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Squeezing as a resource to counteract phase diffusion in optical phase estimation
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We address a phase estimation scheme using Gaussian states in the presence of non-Gaussian phase noise.
At variance with previous analysis, we analyze situations in which the noise occurs before encoding phase
information. In particular, we study how squeezing may be profitably used before or after phase diffusion.
Our results show that squeezing the probe after the noise greatly enhances the sensitivity of the estimation
scheme, as witnessed by the increase of the quantum Fisher information. We then consider a realistic setup in
which homodyne detection is employed at the measurement stage, and we address its optimality as well as its
performance in the two different scenarios.
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I. INTRODUCTION

The problem of estimating a parameter, when a direct
measurement of it is not feasible, is of crucial importance,
in particular in quantum mechanics where not all the physical
parameters correspond to observables. In this respect, the esti-
mation of an optical phase has been extensively studied in the
literature, and both theoretical attempts to define a Hermitian
operator [1–3] and practical methods to estimate an optical
phase [4–10] have been proposed, mostly involving optical
interferometry and homodyne detection [11–13]. The problem
of measuring an optical phase is particularly relevant in quan-
tum communication, due to the possibility of encoding and
transmitting information through a phase shift on a quantum
state, with all the advantages of using a quantum state for
communication applications [14,15]. Moreover, it is also of
interest in quantum sensing, as the change in the optical phase
may also be due, for instance, to the specific properties of
biological samples [16].

In the past, different phase estimation schemes have been
analyzed, in particular using pure probe Gaussian states [17],
and the advantages of introducing the squeezing have been
highlighted. As a matter of fact, the squeezing has been shown
to provide advantages in a wide range of applications [18–24],
and introducing the squeezing in a real optical system has
been shown to be experimentally achievable with different
methods, in particular using optical parametric oscillators
(OPOs) [25], involving nonlinear interactions in crystals.

In a realistic scenario, it is sometimes fundamental to in-
clude in the phase estimation scheme a model of the most
detrimental type of noise, that is, a phase-diffusive noise. So
far, phase noise has been investigated in different systems,
ranging from qubits [26,27] to condensate systems [28,29]
to Bose-Josephson junctions [30], and most importantly in
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Gaussian optical states, which are the focus of this paper,
for both phase estimation [31,32] and quantum communica-
tion [23,33–36]. There, phase diffusion typically describes
the noise affecting the propagation of quantum light through
optical fibers [37]. However, the effects of phase noise have
been studied only at the detection stage [38–42] or when this
noise occurs between the encoding of the information and the
detection [31,32], i.e., in the transmission of the encoded state.

In a recent work [43], it was demonstrated that the squeez-
ing operation be may used to “squeeze” the phase noise
affecting an input coherent state, thus leading to possible
advantages for application in quantum estimation and com-
munication. In this paper, motivated by these results, we shall
address and characterize a phase estimation scheme in which
phase diffusion affects the generation stage of the protocol,
i.e., before the encoding of the information. To give an op-
erational interpretation of this result, and to characterize and
quantify the squeezing as a resource for this phase-estimation
problem, we shall investigate the two scenarios depicted in
Fig. 1: the one in which the phase noise occurs after the
squeezing operation and before encoding, and the other in
which the phase noise affects the “coherent seed state” before
the squeezing. To this end, we shall evaluate the ultimate lim-
its to estimation precision posed by the quantum Cramér-Rao
bound, and we shall also look for regimes where homodyne
detection is the optimal measurement. Therefore, in addi-
tion to the fundamental aspects of our research, our results
could also be relevant in a multinode communication pro-
tocol, where light is transmitted along optical fibers, and at
each node users may have to either decode or further encode
information via the optical phase.

The paper is structured as follows: In Sec. II we shall
briefly address the quantum estimation theory. In Sec. III we
then characterize all the elements of the phase estimation
scheme we consider, and we show the results of a phase esti-
mation scheme using pure Gaussian states. Finally, in Sec. IV
we present the results of the extended numerical evaluation
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for the ultimate bounds to estimation precision obtained using
phase-diffuse input states and homodyne detection, summa-
rizing the conclusions in Sec. V.

II. QUANTUM ESTIMATION THEORY

Estimating a parameter is often a necessary task, since
several physical quantities cannot be directly measured. The
theory behind the estimation of a parameter is well known
and studied, and here we briefly review the main elements
we shall use throughout this work. Given a set of quantum
states ρλ, λ being the parameter we seek to estimate, we
suppose to perform a certain measurement, represented by a
positive-operator-valued measurement {�̂x}, obtaining a set
of M outcomes � = {x1, . . . , xM}, which are then processed
by means of a map φ̂(�), called an estimator, which in turn
provides us with an estimated value of the parameter λ. The
conditional probability of getting an outcome x given the
parameter λ follows from the so-called Born rule, namely

p(x|λ) = Tr[ρλ�̂x]. (1)

If the estimator is unbiased, its variance is bounded by the
quantity [44]

F (λ) =
∫

dx
1

p(x|λ)

(
∂ p(x|λ)

∂λ

)
(2)

called Fisher information (FI), via the so-called Cramér-Rao
bound, that is,

var(λ) � 1

MF (λ)
, (3)

where the factor M−1 follows from the statistical scaling.
Therefore, given a measurement, the minimum uncertainty
obtainable when estimating a parameter is related to the FI
of the probability density p(x|λ). However, one may question
whether a more strict bound, independent of the measurement
chosen, can be found: the answer is yes, and an ultimate
bound to precision is obtainable. To this end, one defines the
symmetric logarithmic derivative via the Lyapunov equation
2∂λρλ = L̂λρλ + ρλL̂λ and uses this quantity to define the
quantum Fisher information (QFI) as [44,45]

H (λ) = Tr
[
ρλL̂2

λ

]
. (4)

The QFI poses a lower bound for the variance of any estima-
tor and performing any measurement, given by the so-called
quantum Cramér-Rao bound [46–49]

var(λ) � 1

MH (λ)
. (5)

In an estimation scheme, the FI and QFI are of crucial
importance: given a measurement, the FI provides us with the
minimum variance achievable by any estimator, and the QFI
represents the ultimate quantum limit to precision, indepen-
dent from the measurement. In our work, we shall evaluate,
for the chosen estimation scheme (explained in detail below),
both the QFI and the FI relative to the commonly used homo-
dyne detection, thus determining whether such measurement
is optimal.

|α

|α Ŝ(r)

Ŝ(r)

phase noise

phase noise

Û(θ)

Û(θ)
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(b)

encoding

encoding
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FIG. 1. Sketches of the two different scenarios we shall analyze
starting always from a coherent state |α〉: (a) the squeezing Ŝ(r) is
introduced before the phase noise, and (b) the squeezing is applied
after the phase noise. It is worth stressing that, contrary to the
previous works, the phase noise occurs always before the encoding
of the information, represented by the phase shift Û (θ ).

III. SETTING THE SCENE: NOISELESS PHASE
ESTIMATION SCHEME

We consider an optical field described by the quadrature
operators X̂ = (â + â†)/

√
2 and Ŷ = i(â† − â)/

√
2, typically

dubbed amplitude and phase quadratures, respectively, and
defined in terms of the bosonic operators satisfying the com-
mutation relation [â, â†] = 1. We shall now introduce and
characterize step by step the phase estimation scheme in the
noiseless scenario, while in the following section we shall
introduce the phase-diffusive noise.

In the absence of noise in the scenarios depicted in Fig. 1,
the input Gaussian states before the encoding are just squeezed
displaced states, whose pure state reads

|ψ (r, α)〉 = Ŝ(r)D̂(α)|0〉, (6)

where Ŝ(r) = e
1
2 [r(â† )2−r∗â2] and D̂(α) = eαâ†−α∗â are the

squeezing and the displacement operators, respectively [50].
The information is now encoded through a phase shift,
achieved with the phase shift operator

Û (θ ) = e−iθ â†â. (7)

The value θ of the phase shift is the target of our estimation.
In general, if the information is encoded on a pure probe
state |ψ0〉 through a unitary operator Û (θ ) = eiθĜ, Ĝ being the
generator of the unitary group, a simple analytical expression
of the QFI can be found, that is [44],

H = 4�2Ĝ, (8)

where �2Ĝ = 〈ψ0|Ĝ2|ψ0〉 − 〈ψ0|Ĝ|ψ0〉2. It is worth noting
that the QFI does not depend on the actual value of the param-
eter we seek to estimate. In our particular case, where the state
is given by Eq. (6) and the generator of the unitary evolution is
simply Ĝ = â†â, the QFI in the noiseless case explicitly reads
[17,44]

Hnl = [cosh(4r) − 1] + 4e4rα2, (9)

where, in order to maximize its value and optimize the esti-
mation precision, we assumed α, r ∈ R (this choice will be
adopted in the rest of the paper). Therefore, the QFI depends
on the coherent amplitude α and the squeezing parameter r,
but not on the value of the phase shift θ . In particular, we are
interested in determining whether the squeezing can have a
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FIG. 2. Logarithmic plot of the QFI as a function of the squeez-
ing parameter r for different values of α: in green (bottom line)
α = 2, in blue (middle line) α = 4, and in red (top line) α = 6 (phase
diffusion is fixed at σ 2 = 0.01). Two regimes can be identified in
the plot: for positive values of the squeezing parameter, the second
term of Eq. (9) dominates, thus leading to an exponential rise and
to a dependance on the coherent amplitude. On the other hand, for
negative values of r, the second term of Eq. (9) decays, and only the
first term remains, leading to a similar exponential rise, independent
of the value of α.

meaningful impact of the phase estimation. In Fig. 2 we plot
the QFI as a function of r for different values of the coherent
amplitude. For our purposes, the results are remarkable: a
sensible improvement compared to the state with r = 0 is
indeed achieved with the introduction of a sufficiently high
squeezing, both for positive and negative values of the squeez-
ing parameter. However, as we choose α ∈ R, corresponding
to a displaced vacuum state with a nonzero average value of
the X̂ quadrature, at fixed squeezing strength |r|, it is optimal
to choose positive values [17].

The final step to properly characterize our phase estimation
scheme is the choice of the measurement. A natural choice
in the presence of continuous-variable states is the so-called
homodyne detection, mathematically corresponding to pro-
jection on the eigenstates of either the amplitude or phase
quadrature operators, or in general of any quadrature operator
obtained by applying a phase-rotation. For pure Gaussian
states such as the one in Eq. (6), the homodyne probability
distribution can be easily obtained from the vector of quadra-
ture first moments and the corresponding covariance matrix
[51–53]. In particular, if we focus on the estimation of an
infinitesimally small phase θ ≈ 0 (see Sec. IV B for further
details concerning this choice), one finds that the optimal
quadrature to be measured is Ŷ , since α, r ∈ R [17]. In the
noiseless case, we are able to evaluate an analytical expression
for the FI in Eq. (2), which, for our choice of estimated phase,
reads

Fnl = 4e4rα2. (10)

We see that in the noiseless case this measure is indeed ap-
proximately optimal, that is, the FI is approximately equal to
the QFI for the relevant range of parameters investigated. In
fact, for positive values of the squeezing parameter, the first
term of Eq. (9) is negligible compared to the second term,
thus allowing us to write Hnl ≈ 4e4rα2 = Fnl.

IV. PHASE ESTIMATION IN THE PRESENCE
OF PHASE NOISE

The scheme proposed so far shows the possibility of im-
proving phase estimation thorough squeezing (if, of course,
we choose r > 0). In real experimental setups, however, many
detrimental and uncontrollable sources of noise are always
present and must be taken into account. In particular, we
shall consider the most detrimental source of noise for a
phase estimation scheme, that is, a phase-diffusive noise. The
phase-diffusive noise is modeled as a random phase shift, with
Gaussian distribution applied to the state.

Let us consider a quantum state ρ affected by phase noise.
Here we assume that the evolution is described by the mas-
ter equation ρ̇ = L[â†â], where L[A]ρ = 2AρA† − A†Aρ −
ρA†A,  being the phase damping rate. Therefore, the evolved
state can be written as [31]

Eσ (ρ) =
∫
R

dψ
e− ψ2

2σ2

√
2π σ 2

Û (ψ )ρÛ †(ψ ), (11)

where Û (ψ ) is the phase shift operator in Eq. (7) and σ 2 =
2(t )2 is the phase noise strength, t being the evolution time.
As we said, the difference from the previous works consists in
the fact that the phase noise is introduced in the generation of
the state, i.e., before the encoding of the information. As we
mentioned in the Introduction, since the squeezing operator
and the phase noise do not commute, the presence of the
phase noise in our scheme opens up the two different scenarios
that we presented in Fig. 1: the first scenario, shown in (a),
corresponds to the introduction of the squeezing operation
before the phase noise, and thus to a family of input quantum
states,

ρ(a) = Eσ [|ψ (r, α)〉〈ψ (r, α)|], (12)

where ρ(r, α) represents the pure input states considered in
Eq. (6). In the second scenario shown in Fig. 1(b), the squeez-
ing occurs after the phase noise, and thus it corresponds to a
family of input states,

ρ(b) = Ŝ(r)Eσ (|α〉〈α|)Ŝ†(r). (13)

This scenario is, in principle, more interesting from a practical
point of view, since it could be a suitable model to describe a
real laser output, whose phase varies in time [43].

For both scenarios, a numerical evaluation of the QFI and
the FI is needed to fully characterize the estimation scheme. It
is moreover worth noting that in both cases, the introduction
of the phase noise renders the state nonpure and non-Gaussian
(in fact, a Gaussian mixture of Gaussian states). Therefore, for
the QFI an analytical expression is not accessible anymore,
thus compelling us to use approximate numerical methods.
The method we shall use is based on a particular expression
that shows the relationship between the QFI and the Bures
distance (and consequently with the fidelity between quantum
states) [54,55]:

H (λ) = 8 lim
δλ→0

1 − F (ρλ, ρλ+δλ)

(δλ)2
, (14)

where δλ is an infinitesimal variation of the parameter λ,
while F (ρ, τ ) = Tr[

√√
ρτ

√
ρ] represents the quantum fi-

delity between two states ρ and τ . This form of the QFI can
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FIG. 3. Plots of the QFI (solid lines) and FI corresponding to
homodyne detection (dashed lines) for scenario (a) in the top panels
and for scenario (b) in the bottom panels. QFI and FI are plotted as
a function of the coherent state amplitude α (with σ 2 = 0.1) and of
the dephasing noise σ (with α = 4), respectively, in the left and right
panels, for different values of r: green (bottom lines), r = 0; blue
(middle lines), r = 0.5; red (top lines), r = 1.

be used to evaluate numerically the QFI of a state, given its
density matrix, also when an analytic form is not available,
by choosing an appropriately small value of δλ. Of course,
writing the exact density matrix for an infinite-dimensional
full-rank state such as the ones in Eq. (6) is not possible, but
an approximate density matrix can be addressed by writing
the expressions of the field operators â and â† in the Fock
basis and truncating the Hilbert space at a sufficiently large
dimension Nt . For the range of parameters considered in this
paper, we verified that the choices δθ = 0.005 and Nt = 600
led to consistent results.

A. Comparison of ultimate limits for the two scenarios

In the following, we shall denote with H(a) and H(b) the
QFI for the two families of input states, namely ρ(a) and ρ(b),
respectively, at fixed values of the different parameters r, α,
and σ . In the different panels of Fig. 3 we plot separately
their behavior as a function of either the coherent state ampli-
tude α or the phase noise σ for different values of (positive)
squeezing r. As we expected, in both cases we observe that
the QFIs increase monotonically with α and |r| and decrease
monotonically with σ .

However, we observe that in the scenario (a) in Fig. 1,
where the squeezing is introduced before the phase noise,
no relevant advantage can be obtained by the introduction of
the squeezing, apart from low α and low noise regimes. In
fact, increasing either α or σ leads to a saturation of the QFI
independently of the value of r. This in particular allows us
to conclude that increasing the coherent amplitude is a more
feasible and experimentally achievable method to improve the
phase estimation. The results for the scenario (b) in Fig. 1 are
remarkably different: by applying squeezing after the phase
noise, one in fact obtains much higher values of QFI, and
more importantly this enhancement is maintained also when
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FIG. 4. Ratios between QFIs ζH (solid lines) and FIs ζF (dashed
lines) corresponding to the two different scenarios as a function of α

with fixed σ 2 = 0.1 (left panel), and as a function of σ with α = 4
(right panel), for different values of the squeezing parameter r: blue
lines (bottom), r = 0.5; red lines (top), r = 1.

one increases the coherent state amplitude α or the noise
parameter σ .

To better quantify and visualize this enhancement, we have
plotted in Fig. 4 the behavior of the ratio between the QFIs
corresponding to the two scenarios

ζH = H(a)

H(b)
, (15)

as before, as a function of both the coherent state amplitude
α and the noise σ , for different values of r. We observe that
the ratio is always larger than 1, implying that the scenario
(b) is always more favorable, and more importantly it is also
monotonically increasing, saturating toward a fixed value by
increasing both α and σ .

To better understand the results obtained, we have stud-
ied the Wigner function [56,57] of the two families of input
states for the two different scenarios. As both states ρ(a) and
ρ(b) are evidently a Gaussian mixture of Gaussian states, the
corresponding Wigner function can be easily evaluated, being
in fact a Gaussian mixtures of Gaussian Wigner functions.
We also remind the reader that the QFI, as is clear from
Eq. (14), can also be interpreted as a measure of distinguisha-
bility of states characterized by an infinitesimal variation of
the parameter to be estimated (in our case a phase rotation
in phase space). In this sense, the phase-space shape of the
Wigner function will help in the interpretation of the results
just discussed (see Fig. 5). For example, with regard to the sce-
nario (a) in Fig. 1, we observe that the phase noise, occurring
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FIG. 5. Phase-space representation of the Wigner function of
phase-diffused states for both families of input states ρ(a) (left panel)
and ρ(b) (right panel), for fixed α = 4 and σ 2 = 0.1 and different
values of the squeezing parameter r: black (left), r = 0; orange
(middle), r = 0.5; light blue (right), r = 1.
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FIG. 6. Optimality ratios for the first scenario F(a)/H(a) (left
panel) and for the second scenario F(b)/H(b) (right panel) as a function
of α, with fixed noise σ 2 = 0.1, and for different values of r: blue line
(top), r = 0.5; red line (bottom), r = 1.

after the squeezing operation, completely covers the beneficial
effects of squeezing, and the enhancement with respect to the
state with no squeezing is only due to the increase of the mean
value of the amplitude quadrature X̂ , an effect that can in fact
be achieved by simply increasing the coherent state amplitude.
On the other hand, if the squeezing operation is performed af-
ter the noise, as in the scenario (b) in Fig. 1, one may counter-
act the noise by “squeezing” the degraded state and preparing
an input state that is clearly more suitable for the purposes
of phase estimation: not only has the amplitude quadrature
X̂ been increased, but more importantly the variance of the
phase quadrature Ŷ is reduced. Remarkably, concerning this
last scenario, the possibility to reduce phase diffusion by using
an optical parametric oscillator has been recently demon-
strated in [43], thus opening the way to further experimental
investigation of this kind of communication scheme with the
coherent seed state affected by some phase noise.

B. Performance of homodyne detection

We can now discuss the performance of homodyne detec-
tion of the Ŷ quadrature in the noisy scenario by assuming that
the value of the parameter to be estimated is small, i.e., θ ≈ 0.
Of course, the latter assumption requires some prior informa-
tion on the parameter to be estimated, but this can be retrieved
by exploiting well-established adaptive estimation strategies.
Therefore, here we are dealing with local estimation theory.
Furthermore, if θ ≈ 0 we also know that the measurement of
the Ŷ quadrature yields the largest Fisher information among
the homodyne measurements of all the possible quadrature
operators.

As we mentioned above, one can easily evaluate the
Wigner functions of the quantum states ρ(a) and ρ(b), and
consequently the homodyne probability distribution p(y|θ ) is
directly obtained as the marginal of the Wigner functions. The
corresponding Fisher information, denoted as F(a) and F(b), is
plotted in Fig. 3 as dashed lines. We can immediately observe
how in the first scenario homodyne detection of the Ŷ quadra-
ture is approximately optimal for all the regimes considered,
while this is not the case for the scenario (b); in particular, for
large phase noise and large coherent amplitude, the measure-
ment becomes increasingly less optimal, thus it does not allow
us to attain the ultimate quantum limit. This behavior is better
represented in Fig. 6 where we have plotted the ratios between
FI and QFI for the two scenarios. As we can observe, the ratio

F(a)/H(a) is approximately equal to 1 for all the values of α,
while the ratio F(b)/H(b) shows a not monotonous behavior;
in particular, after having reached a maximum around 0.9, it
seems to decrease toward zero by increasing the coherent state
amplitude. This clearly leaves open the quest for an optimal
measurement in the most favorable scenario (b).

On the other hand, we can better compare the performance
of homodyne detection in the two scenarios by introducing the
ratio

ζF = F(a)

F(b)
. (16)

It is plotted as dashed lines in Fig. 4 as a function of either
α and σ for different values of r. As we expected, we find
ζF � ζH , but large values ζF 	 1 are still observed, showing
how the enhancement in the estimation precision obtained by
choosing the scenario (b) is still maintained when we restrict
ourselves to measuring the output state via homodyne detec-
tion.

Concerning the possible implementation of our estimation
scheme in a quantum optical system, one should take into
account that in both scenarios the amplitude of the coherent
state α and the squeezing parameter r are chosen real. This
implies that the phase of the squeezing operation, likely to
be implemented via an optical parametric oscillator, has to be
correctly estimated in order to lock it with the initial phase
of the coherent state and to the homodyne local oscillator. A
complete analysis of these aspects, and of their consequences
on the estimation strategy, will be addressed elsewhere.

V. DISCUSSION AND CONCLUSIONS

Summarizing, we have first considered a phase estimation
scheme using the Gaussian squeezed displaced state |ψ (α, r)〉
as a probe. This scheme has been extensively analyzed from a
theoretical point of view, and an analytic expression of the QFI
has been found. In particular, we highlighted the possibility
of using squeezing as a powerful tool to increase the QFI and
thus the maximum achievable precision. Moreover, we have
verified that in this noiseless scenario the homodyne detection
of the phase quadrature is approximately optimal, that is, its
corresponding FI is approximately equal to the QFI.

Then, to take into account possible sources of noise, a
phase-diffusive noise has been introduced in the generation of
the state. By considering a squeezing operation as the resource
for the generation of the input probe state, we are left with
two possible scenarios: in the first scenario the squeezing
operation occurs before the phase noise, whereas in the second
scenario squeezing occurs after the phase noise. In both sce-
narios, since the resulting state is non-Gaussian and nonpure,
an analytical expression of the QFI and the FI cannot be found,
and a numerical evaluation is required.

Therefore, an extended numerical evaluation of both the
QFI and the FI has been performed. In the first scenario, it has
been proven that no sensible improvement can be obtained by
the addition of the squeezing. In fact, as seen in the phase-
space representation of the state, the phase noise completely
covers the potential improving effects of the squeezing, thus
we cannot use squeezing to improve phase estimation. How-
ever, the homodyne detection of the phase quadrature still
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remains an approximately optimal measurement for all the
values of the parameters involved.

The second scenario, on the other hand, has been proven
to be more interesting, and the numerical evaluation has pro-
vided remarkable results: in fact, a sensible improvement is
always obtainable through the addition of the squeezing, and
both QFI and FI turn out to be larger than the first scenario
for all the values of the parameters involved. Once again,
these results can be interpreted by looking at the phase-space
representation of the state. The squeezing, occurring after the
phase noise, counteracts the detrimental effects and overall
improves the performance of the state in the phase estimation

scheme. While homodyne detection in this case ceases to be
the optimal measurement, particularly for larger α and larger
σ 2, the enhancement with respect to the first scenario is still
remarkable for all the values of parameters investigated.
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