appear. In particular, since in this case the measurement is not
recording the full position information, the FI Fxl (θ ) starts to
decreases with time.

In order to assess the overall performances of position
measurements we consider the two ratios Fx(θ )/Hf (θ ) and
Fx(θ )/Hw(θ ) between the Fisher information of position mea-
surement and the full QFI or the walker QFI, respectively. In
Fig. 9 we show both the ratios as a function of time and for
different values of the coin parameter θ .

D. QFI in split-step quantum walk

Split-step quantum walk is a special form of discrete-time
quantum walk where a single step is split into two half steps
using two coin operators Cθ1 and Cθ2 and two shift operators
S− and S+. Split-step quantum walk has been used to simulate
topological insulators [61–63], Dirac cellular automata [64],
and Majorana modes and edge states [65] where the two coin
operations play an important role. It has also been mapped

FIG. 10. The standard deviation for split-step quantum walk as
function of θ1 for different values of θ2 after 100 steps of walk.
Standard deviation is always bounded by the larger θ parameter.
Therefore it only gives information of the evolution parameter with
the higher value. The initial state of the walker is |+⟩ ⊗ |x = 0⟩.

to two period standard discrete-time quantum walks [65,66].
The evolution operator for split-step quantum walk is given by
U = S+Cθ2 S−Cθ1 where

S+ =
∑

x

(|↑⟩ ⟨↑| ⊗ |x⟩ ⟨x| + |↓⟩ ⟨↓| ⊗ |x + 1⟩ ⟨x|), (25)

S− =
∑

x

(|↑⟩ ⟨↑| ⊗ |x − 1⟩ ⟨x| + |↓⟩ ⟨↓| ⊗ |x⟩ ⟨x|), (26)

and the coin operator is given by

Cθ j =
(

cos θ j −i sin θ j
−i sin θ j cos θ j

)
⊗

∑

x

|x⟩ ⟨x| , (27)

where j = 1, 2.
Estimation of both the parameters θ1 and θ2 using standard

deviation is not possible, as has already been studied in the
past [66]. In Fig. 10 we show the standard deviation of
unbounded split-step quantum walk after 100 steps of walk
as a function of θ1 when θ2 is fixed. We can note that the
standard deviation is always bounded by the larger of the
two parameters θ1 and θ2. But using the quantum Fisher
information for both the parameters individually in position
space, each of the parameters can be estimated. It can be
seen in Fig. 11 that QFI in position space with respect to
θ2 for different values of θ1 shows that Hw(θ2) is minimum
for θ2 = θ1 and QFI in position space with respect to θ1 for
different values θ2 shows that Hw(θ1) is maximum for θ2 = θ1.
Since QFI in position space is a measure of how precisely
one can estimate the evolution parameters on measurement of
probability distribution in position space, Fig. 11 shows that,
given the value of parameter θ1, θ2 can be estimated more
precisely when θ2 ̸= θ1 as Hw(θ2) is minimum when θ2 = θ1.
Similarly Hw(θ1) shows that the amount of information of θ1
is maximum when θ1 = θ2 on measurement of the probability
distribution. This estimation is not possible by just measuring
the standard deviation in the split-step quantum walk.

IV. CONCLUSION

In this paper, we have investigated probing techniques for
the coin parameter θ of discrete-time quantum walk, which, in
turn, plays a crucial role in providing quadratic speed-up over
its classical counterpart. In particular, we have addressed the
ultimate bounds to precision, as obtained by performing the
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FIG. 11. Quantum Fisher information in position space with respect to the evolution parameters θ2 (left) and θ1 (right) when other
parameters are fixed. Having clearly distinct plots for both parameters after 100 time steps helps us to uniquely probe both parameters
independently. The initial state of the walker is |+⟩ ⊗ |x = 0⟩.

optimal measurement on the particle. Our approach is based
on the fact that the walker’s coin space entangles with the
position space after the very first step of the evolution, such
that we may estimate the value of the coin parameter θ by
performing measurements on the sole position space of the
walker.

We have found that the QFI of the walker’s position space
Hw(θ ) increases with θ and with time, which, in turn, may
be seen as a metrological resource. We also find a differ-
ence in the QFI of bounded and unbounded DTQWs and
provide an interpretation of the different behaviors in terms
of interference in the position space. We have also compared
Hw(θ ) to the full QFI Hf (θ ), i.e., the QFI of the walker’s
position plus coin state, and find that their ratio is dependent
on θ , but saturates to a constant value, meaning that the
walker may probe its coin parameter quite faithfully. Finally,
we have found that if one has access to a limited region in
position space the QFI depends only on the sites with nonzero
probability of finding a particle. Therefore, when one has

access to an incomplete position space, after some steps (equal
to half of the number of accessible sites) we see a decrease of
QFI.

Though standard deviation and group velocity help us to
estimate one-parameter QW, they fail to provide a reasonable
estimation in the case of bounded QW and two-parameter
split-step QW. We can overcome this using QFI. Our results
show that estimation of the coin parameter in DTQW is
possible with realistic detection schemes and pave the way
for further developments in the field of quantum probing for
complex networks.
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