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A continuous-time quantum walk (CTQW) is sedentary if 
the return probability in the starting vertex is close to one 
at all times. Recent results imply that, when starting from 
a maximal degree vertex, the CTQW dynamics generated by 
the Laplacian and adjacency matrices are typically sedentary. 
In this paper, we show that the addition of appropriate 
complex phases to the edges of the graph, defining a 
chiral CTQW, can cure sedentarity and lead to swift chiral 
quantum walks of the adjacency type, which bring the return 
probability to zero in the shortest time possible. We also 
provide a no-go theorem for swift chiral CTQWs of the 
Laplacian type. Our results provide one of the first, general 
characterization of tasks that can and cannot be achieved 
with chiral CTQWs.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the physical modelling of quantum discrete structures, the notion of continuous-
time quantum walks (CTQWs) is widely adopted as a convenient mathematical construct 
[1–7]. Their applications range from quantum computation [8] and quantum search [9,10]
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to the study of perfect state transfer [11–14] and quantum transport [15–28]. Let G =
(V, E) be a simple, connected, unweighted and undirected graph with vertex set V and 
edge set E . Let |V| = N be the order of G and A its adjacency matrix, once a numbering 
of the vertices has been assigned, i.e. Ajk = 1 if vertices j and k are connected, while all 
the other entries (including the diagonal ones) are null. We will denote by L = D − A
the Laplacian of G, where D is the diagonal matrix encoding the (positive) degrees of 
the vertices of G [29,30]. In its simplest form, a quantum walk on G is described by a 
Hilbert space isomorphic to CN with a reference basis formed by vectors ev that are 
the characteristic vectors of the vertices of G (the vertex basis), and by a one-parameter 
subgroup of the unitary group on CN generated by either A or L [31] and effecting the 
time evolution of the vectors in the Hilbert space. More concretely, given an initial vector 
ψ0 = ψ(0), its evolution will be governed by the Schrödinger equation [32]:

i
d

dt
ψ(t) = H ψ(t) (1)

where H can be A or L, and whose solution is simply:

ψ(t) = e−iHtψ0 (2)

Recently, more generic hermitian generators, still reflecting the connectivity of G, have 
been considered [33–36]. Specifically, a chiral adjacency matrix Ã on G is an N × N

hermitian matrix such that Ajk = 1 =⇒ Ãjk = eiθjk with θjk ∈ [0, 2π) and Ajk =
0 =⇒ Ãjk = 0 (θjk = −θkj is required by the hermiticity condition). In other words, a 
generic chiral adjacency matrix Ã is obtained by replacing each nonzero entry of A with 
a generic complex phase and enforcing that the resulting matrix is hermitian. A chiral 
Laplacian on G is an hermitian matrix L̃ = D − Ã where Ã is a chiral adjacency matrix. 
Finally, a chiral Hamiltonian on G is an hermitian matrix of the form H = D̃+ Ã where 
D̃ is a generic, real diagonal matrix and Ã again a chiral adjacency matrix. We will say 
that a chiral quantum walk is of the adjacency type (resp. of the Laplacian type) if it 
is generated by a chiral adjacency matrix (resp. a chiral Laplacian). Among others, the 
typically relevant quantities for these systems are transport probabilities between two 
vertices j and k, defined by:

pHj→k(t) = |e†ke−itHej |2 (3)

where now H can be a generic chiral Hamiltonian on the graph and | ·| is the modulus of a 
complex number. Given a vertex v ∈ G and a numbering of the vertices, its characteristic 
vector ev is the vector in the canonical basis of CN whose only nonzero entry is in 
correspondence to the number associated with v.
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1.1. Sedentarity in Laplacian and adjacency continuous-time quantum walks

To set the stage for our results, it is useful to introduce some nomenclature for graphs 
with maximally connected vertices: a cone on a graph G′ is a graph G obtained by adding 
a vertex v to the vertex set of G′ and connecting it to every vertex in G′. Recently, a 
number of results for both Laplacian and adjacency type CTQWs [37,38] indicate that 
the evolution starting from maximally connected vertices can be plagued by a sedentary 
behaviour, meaning that the return probability to the initial vertex stays close to 1 at all 
times if its degree is sufficiently large. The maximally connected vertex v will be called 
the apex of the cone. For Laplacian quantum walks this is always the case, since their 
evolution from a maximally connected vertex in any graph with N + 1 vertices is the 
same as the one from the centre (labelled by 1) of an N -pointed star graph, whose return 
probability is [39]:

pL1→1(t) = 1 − 2 N − 2
(N − 1)2 [1 − cos(Nt)] (4)

and it is clearly sedentary, since pL1→1(t) → 1 ∀t ∈ R as N → +∞. This general result 
was proved in [38].

Concerning adjacency CTQWs, instead, the situation is currently less clear. The dy-
namics starting from the central vertex of the N -pointed star graph in this case is not 
sedentary, nor it is the one which starts from the centre of the wheel graph. Moreover, 
each adjacency CTQW starting from a maximally connected vertex could yield a dif-
ferent evolution, depending upon the connectivity of the remaining vertices. However, 
it was shown in [37] that adjacency quantum walks from the apex of cones over several 
infinite families of graphs are sedentary. Importantly, this is the case when the cone is 
over m-regular graphs with N vertices and the degree m grows faster than linearly with 
N .

In this paper, we show that the addition of appropriate complex phases to the edges 
of several graphs eliminates sedentarity and allows one to obtain swift chiral quantum 
walks of the adjacency type, where the returning probability goes to zero in the shortest 
time possible. We also provide a no-go theorem for swift chiral CTQWs of the Laplacian 
type. Overall, our results provide one of the first, general characterization of tasks that 
can and cannot be achieved with chiral CTQWs and they hint at several challenging 
graph-theoretical questions concerning the existence of swift phases configurations.

2. Results for adjacency quantum walks

Let us consider a quantum walk starting at the apex of a cone graph G over an m-
regular graph of N vertices, whose state vector will be labelled e1. Since this vertex is 
maximally connected, the adjacency matrix A of the full graph will have the following 
structure:
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A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 . . .

1
1
1 A′

...

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

where A′ is the adjacency matrix of the m-regular graph G′. Since each vertex has exactly 
m neighbours, calling 1N the vectors of all ones in the subspace of G′ we have:

A′1N = m1N (6)

But notice that A maps e1 to the vector e′ = (0, 1, 1, · · · )T which coincides with 1N on 
A′ and is orthogonal to e1. Moreover, it is clear from Eq. (6) that:

Ae′ = Ne1 + me′ (7)

Therefore, calling eE = 1√
N
e′ the normalized associated with e′, A reduces to a simple 

2 × 2 block in the space spanned by {e1, eE} [40]:

Ared =
(

0
√
N√

N m

)
(8)

This is easily diagonalized, and the resulting return probability starting from e1 is given 
by:

pA1→1(t) = 1 − 2N
m2 + 4N

[
1 − cos(

√
m2 + 4Nt)

]
(9)

whereas, with probability 1 − pA1→1(t) the walker will be in the state eE orthogonal to 
e1, from which all the other site-to-site transition probabilities follow.

Eq. (9) can be regarded as a partial result on the adjacency version of the general 
theorem (4) for Laplacian quantum walks. It states that the dynamics starting from 
the apex of a cone over any m-regular graph is fully specified by m and the number of 
vertices of the underlying graph N (notice that the full graph has N+1 vertices instead). 
If we define a family of regular graphs such that the degree scales as m ∼ O(N 1

2+α) with 
α > 0, it follows that pA1→1 stays very close to 1 at all times, for large enough N . This 
construction leads to a result originally presented in [37].

3. Swift chiral quantum walks

Now suppose that we can attach complex phases to the edges of the m-regular graph 
G′ such that the resulting chiral adjacency matrix Ã, which would substitute A′ in 
Eq. (5), fulfils the following condition:
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Ã1N = 0 (10)

that is to say, the phases conjure in such a way that the sum of each row of Ã is zero. 
Retracing the steps to arrive at Eq. (9), we find the following reduced Hamiltonian for 
the chiral QW on the cone in the subspace spanned by {e1, eE}:

Hred =
(

0
√
N√

N 0

)
(11)

from which the return probability to the starting, maximally connected vertex is calcu-
lated to be:

pÃ1→1(t) = cos2(
√
Nt) (12)

Notice that this is the same return probability that would result from the adjacency 
quantum walk starting from the centre of an N -pointed star graph, which cannot support 
chiral quantum walks since it is a tree graph. This equation motivates the following 
definition:

Definition 1. Let G = (V, E) be a simple, connected and undirected graph, let v ∈ V be 
a vertex of G and denote by N the cardinality of the set of neighbours of v in G. Given 
a chiral Hamiltonian H on G, it is said to generate a swift chiral quantum walk starting 
from v in G if:

∀t ≥ 0 : |e†ve−iHtev|2 = cos2
(√

Nt
)

(13)

Therefore, whenever it is possible to attach phases to the edges such that Eq. (10) is 
fulfilled, we obtain a similar result to the one which is valid for the Laplacian quantum 
walks, in the sense that all the adjacency-type swift chiral quantum walks starting from 
a maximally connected vertex have the same dynamics as that of the adjacency quantum 
walk on the star graph. Notice, however, that Laplacian quantum walks tend to stay on 
the initial vertex, if this has maximal degree, whereas swift quantum walks abandon it 
fast. In the following, we will formalize this observation and the nomenclature of swift 
chiral quantum walks with rigorous and general results.

Remark. If G′ has a vertex of degree 1, then Eq. (10) cannot be fulfilled by any assignment 
of phases on its edges.

Theorem 1. Let G be a graph and let v be a vertex of G with degree N . Out of all the 
chiral quantum walks starting from v in G (with generic diagonal entries of the chiral 
Hamiltonian), a swift chiral quantum walk, when it exists, is the fastest at leaving v, in 
the sense that it evolves to a state orthogonal to v in a time τs = π

2
√
N

which achieves 
the shortest quantum speed limit among all chiral evolutions starting from v on G.
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Proof. The speed limit to completely leave v is the speed limit to go to a generic state 
orthogonal to ev. The generic formula of the quantum speed limit for orthogonal final 
state is [41–44]:

τQSL := max
{

π

2ΔH ,
π

2(〈H〉 −E0)

}
(14)

where ΔH =
√

〈H2〉 − 〈H〉2 is the standard deviation of energy on the orbit of ev, 
〈H〉 = e†vHev its average energy and E0 is the ground state’s energy. Notice that the 
quantum speed limit is defined for a fixed Hamiltonian, and we are looking for the 
smallest quantum speed limit over all chiral Hamiltonians on G.

But for any localized state |v〉 with degree N and any chiral Hamiltonian H on G, it 
is always true that ΔH =

√
N . Indeed, let e†vHev = d, then e†vH2ev = h†

vhv = d2 + N

where hv is the v-th row of H, whose v-th entry is d and all the other non-zero entries 
are precisely N complex phases. Therefore we can rewrite:

τQSL := max
{

π

2
√
N

,
π

2(−E0)

}
= max

{
τs ,

π

2(−E0)

}
(15)

To conclude the proof, let us suppose that there is a better chiral Hamiltonian for 
which the second expression of Eq. (15) applies, which, because of the max, implies that 
τQSL > τs. But since we supposed that a swift chiral quantum walk exists, we know 
that τs can be achieved by the swift chiral Hamiltonian, which shows that the second 
expression in Eq. (15) is never the best quantum speed limit whenever a swift chiral 
quantum walk exists. As a byproduct, we deduce that for swift chiral quantum walks 
the ground state energy fulfils E0 ≤ −

√
N . �

Remark. It is not immediate to conclude that any chiral quantum walk which achieves 
this limit τs must be a swift chiral quantum walk since, a priori, the specific form of the 
return probability need not be given by Eq. (13).

It is a very interesting question to ask when is it possible to construct a swift chiral 
quantum walk (of the adjacency type) starting from maximally connected vertices in any 
graph G having no vertex with degree 2 or, equivalently, to find a chiral adjacency matrix 
fulfilling Eq. (10) on any graph G′ having no vertex of degree 1. We shall introduce the 
following definition:

Definition 2. Let G′ be a graph of order N and suppose there exists a chiral Hamiltonian 
H on G′ with eigenvector 1N and eigenvalue 0 (where 1N ∈ RN is the vector of all ones) 
or, equivalently, such that the sum of each row of H is zero. We will say that the phases 
assigned to the edges of G′ by H provide a swift phases configuration for G′.
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Fig. 1. A 3-regular graph having no perfect matching and therefore no swift phases configuration.

We could not provide general criteria for a graph (with minimal degree ≥ 2) to admit 
a swift phases configuration. Nevertheless, we shall prove that many infinite families of 
graphs admit such a construction. Missing proofs can be found in Appendix A.

Theorem 2. If all the vertices of G′ have even degree, then it admits a swift phases 
configuration.

Theorem 3. A 3-regular graph G′ admits a swift phases configuration if and only if one 
of the following equivalent conditions is met:

(1) G′ has a perfect matching
(2) G′ can be covered with vertex disjoint cycles (it has a 2-factor)

We recall that a perfect matching of G′ is a 1-factor, i.e. a partition of all the vertices 
in pairs such that the vertices in each pair are adjacent in G′ and each vertex appears in 
just a single pair. Moreover, we say that G′ can be covered with vertex disjoint cycles if 
there exists a set of cycles that are subgraphs of G′, whose union covers all the vertices of 
G′ and such that each vertex of G′ belongs to a single cycle. This is also called a 2-factor 
of G′. Notice that Theorem 3 also implies that there are regular graphs not admitting a 
swift phases configuration: an example is provided by the graph in Fig. 1.

Corollary 1. A bridgeless 3-regular graph always admits a swift phases configuration.

Proof. Recall that a graph is k-edge connected if k is the minimum number of edges to be 
deleted in order to make the graph disconnected. A non connected graph is bridgeless if 
k > 1 for each connected component. Petersen theorem ensures that bridgeless 3-regular 
graphs admit perfect matching and the thesis follows from Theorem 3. �

Notice that the converse is not true: there exist 3-regular graphs with perfect matching 
and with bridges. An example is provided in Fig. 2.

Corollary 2. An hamiltonian 3-regular graph always admits a swift phases configuration.
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Fig. 2. A 3-regular graph with a bridge and a perfect matching, thus admitting a swift phases configuration.

Proof. A graph G′ is said to be hamiltonian if it admits a hamiltonian cycle, a closed path 
passing through each vertex of G′ exactly once. The thesis is then a direct consequence 
of Theorem 3 �
Theorem 4. Complete graphs KN and bipartite complete graphs KN1,N2 admit a swift 
phases configuration for all integers N ≥ 3 and N1, N2 ≥ 2.

Lemma 1. Let G1 and G2 be two graphs such that a cone with apex v on G1 (resp. G2) 
admits a swift chiral quantum walk starting from v. Then also the cone over their disjoint 
union G = G1

⋃
G2 admits a swift chiral quantum walk starting from its apex.

4. Gauge fixing and uniqueness

A quasi-gauge transformation for a chiral quantum walk [33,34] is a unitary trans-
formation Ug that is diagonal in the vertex basis and acts on chiral Hamiltonians H
as H′ = UgHU†

g. They have the important property of preserving site-to-site transport 
probabilities [45,35]. Therefore, as far as we focus on these quantities, the set of chiral 
Hamiltonians on a graph G can be partitioned into equivalence classes, such that any 
two matrices belonging to the same class are linked by a quasi-gauge transformation. 
Whenever G is a tree graph (i.e. it has no loops), all chiral adjacency matrices on it be-
long to the same equivalence class, thus they generate site-to-site transport probabilities 
identical to those generated by the standard adjacency matrix of the graph (and simi-
larly for chiral Laplacians and, more generically, chiral Hamiltonians for a fixed choice 
of diagonal elements). In contrast, as soon as G has at least one loop, there will be an 
uncountable number of distinct equivalence classes, which can be indexed by the sums 
of the phases along each loop of the graph, for an initially fixed orientation.

In the light of these observations and before discussing the uniqueness of the swift 
chiral quantum walk construction on a given graph and for a given starting vertex, it is 
useful to fix a gauge. Indeed, since quasi-gauge transformations do not affect site-to-site 
transport probabilities, they will transform a swift chiral quantum walk into another 
one, without modifying the defining condition Eq. (12). Let us consider the case of a 
cone G, with apex labelled by 1, over a graph G′ of order N . The first column h1 of 
a chiral Hamiltonian H̃ on G will have the following structure h1 = (d1, h′

1)T where 
d1 ∈ R and h′

1 ∈ CN is a vector whose entries are all complex numbers of modulus 1. 
Then, a gauge-fixing can be imposed by asking that h′

1 = (1, 1, ..., 1)T ∈ RN ; indeed, in 
any class of gauge-equivalent chiral Hamiltonians, there will be just one representative 
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fulfilling this condition. With this gauge choice, a chiral adjacency matrix Ã on G will 
generate a swift chiral quantum walk from 1 if and only if the corresponding submatrix 
Ã′ (which is a chiral adjacency matrix on G′) is such that the sum of each of its rows 
(and therefore of each column) is zero.

Theorem 5. Let G = (V, E) be a simple, connected and undirected graph with |V| = N

vertices. Let v ∈ V be a generic vertex of G and denote Gv the subgraph of G obtained by 
keeping v and all its neighbours, and deleting every other vertex and the respective edges. 
Then there exists a swift chiral quantum walk (of the adjacency type) starting from v in 
G if and only if the following conditions hold:

(a) There is a swift chiral quantum walk starting from v in the cone Gv

(b) Any vertex v′ ∈ G which is not a neighbour of v has either 0 or ≥ 2 common 
neighbours with v.

Proof. Sufficiency of conditions. Let us call N ′ the cardinality of the subset of V con-
sisting of the neighbours of v, so that there are exactly N −N ′ − 1 vertices in G which 
are not connected to v. Let us enumerate with 1 the vertex v, with progressive integers 
from 2 to N ′ + 1 the neighbours of V and with the remaining integers from N ′ + 2 to N
the rest of the vertices. Then the adjacency matrix of G will be written in the following 
block form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 1 0 · · · 0
1
... A′ BT

1
0
... B A′′

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

where B is an (N − N ′ − 1) × N ′ matrix (whose entries are either 0 or 1 since A is 
an adjacency matrix) and BT is its transpose. Calling e1 = (1, 0, 0, 0...)T the vector 
associated with vertex v, we have:

Ae1 =
√
N ′ev = 0 ⊕ 1N ′ ⊕ 0N−N ′−1 ∈ C⊕ CN ′ ⊕ CN−N ′−1 � CN (17)

where ev = 1√
N ′ (0, 1, · · · , 1, 0, · · · , 0)T . By condition (a), we can attach complex phases 

to the nonzero entries of A′ to get a chiral Hamiltonian H′ reflecting the same graph 
topology of A′, and such that H′1N ′ = 0. As previously discussed, we can always assume 
a gauge choice that keeps the first row and column of A as in Eq. (16): if G is not a cone, 
this will not fully fix the gauge since additional local phase changes can be made on the 
vertices not directly connected with 1. Moreover, letting j > N ′ +1, by condition (b) we 
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can deduce that the (j −N ′ − 1)th row of B contains either with N ′ zeroes or at least 
two entries of the row are 1 s. Therefore, by replacing the ones with the roots of unity 
whenever a row of B is not the null vector, we can always arrange a matrix of phases X
whose nonzero entries are in the same place as those of B and which fulfils X1N ′ = 0. 
Combining these facts, we can then define a chiral Hamiltonian:

Hv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 · · · 0 0 · · ·
1
1 H′ X†

...
0
0 X A′′

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

describing the same graph G, which reduces to a 2 ×2 real block in the subspace generated 
by {e1, ev}:

H̃v =
(

0
√
N ′

√
N ′ 0

)
(19)

and therefore the chiral dynamics generated by Hv and starting from v is swift.

Necessity of conditions.
Considering Eq. (13), it is clear that the returning probability can take the form of 
a squared cosine if and only if the initial state is a superposition of only two energy 
eigenstates, such that its dynamics is confined to a two-dimensional subspace of the full 
Hilbert space. Moreover, any chiral Hamiltonian H (of adjacency type) on the unweighted 
graph, upon acting on e1 will yield a flat state with support on the neighbours of vertex 
1 and orthogonal to it, coinciding with the first column h1 of H. Let eE = 1√

N ′h1 be the 
normalized vector corresponding to h1; then we have:

He1 =
√
N ′eE

HeE =
√
N ′e1 + e′E

(20)

where in the second equation e′E is a generic vector orthogonal to e1 (and possibly with 
support also outside the neighbours of vertex 1).1 But the conditions that the dynamics 
reduces to a two-dimensional subspace and that the return probability coincides with 
Eq. (13) immediately imply that e′E = 0, from which the two conditions of the theorem 
follow. �
1 Notice that this is valid even if eE is a vector with complex entries.
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5. No-go theorems for Laplacian quantum walks

As was reminded in the introduction, continuous-time quantum walks generated by 
the Laplacian and starting from a vertex with maximal degree all have the same dynamics 
and they are sedentary. If we allow for an oracle, this behaviour can be easily fixed to get 
a swift (non-chiral) quantum walk. Indeed, let L be the Laplacian of a graph G which 
is a cone over some other graph G′, let us label with 1 the apex of the cone, with a 
corresponding state vector e1, and call N its degree. Then if we define:

L̃ := L− (N − 1)P1 (21)

where P1 is the orthogonal projector on e1, it is straightforward to see that in the reduced 
basis generated from e1 the matrix L̃ takes the same form of Eq. (11), apart for the 
addition of an immaterial identity matrix and a sign difference, therefore the returning 
probability is that of a swift quantum walk, Eq. (12). Notice that this is equivalent to 
Grover’s Hamiltonian for quantum search on a graph, generalized to the case where just 
the target vertex has maximal degree.2

However, in the spirit of using chiral quantum walks and the phases degrees of freedom, 
it is interesting to ask whether the oracle of Eq. (21) can be replaced by a suitable phases 
configuration while keeping the swift dynamics. In general, this is not possible. Indeed, we 
already proved that to get the swift evolution, the reduced Hamiltonian in the reduced 
basis of the starting state vector e1 should be 2 × 2, and by enforcing the diagonal 
elements of the Laplacian and attributing generic phases to the links, this matrix must 
have the following structure:

H̃k =
(

N
√
N√

N k

)
(22)

where we chose the second vector of the reduced basis to be the eE = 1√
N

(h1 − Ne1), 
where h1 is the first column of the full chiral Hamiltonian we are considering (with 
diagonal elements fixed by the Laplacian) and the number k is the only parameter we 
may try to adjust by choosing a phases configuration. For simplicity, suppose that the 
graph G′ is m-regular. Then clearly |k| ≤ 2m + 1, since the matrix minor of the chiral 
Hamiltonian pertaining to G′ has all the diagonal elements equal to m + 1 and exactly 
m nonzero off-diagonal entries in every row, each of which is a complex phase. But by 
looking at the dynamics generated by the reduced Hamiltonian (22) we get a returning 
probability of:

pH̃k
1→1(t) = 1 − 2N

(k −N)2 + 4N

(
1 − cos

√
(k −N)2 + 4Nt

)
(23)

2 Usually Grover’s algorithm on quantum walks just considers the case of complete graphs.
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which is sedentary unless (k−N) ∼ O(
√
N). Therefore, on cones over m-regular graphs 

whose degree does not grow with the number of vertices, chiral quantum walks of the 
Laplacian type starting from the apex cannot be swift. Despite its generality, this result 
relies on the assumption that the dynamics reduces to a 2 × 2 subspace, which would be 
needed to achieve the exact swift evolution. In fact, a more general no-go theorem holds.

Theorem 6. Let G = (V, E) be a cone over a subgraph G′ of order N (then |V| = N + 1) 
and denote by e1 the characteristic vector of the apex of the cone, labelled by 1. Let d>
be the largest degree for the vertices of G′. Then, if d> ∼ o(N) for large N , any chiral 
quantum walk of the Laplacian type starting from 1 is sedentary3; more generally, if L̃
is a chiral Laplacian on G:

pL̃1→1(t) ≥ 1 −
√
N

N − 2d> (24)

(assuming 2d> < N).

Proof. We will prove this statement via energy conservation, i.e. imposing that the 
expectation value of L̃ be the same at the beginning and at the end of the unitary 
evolution. Suppose that at a time t the quantum walk starting from 1 has evolved into:

e(t) = e−itL̃e1 = αe1 + βf (25)

where f is a normalized vector with support on G′ (f†f = 1 and e†1f = 0), with |α|2 +
|β|2 = 1. In the appendix, we prove that if f is normalized and with support on G′ having 
maximum degree d>, then:

f†L̃f ≤ 2d> (26)

Notice also that:

e†(t)L̃e(t) = e†1L̃e1 = N

which can be combined with Eq. (25) to get:

N = e†(t)L̃e(t) ≤ N |α|2 + 2d>|β|2 +
(
αβ∗f†L̃e1 + h.c.

)
where h.c. stands for the hermitian conjugate of the first term in parentheses and we 
invoked Eq. (26). Since L̃e1 projected onto G′ is a complex vector with norm 

√
N and f

is normalized and has support on G′, Cauchy-Schwarz inequality in CN implies:

3 In the original definition by Godsil [37], sedentarity requires that the return probability has the asymp-
totic form 1 − k

N for constant k and large order N . Here we slightly relax this definition by allowing 
asymptotic scaling of the form 1 − k

Nα for α > 0, such that it is still true that the return probability is 
close to 1 as N → ∞. In particular, Theorem 6 implies sedentarity with α = 1/2.
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|f†L̃e1| ≤
√
N

and consequently, using the fact that |αβ∗ + α∗β| ≤ 1:

|αβ∗f†L̃e1 + h.c.| ≤
√
N

In conclusion, we arrived at the following inequality:

N ≤ N |α|2 + 2d>|β|2 +
√
N

which can be rearranged by using |α|2 + |β|2 = 1 into:

N ≤ (N − 2d>)|α|2 + 2d> +
√
N (27)

If 2d> < N , then we get the following bound on |α|2:

|α|2 ≥ 1 −
√
N

N − 2d> � (28)

Remark. The fact that G is a cone is not strictly necessary for the theorem above to 
hold. Indeed, it is sufficient that the starting vertex has the largest degree (N) and that 
the degrees of all the other vertices are o(N). In this sense, this result indicates that 
the diagonal elements of the chiral Laplacians strongly hinder the transport between 
vertices with highly different degrees, and this issue cannot be overcome by leveraging 
on chirality.

6. Conclusions

Previous results indicate that sedentarity, i.e. a return probability close to 1 at all 
times, seems a general property of continuous-time quantum walks starting from a max-
imal degree vertex. This is a general statement when the generator is the Laplacian, 
thanks to the universality of the corresponding dynamics [38], while it is also true for 
CTQWs generated by the adjacency matrix when the underlying graph is sufficiently 
connected. In this paper, we have shown that the sedentarity of adjacency type CTQWs 
can be amended by considering chiral adjacency matrices as generators of the unitary 
evolution. In particular, a configuration of phases on the edges of a graph can be chosen 
such that the dynamics starting from the apex of a cone over such a graph will leave the 
apex in the shortest time possible allowed by unitary evolutions generated by generic 
Hamiltonians compatible with the graph topology. We termed this construction swift 
chiral quantum walks and the question about its feasibility on generic graphs naturally 
lead to the nontrivial problem of the existence of a swift phases configuration, which we 
were able to settle for several families of graphs. By contrast, the sedentarity of Laplacian 
quantum walks cannot always be resolved by adding phases to the edges; we proved that 
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whenever the initial vertex has a degree which is considerably larger than the degrees 
of all other vertices in the graph, any chiral Laplacian will still generate a sedentary 
evolution. The relevance of these results partly relies in their generality, since up to now 
very little was known about tasks that can or cannot be achieved by introducing chirality 
into CTQWs on general graphs. Moreover, Theorem 3 suggests that deep mathemati-
cal questions about graphs could arise from the analytical study of the theory of chiral 
quantum walks, despite the modest attention they elicited so far. Indeed, necessary and 
sufficient graph-theoretical conditions for generic odd-degree regular graphs to admit a 
swift phases configuration are still unknown, let alone for non-regular graphs.
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Appendix A. Proof of theorems on Swift phases configurations

A.1. Proof of Theorem 2

Proof. We will prove that one can associate phases of i and −i to all the directed edges 
of G′ such that the sum of the outgoing phases from any vertex is 0. First notice that 
this is equivalent to assigning arrows to the edges: each arrow indicates a phase of i
when the edge is seen in the corresponding direction, and a factor of −i for the opposite 
direction. A solution to our problem then would be a configuration of arrows on all edges 
such that each vertex has an equal number of outgoing and incoming arrows. To achieve 
such a configuration, let us start from a vertex, pick a random edge and assign an arrow 
on it directed towards the corresponding neighbour. Repeat this operation again and 
again, possibly landing more than once on the same vertex, but with the condition that 
an edge which has already been assigned an arrow cannot be traversed again. This can 
always be done, since each time we arrive at a vertex (except for the initial one) the 
number of arrows already assigned to its edges will be odd (two arrows for each time we 
visited that vertex before, and one additional arrow for visiting it again at the present 
stage). Therefore, since its connectivity is even by hypothesis, there will be another edge 
attached to the vertex without an already assigned arrow. Since the graph is finite and 
this process can continue each time we land on a vertex which is not the starting one, 
sooner or later we are bound to reach the initial vertex. At that point, each vertex will 
have an even number of assigned arrows attached to it, and half of them will be outgoing 
and the other half will be incoming, since each time we arrived at the vertex with an 
arrow and we left it with another one. Let us now delete all the edges that have been 
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labelled with an arrow: the remaining graph will still satisfy the initial property that 
each vertex has an even degree, since we removed an even number of edges from each 
vertex. Therefore, we can start the process again on the remaining edges, until the whole 
graph will be covered by arrows fulfilling our condition. �

Notice that a shorter proof can be given by relying on Euler’s theorem from graph 
theory, stating that a connected graph has a closed Eulerian trail (a closed path visiting 
each vertex exactly once) if and only if all its vertices have even degree.

A.2. Proof of Theorem 3

Proof. To prove that the first and second condition are equivalent, consider a 3-regular 
graph with a perfect matching: the edges that are not involved in the matching must 
form cycles, since each vertex will have exactly 2 of such edges attached to it. Moreover, 
these cycles must be vertex disjoint for the same reason. On the other hand, if G can be 
covered with vertex disjoint cycles, each vertex will have exactly one edge attached to it 
which is not involved in the cycles, and the collection of these edges must form a perfect 
matching.

We will thus prove the theorem by showing that the first condition is necessary and 
the second is sufficient for the existence of a swift phases configuration. First, suppose 
that G can be covered with vertex disjoint cycles. For each cycle, we pick a random 
orientation and we attribute a phase of e 2iπ

3 to all of its edges in the chosen orientation. 
We then assign a phase of 1 to all the remaining edges, which form a perfect matching, 
as we argued before. In this way, the three edges attached to any given vertex will have 
phases of 1, e 2iπ

3 and e−
2iπ
3 , summing to 0 as requested.

Now suppose instead that there exists a swift phases configuration on G and, for 
convenience, assume that G is connected (otherwise the reasoning would apply to each 
connected component). Pick a random edge, which will have an assigned phase of eiφ

in a given orientation, say from vertex v1 to vertex v2. Now notice that three complex 
phases can sum to 0 if and only if they form an equilateral triangle in the complex plane; 
therefore the phases associated with the other two edges attached to v1 must be eiφ+ 2iπ

3

and eiφ−
2iπ
3 . The same reasoning applies to all other edges, therefore fixing a phase on 

a single edge restricts the possible choice of phases on all the other edges to a finite set, 
which we can take to be {eiφ, eiφ+ 2iπ

3 , eiφ−
2iπ
3 } for an appropriately chosen orientation 

of each edge. At this point there are two possibilities:

• The set {eiφ, eiφ+ 2iπ
3 , eiφ−

2iπ
3 } is equal (as a set) to {1, e 2iπ

3 , e−
2iπ
3 } or to {−1, −e

2iπ
3 ,

−e−
2iπ
3 }

• The set {eiφ, eiφ+ 2iπ
3 , eiφ−

2iπ
3 } and its complex conjugate {e−iφ, e−iφ+ 2iπ

3 , e−iφ− 2iπ
3 }

have no number in common
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In the first case, the edges with phase 1 (or −1) must form a perfect matching, since 
each vertex must have exactly one edge with such a phase attached to it. In the second 
case, all the edges with a phase of eiφ (in any one of the two orientations) still form a 
perfect matching: indeed, each vertex will have exactly one edge with phase eiφ or e−iφ

attached to it (and it cannot have both eiφ and e−iφ). In either case, we conclude that 
G must admit a perfect matching. �
A.3. Proof of Theorem 4

Proof. An explicit construction when G′ is a complete graph was implicitly provided in 
[36]. A complete bipartite graph KN1,N2 is a graph with two sets of vertices VA with 
cardinality N1 and VB with cardinality N2, such that no edge connects vertices from the 
same set and every vertex in VA is connected with every vertex in VB. The adjacency 
matrix of such a graph can be written in the following form:

AKN1,N2
=

(
0N1×N1 B

BT 0N2×N2

)
(A.1)

where B is an N1 × N2 matrix filled with 1 s. A chiral adjacency matrix fulfilling 
Eq. (10) can be constructed by replacing B with a matrix of phases B̃ with entries 
B̃jk = ei

2πj
N1 ei

2πk
N2 , since 

∑N1
j=1 B̃jk =

∑N2
k=1 B̃jk = 0. �

Appendix B. A result on the spectrum of chiral adjacency matrices

Theorem 7. Let G be a graph and let Ã be a chiral adjacency matrix on G. Let d> be the 
largest degree among the vertices of G. Then if λA is an eigenvalue of Ã:

|λA| ≤ d> (B.1)

Analogously, if L̃ is a chiral Laplacian on G and λL is one of its eigenvalues:

|λL| ≤ 2d> (B.2)

Proof. Let x be an eigenvector of Ã with eigenvalue λ and let |xj0 | = supj |xj | be the 
largest entry of x (in absolute value). Then:

|λ||xj0 | = |(Ãx)j0 | ≤
∑
k

|Ãj0kxk| ≤ |xj0 |
∑
k

|Ãj0k| ≤ |xj0 |d> (B.3)

from which the thesis follows.4 To derive the above inequalities, we used the fact that 
the entries of Ã are complex numbers of modulus 1 and that the maximum number of 

4 Notice that |xj0 | > 0 and it cannot vanish since an eigenvector is never the null vector.
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nonzero entries in each row is d>, by definition. The same reasoning applied to a chiral 
Laplacian gives the other bound, since 

∑
k |L̃j0k| is upper bounded by 2d>, because of 

the diagonal contribution. �
Corollary 3. If f is a normalized vector with support on G, then for any chiral adjacency 
matrix Ã and any chiral Laplacian L̃:

|f†Ãf | ≤ d> , |f†L̃f | ≤ 2d> (B.4)
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