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QUANTUM PHASE PROBLEM FOR HARMONIC AND
TIME-DEPENDENT OSCILLATOR SYSTEMS

M. Gianfreda,” G. Landolfi,* and M. G. A. Paris’

We address generalized measurements of linear multimode operators and discuss some aspects relevant to
constructing angle operators for arbitrary quadratic Hamiltonian systems via Weyl-ordered expansions in

terms of position and momentum operators.
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1. Introduction

Constructing well-behaved quantum phase operators for harmonic systems has been a challenging issue
since the early days of quantum mechanics and has been attacked by resorting to very different physical
and mathematical perspectives (see, e.g., [1]-[3]). Several questions arise while attempting to satisfactorily
define a Hermitian operator that satisfies canonical commutation relations with the Hamiltonian operator
(or with an action operator in the general case). Fundamental problems in achieving the goal have been
promptly recognized while considering Dirac’s proposal to use a polarlike decomposition for the mode
operators to define quantum Hermitian amplitude and phase components closely to their classical c-number
counterparts through the prescription a = eiéﬁlﬂ, where N = afa [4]. In addition to the need to take
the periodicity of the phase variable into account (a property that would be easily established by choosing
the operator domain modulo 27 and introducing J-functions to let basic canonical commutation relations
hold except at one boundary of the domain), we encounter the obstacle that the spectrum of the number
operator N does not extend to negative values and i® is actually not unitary. Moreover, it is impossible to
properly divide both sides of an operator of the type a = aN/2 by N1/2; we might use (N~)'/2 instead,
where N~ = >0 nYn)(n| is the pseudoinverse of N.

Many quantum phase concepts have been proposed and investigated while considering ways around
Pauli’s prohibition (i.e., the situation where there is no self-adjoint operator canonically conjugate to a
Hamiltonian if the Hamiltonian spectrum is bounded from below). Among them, a strategy based on en-
larging the Hilbert spaces and allowing negative number states (inaccessible to physical systems) was devel-
[n)(n+1|
was suggested. On the other hand, working with periodic functions of the operator rather than the operator

oo
n=—oo

oped in [5], where realizing a Hermitian phase operator using the unitary operator it = >

itself is the idea behind the proposal [6] to introduce the ansatz E = (ﬁ + 1)~'/24 defining an operator
E playing the role of the analogue of ¢’®. In this approach, the manifest lack of unitarity of £ becomes
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a restriction of the Hilbert space domain. Treating the quantum phase definition within a coherent state
representation has also been considered [7].

Here, we present some results obtained by attacking the quantum phase problem from two different, but
related, perspectives. We first consider generalized measurements for multiboson linear operators in Sec. 2.
We recall that most of the recent progress regarding quantum phase operators has been stimulated by the
breakthrough remark that self-adjointness actually imposes an unnecessary restriction on the observable
concept: quantum observables are generally positive operator-valued measures [8], and phase observables
are defined as positive operator-valued measures that transform covariantly under time translations [9]. In
this picture, the postulate of quantum mechanics stating that only observables corresponding to self-adjoint
operators can be measured is preserved based on the Naimark dilatation theorem. Whenever we have a
quantum variable whose positive operator-valued measure is not reducible to a projection-valued measure,
different measuring systems would measure different variable outcomes. This is the case for phase, and we
abandon the concept of an ideal quantum phase operator to introduce operators associated with feasible
quantum phases, whose definition is based on using measurement processes.’

Section 2 originates from a formulation of the quantum phase problem based on using phase-space
distributions, which allows providing quantum averages in a form resembling classical averages. Each
Hermitian phase operator ¢ such that the phase distribution P(¢) = tr[d (¢ — ©)p] attributes the correct
sharp phase to any large-amplitude localized state p is expressible as the operator obtained from the
classical phase by a direct quantization of phase-space variables supported by an ordering rule (e.g., the
Weyl ordering). A detailed discussion of applying this framework to modes of the standard harmonic
oscillator can be found in [11]. A question thus naturally arises regarding the possibility of using it, for
instance, whenever we treat time-dependent oscillators. Section 3 is devoted to some aspects implied by
the answer to this question.

2. Generalized measurements and phase operators

A measurement process implies an interaction between the system under consideration and a mea-
surement device. We can measure a variable if it is associated with a self-adjoint operator defined on the
Hilbert space Hg ® Hp of the system plus probe of the apparatus. An observer living in Hg has access only
to observables supported in Hg itself. The idea underlying generalized measurements is to extend variable
operators in Hg to suitable symmetric operators in H: when an orthogonal measurement in H is performed,
the observer in Hg knows only about components of states in this space. The operatorial description of
the measurement restricted to Hg is given in terms of the positive operator-valued measure that follows by
taking the trace of the spectral measure of the extended operator over the probe degree of freedom [8].

The simplest and most relevant example is provided just by the measurements of the feasible photon
phase in the context of heterodyne detection. Heterodyne detection is understood to perform the joint
measurement of two conjugate quadratures of the field that would result by mixing a single-mode signal field
of nominal frequency w; with a local oscillator field whose frequency wy, is slightly offset by an amount wy; <
wi from that of the input signal through a beam splitter (BS) (see, e.g., [12]).2 A photodetector is placed
after the BS, and the output photocurrent is filtered at the frequency wy. In standard optical heterodyne
detection, measuring the filtered photocurrent corresponds to realizing the quantum measurement of the
normal operator ZSW = a + ag, where a; and d; are the respective photon annihilation and creation
operators for the input and image signals [13]. Measuring the real and imaginary parts of the output
photocurrent provides the simultaneous measurement of the real and imaginary parts of Esw.

1But a canonical phase variable can be defined [10].

2For modes of the radiation field, the simplest two-mode interaction is the linear mixing Hamiltonian H o (a1 fzg + fzga]{),

corresponding to the interaction in a linear optical medium (BS).
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The interaction between the incoming signal and a BS apparatus both enlarges the one-photon signal
Hilbert space to the two-photon signal plus image space Hiz = Hq, ® ﬁaz and allows “negative number”
photon states. The spectrum of the relative number operator N 19 = d{&l — d;flg is in fact unbounded, and
a unitary operator ﬁlg — %12 exists on H1o satisfying [Blg, ﬁ] = Blg. It can be written as [14]

Dia=>_ > |n—1,my){m,nl, (2.1)

m=0n=—o0

where the |n,m)) denote the basis elements of the relative number state representation, i.e.,

|n7 m>> = 6(n)hn’ + n>a1 |m>a2 + 6(_n - 1)|m>a1 |m - n>a27 (22)

Nia|n,mY) = n|n,m)), (2.3)

with —co < n < oo, m >0, O(n) =1 for n > 0, and ©(n) = 0 for n < 0. Because [st,Zgw] =0, a
joint measurement of the real and imaginary part of the operator ZSW can be performed, thus providing
the realization of the Shapiro—Wagner feasible phase operator. The problem of measuring the phase is thus
formulated as the problem of estimating the phase shifts experienced by the signal-plus-image quantum
states.

2.1. Heterodyne-based phase operators. Quite a different situation arises if the input field fre-
quency is outside the optical regime and the interaction between the signal and the BS results in the
nonnormal operator [15]

= w1 — W1
Zy=a1+ aT, =
ol 17T 7ay Y w1 + wr

<1, [2,,Z]]=1-+% (2.4)

The commutator of the measurement operator quadratures does not vanish, [Re 2,, Im 27] =i(1—~2%)/2;
another apparatus should therefore be conceived to jointly measure them. For this, we seek a Naimark
extension of Zw The simplest one involves just a single additional bosonic mode, a3 for example, and is
realized using the operator

7N = Z + ki (2.5)

defined in the three-mode Hilbert space H = H,, ® Ha, ® Hq, along with the requirements Tr, (oag) =0
and k2 =1 — 2. It can be implemented using bilinear interactions between modes followed by measuring
quadratures at the output [16]. The optical devices are associated with evolution operators of the form

Bj(05%) = e~ (asaitaray) (2.6)
with the three-mode splittings defined by the parameters

1—~2 1—~2

Y . .
—_— 013 = arcsin , 023 = arcsin ,
13 5 23 1++2

1472

012 = arcsin

followed by a 7 rotation (see Fig. 1).

It can be seen that in the Caves description of the heterodyne process, a feasible phase O for a
quasimonochromatic signal can also be defined if a Naimark mode is introduced to obtain measurement op-
erator (2.5). This phase O is in fact obtained from the unambiguous polar decomposition of operator (2.5).

After the three-mode number difference operator N = dJ{&l - d;flg - CAL;)CAL:; is introduced, the commutator
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Fig. 1. Schematics of the apparatus for generalized measurement of a nonnormal two-photon linear
operator. The quadratures (A; +A7)/v/2 and i(Al — As)/+/2 of the output modes are to be measured.

[éN, N ] = i can be interpreted as the canonical conjugation of the Caves feasible phase fx with respect to
N.

Having understood how a generalized measurement of 27 can be accomplished, we should next analyze
the role in the statistics of the measurement played by preparations of states in concrete experiments.
Obviously, we may take full advantage of possible freedom in preparing some of the modes in experimental
frameworks. Details of evaluating the probability density of the outcomes for a given initial preparation
R12 ® p3 can be found in [16]. Here, we simply note that the measurement of Zv on the class of factored
signals described by Ri3 = 01 ® |0)2 2(0|, where o; is a generic preparation of the mode a; and |0)2 is the
ground state of the mode a2, does not lead to added noise with respect to the measurement of the normal
operator a; + Gz, namely, the measurement of signal field quadratures in the framework of standard optical
heterodyne detection.

2.2. Multiboson linear operators. The arguments used above for a single mode can be generalized
to general systems, at least in principle. In doing so, we must encode Naimark extensions into experimental
settings in order to realize the simultaneous detection of conjugate variables in practice. Interactions
that are linear and bilinear in the field modes play a major role in quantum information and can be
experimentally realized in optical and condensate systems. It is therefore relevant to obtain a clear picture
of the possible experimental schemes that would allow generalized measurements of their quadratures.
Generalized measurements of the multimode linear operators

mi m2
Z(myma) _ Z Ap, G, + Z Bryal, (2.7)
ki1=1 ko=1
where
mi m2
[Z(ml’m2)7Z(ml’m2)T] = Z |Ak1|2 - Z |Bk2|2 7é 0, (28)
ki=1 ko=1

were discussed in [17]. Once again, the most economical choice for a valid Naimark extension 21(\Im1,m2)
clearly consists in adding just a single mode to (2.7) through either an annihilation or a creation operator

Z\l(\Iml)m2)’ Z\](\Iml)m2)T

as dictated by the sign of commutator (2.8). The condition | ] = 0 ensures that a feasible

phase observable f(mima) for Z(mim2) can be safely defined as the phase of the one-mode extended operator

~

Zl(\lml’m”. The operator g(m1,m2) jg canonically conjugate to the (mq-+mz+1)-mode relative number operator
ma+1 my
N=> Nox—> Nmsk, Ne=dla,.
k=1 k=1

Similarly to the cases previously discussed, a linear amplifier scheme can be used for generalized
measurement by processing all the (input plus Naimark) modes to produce an output signal carried by a

928



different collection of modes that are linearly related to the original modes. The modes aj interact with
each other through a unitary operator U(™12) which imposes the linear transformation

Ay ai ai
— it : 77 — pg(mi,ms)
A - U(mhmz) N Utmama) = M N
Am1+m2 Ami+mo Ami+mo
Amy+mat1 an an

([/1“ flj] = 5i7ji). For the quadratures of output modes to be measured, identifying the sequence of BSs
that naturally generalize the optical setting in Fig. 1 proceeds by imposing the decomposition operator
U(m,,ms) (eventually completed by a 7 rotation):

~ ~ ~

U(m1,m2) = %m+l m%m+1,m—1 te %m+1,1%m,m—1%m,m—2 te %2,15

where
B = {Ej)k(@k) H @HS} Bix(031) = o0k (a;a] +anal)
s#7,k

For instance, the scheme in Fig. 1 can be used for the generalized measurement of the operator

2(2’0) = Aia1 + Azas, Ai,As € Ry, (29)
if the BSs are characterized by
A
9;21’0) = arcsin ———— ngl’o) _ g0 T

) ’ 32 ’
VA2 + A3 4 2
but the same sequence of BSs also allows realizing the measurement of quadratures of the (0,2)-type
operator Z201 without the final 7 rotation. Forthcoming studies will consider the search for possibly
more effective setups for generalized measurements of phase and also detection schemes for performing

generalized measurements of nonlinear amplifiers of interest.
3. Action—angle variables for time-dependent oscillators

As already mentioned in the introduction, different physical grounds have been used to effectively
tackle the problem of defining suitable quantum phase operators. Although the basic conceptual problems
are still unsolved and further caution is required because the nonlinear canonical transformation from
position-momentum to action—angle coordinates are generally nonbijective,® the arguments and effective
tools developed for the standard harmonic oscillator can be adapted to a more complicated system, at least
in principle. Because time-dependent oscillators have widespread applications in physics, we focus on them.
Their Hamiltonian is )

p m(t)w’(t)q®

Hegis . (3.1)

Action—angle variables for a system described by this Hamiltonian have the forms

J - \/ﬁaq% <10g L)r (3.2)

m o, 1
RN = +2ﬁ[ﬁ Jm

o=t 2[4 (1 ] -

3We assume that the operators we consider here have an unambiguous interpretation.
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where k is an arbitrary positive constant and the function o(t) is a solution of the equation

A’ , d( 1 dm 1 dm\”® K
=2 e == 4
az " [w dt(zm dt) (2m dt) ]0 o3 (34)

An explicit formal representation in terms of the position and momentum operators of a Weyl-ordered
quantum angle operator associated with the time-dependent oscillator can be obtained analogously to the
procedure used in [18] for the standard harmonic oscillator. A basic angle operator can then be found in
the form [19]

Ow(3.0) = a—rs®T_kr(d.p), k=0,1,2,..., (3.5)
k=0
where
Qap,0 = —— arctan j_l,
o ap
(=DF A JeA 1 1 1 -,
—1- = — = = Pl——=-k -k -,—J
12k, 142k 1+2kap 1+ 3p 241 2 3 525 qp |
JpA [ JggA 1772 1 3 -
_ [ 1\k+1Yap _Yaq . 2 72
a—2-2k2426 = (—1) o { 71+jq2j 2F1< 5 ki k3, Jqp)’ (3.6)
VE o’
A= = — pp — 5 \/E’
202/ Jqq — JZ, m
~ ~ 2 2 o 2
ap = "M <1og T), Jog =k— +m <1og T) ;
and

~ 1 n n . .
Topn=— @prgr. 3.7
"= > <j>q p"q (3.7)

Jj=0

Equations (3.5)—(3.7) provide an expression in terms of position and momentum operators (defined
at a given initial time) for the operator associated with the time-dependent oscillator quantum angle. To
elucidate the action of the operator Oy on quantum states and how its states are affected by the mechanism
of coherence loss, we must obtain a picture of the action of the operators f,nm. To avoid the issue of their
non-self-adjointness on the real line, we can require spatial confinement between two points, ¢ € [—¢, ¢] for
example.* This can be discussed in the light of recent revisions of the Pauli theorem and the canonical
conjugation concept (see [22]), thus bearing in mind that the self-adjoint operator canonically conjugate to
a confined position operator is nonunique in the general case. It is known that for a free confined particle,
a consistent choice would be furnished by any operator p¥ = —id,; whose domain is defined by vectors in
the domain of the position operator ¢ with square-integrable first derivatives and with norms satisfying
a symmetric boundary condition, e.g., ¢(—f) = e ?¢(¢) with v € [0,1) [22]. The momentum spectral
problem is then immediately solved, giving the eigenvectors e.+4/ V2 associated with the eigenvalues
Dyk = 7 + km. For each allowed value of the parameter -, we obtain a bounded self-adjoint inverse
momentum operator (if v = 0, then a divergent contribution from the zero momentum eigenvalue must
be removed by hand, as usual). We can accordingly obtain self-adjoint operators T7 . from (3.5). For a

—n,n
4We recall that for a free particle, the Kijowski arrival distribution and the Aharonov—Bohm time operator T\_l,l have

been formally related by using the concept of a positive operator-valued measure in the unconfined case [20] and as the limit
of the distribution obtained by restricting the position domain to a finite real interval [21].
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system described by (3.1) and trapped in a finite coordinate range, we can use this result to define a local
self-adjoint angle operator in sufficiently small neighborhoods of the origin (see, e.g., [23]) in the presence
of either a symmetric (v = 0) or an antisymmetric (7 # 0) momentum boundary condition. In this respect,
it is interesting to investigate features of the operators fjnm that have so far received little attention. In

the coordinate representation, each of them takes a Fredholm integral operator form, i.e.,

4

(T2, ,|0) = / T, .(d' 19 (q) dg. (3.8)

—¢

By virtue of (3.5), direct evaluation of the kernels of 7°

—n,n’

for instance, yields

19,010 = P (LD ety - +
n [—m(qn?r q’)]”Bn<q’2—q)9(q_ ), (3.9)

where By, (z) and O(z) denote the nth-order Bernoulli polynomial and the Heaviside step function.
The spectral problem for operators with kernels (3.9) takes the form of a linear differential equation of
the order 2n, whose general solutions (regardless of the initial/boundary conditions) are

3 4
\IJO _ , 'rle - _qi
—22(q) = &0+ ;527 q > < 16@)\02,2)’

5 6
\IJO _ - r—lF , o q te.
“33(@) =8&o0+ ;:1537 q"F, < 272166/\83)3 ,  etc,

where the &, ., are constants, the F), ,, are functions of the (n, 2n—1)-hypergeometric type, and the )\(in,n
are eigenvalues. A general discussion of the spectral problem for the operators 77, . will be reported

—n,n

elsewhere.
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