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Abstract
We analyse in detail the properties of the conditional state recently obtained
by Wenger et al (2004 Phys. Rev. Lett. 92 153601) by means of inconclusive
photon subtraction (IPS) from a squeezed vacuum state S(r)|0〉. The IPS
process can be characterized by two parameters: the IPS transmissivity τ
and the photodetection quantum efficiency η. We found that the conditional
state approaches the squeezed Fock state S(r)|1〉 when τ, η → 1, i.e., in the
limit of single-photon subtraction. For nonunit IPS transmissivity and
nonunit quantum efficiency, the conditional state remains close to the target
state, i.e., shows a high fidelity, as long as the squeezing parameter is not too
large. The purity and the nonclassicality of the conditional state are also
investigated and a nonclassicality threshold on the IPS parameters is derived.

Keywords: non-Gaussian states, photon subtraction, conditional states

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Beam splitters (BSs) and avalanche photodetectors (APDs)
play a fundamental role in quantum information processing.
These key elements, among the other applications, can be used
together with conditional measurements in order to generate
non-Gaussian states from Gaussian ones [1–4] and to distil
continuous-variable entanglement [5].

In this paper we focus our attention on the output state
recently obtained experimentally by Wenger et al [6] by means
of photon subtraction from a squeezed vacuum state S(r)|0〉,
S(r) being the squeezing operator. More precisely, when a
Gaussian state, such as S(r)|0〉, is mixed with the vacuum at a
beam splitter and, then, on/off photodetection is performed
on the reflected beam, an unknown number of photons is
subtracted from the input state and the output state is no longer
Gaussian, i.e., the input state is de-Gaussified: this is due to
the fact that the positive operator valued measure (POVM)
describing the APD is non-Gaussian. Since the actual number
of detected photons cannot be resolved by the APD, in [3]
we referred to this process as inconclusive photon subtraction
(IPS). In general the IPS process can be characterized by two
parameters: the beam splitter transmissivity τ and the quantum
efficiency η of the APD. As we will see, the conditional output
state obtained by IPS on a squeezed vacuum is close to the

squeezed Fock state S(r)|1〉, which is otherwise difficult to
produce by Hamiltonian processes. For this reason, we address
IPS as an effective resource to generate these squeezed Fock
states. We find that the IPS conditional state reduces to S(r)|1〉
in the limit τ, η → 1, whereas for different values of the
transmissivity and of the quantum efficiency it remains close
to this target state, showing a high fidelity for a wide range
of the parameters. Finally, since the IPS state obtained from
the squeezed vacuum is, in general, nonclassical and mixed,
we study how the purity and the nonclassical depth of the IPS
state depend on τ , η, and the input squeezing parameter r .
Throughout the paper we will refer to S(r)|1〉 as to the target
state of IPS on S(r)|0〉.

The paper is structured as follows: in section 2 we review
the main elements of the IPS process on a single mode of
radiation. The fidelity between the IPS conditional state and
the squeezed Fock state S(z)|1〉, as well as its purity, is then
investigated in section 3, whereas section 4 is devoted to
the analysis of the nonclassicality of the IPS state. Finally,
section 5 closes the paper with some concluding remarks.

2. The inconclusive photon subtraction process

The scheme of the inconclusive photon subtraction (IPS)
process is sketched in figure 1. An input state �(in) is mixed
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Figure 1. Scheme of the IPS process: the input state �(in) is mixed
with the vacuum state �0 = |0〉〈0| at a beam splitter (BS) with
transmissivity τ ; then, avalanche photodetection (APD) with
quantum efficiency η is performed on the reflected beam. When the
detector clicks we obtain the IPS state �(out).

with the vacuum state �0 = |0〉〈0| at a beam splitter (BS) with
transmissivity τ and, then, on/off avalanche photodetection
(APD) with quantum efficiency η is performed on the reflected
beam. Since the APD can only distinguish the presence from
the absence of light, this measurement is inconclusive, namely
it does not resolve the number of the detected photons. In this
way, when the detector clicks, an unknown number of photons
is subtracted from the initial state and we obtain the IPS state
�(out). Since the whole process is characterized by τ and η, we
will also refer to them as IPS transmissivity and IPS quantum
efficiency.

If the input state of the mode a is the squeezed vacuum
state �(in)

r = |0, r〉〈0, r |, where |0, r〉 = S(r)|0〉, S(r) =
exp{ 1

2r(a†2 − a2)} being the squeezing operator (for the sake
of simplicity, without lack of generality, we can assume r
as real), its (Gaussian) characteristic function χ(in)

r (Λa) ≡
χ[�(in)

r ](Λa) reads

χ(in)
r (Λa) = exp

{− 1
2Λ

T
a σr Λa

}
(1)

where Λ = (xa, ya)
T, (· · ·)T being the transposition operation,

and

σr = 1
2

(
e2r 0
0 e−2r

)
, (2)

is the covariance matrix. Analogously, the vacuum state
�0 = |0〉〈0| of the mode b is described by the (Gaussian)
characteristic function

χ0(Λb) ≡ χ[�0](Λb) = exp
{− 1

2Λ
T
b σ0 Λb

}
, (3)

where σ0 = 1
2 1I2, 1I2 being the 2×2 identity matrix. Since the

initial two-mode state �(in)
r ⊗ �0 is Gaussian, under the action

of the BS its 4 × 4 covariance matrix

σin =
(

σr 0
0 σ0

)
(4)

transforms as follows [7, 8]

σin � σ′ ≡ ST
BS σin SBS ≡

(
A C

CT B

)
, (5)

where A, B, and C are 2 × 2 matrices and

SBS =
( √

τ 1I2
√

1 − τ 1I2

−√
1 − τ 1I2

√
τ 1I2

)

, (6)

is the symplectic transformation associated with the evolution
operator of the BS. Now, the on/off photodetector with
quantum efficiency η can be described by the POVM
{�off(η),�on(η)}, with

�off(η) =
∞∑

k=0

(1 − η)k|k〉〈k|, �on(η) = I − �off(η),

(7)
which corresponds to the characteristic functions

χ[�off(η)](Λ) ≡ χ(off)
η (Λ) = 1

η
exp

{
−1

2
ΛTσM Λ

}
, (8)

χ[�on(η)](Λ) ≡ χ(on)
η (Λ) = 2πδ(2)(Λ) − χ(off)

η (Λ), (9)

respectively, δ(2)(Λ) being the two-dimensional Dirac delta
function, and

σM = 2 − η

2η
1I2. (10)

The probability of a click in the detector is then given by [8, 9]

pon(r, τ, η) = Trab[�′
r,τ I ⊗ �on(η)] (11)

= 1

(2π)2

∫

R4
d2Λa d2Λb χ[�′

r,τ ](Λa,Λb)

× χ[I](−Λa) χ(on)
η (−Λb) (12)

= 1 −
(
η
√

Det[B + σM]
)−1

= 1 −
(√

1 + (1 − τ 2
eff) sinh2 r

)−1

, (13)

where χ[�′
r,τ ](Λa,Λb) is the two-mode characteristic function

associated with the state �′
r,τ ≡ UBS �(in)

r ⊗�0 U †
BS, χ[I](Λ) =

2πδ(2)(Λ), and τeff ≡ τeff(τ, η) = 1 − η(1 − τ). Note that
when τeff → 1, the probability (13) can be approximated at
the first order in τeff as follows:

pon(r, τ, η) = (1 − τeff) sinh2 r + o
[
(1 − τeff)

2
]

. (14)

Finally, the output state

�(out)
r,τ,η = Trb[�′

r,τ I ⊗ �on(η)]

pon(r, τ, η)
, (15)

conditioned to a click of the on/off photodetector, has the
characteristic function χ(out)

r,τ,η (Λa) ≡ χ[�(out)
r,τ,η ](Λa) [9]:

χ(out)
r,τ,η (Λa) = 1

2π pon(r, τ, η)

×
∫

R2
d2Λb χ[�′

r,τ ](Λa,Λb) χ(on)
η (−Λb) (16)

= 1

pon(r, τ, η)

{

exp

{
−1

2
ΛT

a Σ1 Λa

}

− exp
{− 1

2Λ
T
a Σ2 Λa

}

η
√

Det[B + σM]

}

, (17)

with Σ1 = A and Σ2 = A − C(B + σM)−1CT. Note
that the output state is no longer a Gaussian state, namely
its characteristic function is no longer Gaussian: for this
reason the IPS process is also referred to as a de-Gaussification
process [6].
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In general, a Gaussian state described by the characteristic
function (in Cartesian notation, namely Λ = (x, y)T)

χ(Λ) = exp
{− 1

2Λ
Tσ Λ

}
(18)

with covariance matrix

σ =
(

a c
c b

)
, (19)

can be also written in the complex notation as follows:

χ(λ) = exp
{
−A|λ|2 − Bλ2 − B∗λ∗2

}
, (20)

with
A = 1

2 (a + b), B = 1
4 (b − a + 2ic), (21)

where we introduced the complex number λ = 1√
2
(x + iy).

In this way, the characteristic function (17) can be written as
follows:

χ(out)
r,τ,η (λ) = exp

{−A1|λ|2 − B1λ
2 − B∗

1λ
∗2}

pon(r, τ, η)

− exp
{−A2|λ|2 − B2λ

2 − B∗
2λ

∗2}

pon(r, τ, η) η
√

Det[B + σM]
, (22)

where Ak and Bk refer to the covariance matrix Σk , k = 1, 2
respectively. Finally, using the definition

W [�](α) = 1

π2

∫

C

d2λχ[�](λ) exp
{
λ∗α − α∗λ

}
, (23)

which relates the Wigner function W [�](α) of a state � to
its characteristic function χ[�](λ), one can obtain the Wigner
function W (out)

r,τ,η (α) ≡ W [�(out)
r,τ,η ](α). As for the characteristic

function, to pass from the complex, W [�](α), to the Cartesian
notation, W [�](x, y), one should put α = 1√

2
(x + iy) [8]. In

figure 2(a) we report W (out)
r,τ,η (x, y) for fixed r , τ , and η: as

apparent from the plot the Wigner function is not Gaussian,
and may assume negative values [6]. In section 4 we will
investigate this effect by analysing the nonclassicality of the
conditioned state. In figure 2(b) we show the Wigner function
χ

(SqF)
z (x, y) associated with the squeezed Fock state �

(SqF)
z =

S(z)|1〉〈1|S†(z), whose characteristic function χ
(SqF)
z (λ) ≡

χ[�(SqF)
z ](λ) reads (we assume z as real)

χ(SqF)
z (λ) =

[
1 − 2

(
A0|λ|2 + B0λ

2 + B∗
0λ

∗2
)]

× exp
{
−A0|λ|2 − B0λ

2 − B∗
0λ

∗2
}

, (24)

with A0 = 2(cosh2 z + sinh2 z) and B0 = −2 cosh z sinh z.
Since the Wigner functions of the IPS squeezed vacuum
and of the squeezed number state are quite similar, one can
think of using the IPS process to produce the state �

(SqF)
r ;

motivated by this consideration, in the next section we will
analyse the fidelity between these states. Figure 3 shows
W (out)

r,τ,η (x, y) with fixed r and η and different values of the
IPS transmissivity τ ; the plots on the right of the same
figure compare the W (out)

r,τη (0, y) (solid lines) with W (SqF)
r (0, y)

(dashed line). Finally, the effect of the quantum efficiency
η on the output state is shown in figure 4, where we plot as
reference the value of the Wigner function W (out)

r,τ,η at the centre
of the complex plane as a function of the transmissivity τ and
different values of η: we can see that the main effect on the
output state is due to τ .
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Figure 2. (a) Plot of the Wigner function W (out)
r,τ,η (x, y) with r = 0.5,

τ = 0.90, and η = 0.80; (b) plot of the Wigner function
W (SqF)

z (x, y) of the state S(z)|1〉 with squeezing parameter z = 0.5.

3. Fidelity and purity

The fidelity between the pure state �
(SqF)
z and the IPS state �(out)

r,τ,η

is defined as follows:

Fτ,η(z, r) = Tr[�(SqF)
z �(out)

r,τ,η ] (25)

= 1

2π

∫

R2
d2Λχ(SqF)

z (Λ) χ(out)
r,τ,η (−Λ), (26)

= 1

pon(r, τ, η)

{
F1 − F2

η
√

Det[B + σM]

}
,

(27)

where

Fk = A2
k − A2

0 − 4(B2
k − B2

0)

[(A0 + Ak)2 − 4(B0 + Bk)2]3/2
(28)

and Ah and Bh , h = 0, 1, 2, have been introduced in
equations (24) and (22), respectively. The analytic expression
of Fτ,η(z, r) is quite cumbersome, but, on the other hand, we
can draw some interesting considerations by addressing its
expansion at the first order in the transmissivity τ when τ → 1
and η = 1, namely

Fτ,1(z, r) = 1

cosh3(r − z)

−
[

9 cosh(r + z) − 3 cosh(3r − z)

8 cosh(r − z)
− 1

4

]

(1 − τ)

+ o
[
(1 − τ)2

]
. (29)
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Figure 3. Plots of the Wigner function W (out)
r,τ,η (x, y) with r = 0.5,

η = 0.80, and different values of the BS transmissivity τ : from top
to bottom τ = 0.99, 0.9, 0.75, and 0.50. The solid lines of the plots
on the right refer to W (out)

r,τ η (0, y) whereas the dashed lines are

W (SqF)
z (0, y) of the state S(z)|1〉 with squeezing parameter z = 0.5.

Note that when τ = 0.99 the two lines overlap. y is the squeezed
coordinate.

In fact, from the expansion (29) we conclude that the maximum
of the fidelity is achieved when z = r .

In figure 5 we plot Fτ,η(r) ≡ Fτ,η(r, r) as a function of the
IPS transmissivity and for different values of r . We can see
that Fτ,η reaches its maximum when the IPS transmissivity
approaches unity, namely in the single-photon subtraction
limit [3]. Moreover, when the squeezing parameter r increases
the fidelity decreases: this is due to the increasing (unknown)
number of subtracted photons, which reduces the purity of the
IPS state itself. In figure 6 we plot the purity µτ,η(r) of the
IPS squeezed vacuum �(out)

r,τ,η , defined as follows [10]:

µτ,η(r) = Tr
[
(�(out)

r,τ,η )
2
] = π

∫

C

d2α
[
W (out)

r,τ,η (α)
]2

(30)
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Figure 4. Plots of W (out)
r,τ,η (0, 0) with (a) r = 0.5 and (b) r = 2.0 as a

function of τ and different values of η: from bottom to top η = 1.0,
0.75, 0.50, and 0.25. The value of the function is mainly affected
by τ .
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Figure 5. Plot of the fidelity Fτ,η(r) with η = 0.80 as a function of
the IPS transmissivity τ for different values of r : from top to bottom
r = 0.1, 0.3, 0.5, 0.7, 1.0, and 2.0.

= 1

2pon(r, τ, η)

{
1

√
A2

1 − 4B2
1

+
1

η2 Det[B + σM]
√
A2

1 − 4B2
1

− 4

η
√

Det[B + σM]
√

(A1 + A2)2 − 4(B1 + B2)2

}

. (31)

4. Nonclassicality of the IPS squeezed vacuum state

As a measure of nonclassicality of the IPS state �(out)
r,τ,η we

consider the nonclassical depth [11]

T = 1 − s

2
, (32)
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Figure 6. Plot of the purity µτ,η(r) of the state �(out)
r,τ,η . We set

η = 0.80.

s being the maximum s for which the generalized quasi-
probability function

Ws(α) = 1

π

∫

C

d2λχ(λ) exp

{
1

2
s + λ∗α − α∗λ

}
(33)

is a probability distribution, i.e. positive semidefinite and
nonsingular. As a matter of fact, one has T = 1 for
number states and T = 0 for coherent states. Moreover, the
nonclassical depth can be interpreted as the minimum number
of thermal photons which has to be added to a quantum state
in order to erase all the quantum features of the state [8, 11].
In the case of �(out)

r,τ,η , we have (for the sake of simplicity we do
not write explicitly the dependence on r ,τ and η in the symbol
W (out)

s (α))

W (out)
s (α) = 1

pon(r, τ, η)

{
G1(α) − G2(α)

η
√

Det[B + σM]

}
(34)

where we defined

Gk(α) =
2 exp

{
−2(2Ak − s)|α|2 + 4B∗

k α
2 + 4Bkα

∗2

(2Ak − s)2 − 16|Bk |2
}

π
√

(2Ak − s)2 − 16|Bk |2
.

(35)
At first we note that in order to have W (out)

s (α) normalizable
the following condition should be satisfied:

s � 2Ak (k = 1, 2). (36)

Furthermore, since W (out)
s (α) is a difference between two

Gaussian functions with the centre in the origin of the complex
plane, one can easily see that, in general, this function has a
minimum in α = 0 and that this minimum can be negative. For
this reason and thanks to other simple considerations about the
symmetries of W (out)

s (α) with respect to the point α = 0, we
can focus our attention on the origin of the complex plane,
obtaining this further condition for the positivity:

G1(0) − G2(0)

η
√

Det[B + σM]
� 0, (37)

which, together with the conditions (36), brings us to

s(τ, η) = 2 − η − (4 − η)τ

2 − (1 − τ)η
, (38)
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Figure 7. Plot of the nonclassical depth T (τ, η) of the IPS squeezed
vacuum state.

and, then, to the following expression for the nonclassical
depth:

T (τ, η) = 2τ

2 − (1 − τ)η
. (39)

Since T (τ, η) � 0, the conditional state is nonclassical for
any nonzero value of the IPS transmissivity and efficiency.
Note that equation (39) depends only on τ and η, whereas it is
independent of the squeezing parameter r . Notice, however,
that the nonclassical depth does not measure the extension of
the negativity region, but only the presence of negative values.
Therefore it is not surprising that equation (39) does not depend
on r . We plot T (τ, η) in figure 7. Since the usual Wigner
function is obtained when s = 0 in (33), from equation (38)
we can see that W (out)

r,τ,η (α) becomes positive semi-definite when
τ = (2 − η)/(4 − η).

5. Concluding remarks

We have analysed in detail the state obtained by subtracting
photons from the squeezed vacuum by means of linear optics,
namely using beam splitters and avalanche photodetectors.
We referred to the whole photon-subtraction process as
inconclusive photon subtraction (IPS), since avalanche
photodetectors are not able to resolve the number of detected
photons. We found that the IPS conditional state obtained
from a squeezed vacuum state is close to the squeezed Fock
state S(r)|1〉 and approaches this target state when only one
photon is subtracted, namely, using a high-transmissivity beam
splitter for the IPS. Moreover, when the transmissivity and
the quantum efficiency are not unity, the output state remains
close to the target state, showing a high fidelity as long as
the squeezing parameter is not too large. The purity and
the nonclassicality of the IPS squeezed vacuum state have
also been considered: we found that the relevant parameter
is the transmissivity τ , while the IPS efficiency η only slightly
affects the output state. We conclude that IPS, which was
recently experimentally implemented [6], can be effectively
used to produce a nonclassical state such as the squeezed
Fock state S(r)|1〉, whose generation would otherwise be quite
challenging.
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