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Properties of entangled photon pairs generated by a CW laser with small coherence time:
theory and experiment
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The generation of entangled photon pairs by parametric down-conversion from solid state CW lasers with small
coherence time is theoretically and experimentally analyzed. We consider a compact and low-cost setup based on
a two-crystal scheme with Type-I phase matching. We study the effect of the pump coherence time over the
entangled state visibility and over the violation of Bell’s inequality, as a function of the crystal length. The full
density matrix is reconstructed by quantum tomography. The proposed theoretical model is verified using
a purification protocol based on a compensation crystal.
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1. Introduction

Generation of entanglement is the key ingredient of
quantum information processing. In optical implemen-
tation with discrete variables the standard source of
entangled photon pairs is parametric down-conversion
in nonlinear crystals pumped by a single-mode laser
[1,2]. Recent advances in laser diode technology allow
the realization of simpler and cheaper apparatuses for
the entanglement generation [3,4], though the quality
of the resulting photon pairs is degraded by the small
coherence time of the pump laser.

In this paper we address theoretically and experi-
mentally the generation of entanglement using a laser
diode pump as well as its application to visibility and
nonlocality tests. We focus on the effects of the small
coherence time and implement a purification protocol
based on a compensation crystal [5] to improve
entanglement generation. We reconstruct the full
density matrix by quantum tomography and analyze
in detail the properties of the generated state, including
purity and visibility, as a function of the crystal length
and the coherence time of the pump. The topic is
relevant for applications for at least two reasons. On
one hand, quantifying the degree of entanglement is of
interest in view of large scale application. On the other
hand, a detailed characterization of the generated state
allows one to suitably tailor entanglement distillation
protocols.

The paper is structured as follows: in Section 2 we
describe the experimental apparatus used to generate
entanglement, whereas Section 3 is devoted to illustrate

in detail the quantum state of the resulting photon
pairs in the ideal case. The effects of small coherence
time are analyzed in Section 4 and the experimental
characterization of the generated states is reported in
Section 5. Section 6 is devoted to nonlocality test
whereas Section 7 closes the paper with some conclud-
ing remarks.

2. The experimental apparatus

A scheme of the experimental apparatus is shown in
Figure 1. The ‘state generator’ consists of two identical
BBO crystals, each cut for Type-I down-conversion,
one half-wave plate (HWP) and one quarter-wave plate
(QWP) as implemented in [6]. The crystals are stacked
back-to-back, with their axes oriented at 90! with
respect to each other [1,3]. The balancing and the phase
of the entangled states are selected by changing the
HWP and QWP orientation.

The crystals are pumped using a 40mW, 405 nm
laser diode (Newport LQC405-40P), with a spectral
line that is typically broadened by phonon collisions.
The coherence time of the pump light !c, which is
a fundamental parameter for our experiment, is 544 fs
and corresponds to a spectral width around 0.3 nm. We
obtained this important information with a standard
measurement of the first-order correlation function.
The generated photons are analyzed using adjustable
QWP, HWP and a polarizer [7]. Finally light signals
are focused into multimode fibers which are used to
direct the photons to the detectors. The detectors are

*Corresponding author. Email: simone.cialdi@mi.infn.it

ISSN 0950–0340 print/ISSN 1362–3044 online

! 2009 Taylor & Francis
DOI: 10.1080/09500340802187332
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
l
a
n
]
 
A
t
:
 
1
6
:
5
7
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



home-made single photon counting modules (SPCM),
based on an avalanche photodiode operated in Geiger
mode with active quenching. For the coincidence
counting we use a TAC/SCA.

The nonlinear crystals are properly cut to generate
photons into a cone of half-opening angle 3.0! with
respect to pump. The first crystal converts horizontally
polarized pump photons into vertically polarized (V )
signal and idler photons, while the second crystal
converts vertically polarized pump photons into hor-
izontally polarized (H ) signal and idler photons. This
configuration introduces a delay time!!, depending on
the crystal length, between the V and the H part of the
entangled state, as discussed in the following sections.

3. The state vector of the generated entangled
photons

The pair of photons generated by SPDC of Type
I from a single nonlinear crystal, having wave vectors
ks and ki, are represented by state vectors jksis and jksii
for the signal and idler, respectively. The wavefunction
appropriate to the system can be written as
a superposition of these state vectors [8–10]:

jCi ¼
ð
d3ks d

3kiAð!p $ O0
pÞFð!k?Þf ð!kkÞjksisjkiii,

ð1Þ

where Að!p $ O0
pÞ is the spectral complex amplitude of

the pump laser, which is a function of the pump
frequency !p(kp)¼!s(ks)þ!i(ki), assuming as usual
the validity of the energy conservation in the genera-
tion process, and it is centered around the reference
frequency O0

p. The factors F and f are mismatch
functions depending on the variation of the transverse
and longitudinal part of the pump wave vector with

respect to the reference of momentum conservation,
and are described in detail in the following.

The function F(!k?) comes from a spatial integra-
tion over all the possible processes of photon genera-
tion within the pump transverse profile in the crystal,
taking the first-order approximation of the nonlinear
interaction. For a Gaussian pump profile we obtain
again a Gaussian function, with a width varying as the
inverse of the beam waist w:

Fð!k?Þ ¼ expð$w2!k2?=4Þ, ð2Þ

where, referring to Figure 2, one has

!k? ¼ ksð!sÞ sinð"sÞ $ kið!iÞ sinð"iÞ

with the internal generation angles "s and "i for signal
and idler, respectively. In our case the pump beam
waist is near 2mm, therefore we can consider exact
transverse momentum conservation to a good approx-
imation. In fact it is easy to verify that with this beam
waist we have an angular Gaussian width of 0.006!

around the reference internal angles "s¼"i¼ 1.8!

(derived from external angles ext
s ¼ ext

i ¼ 3:0! using
Snell’s law), very small with respect to the acceptance
angle of 0.074! FWHM of the optical coupling devices.
The conservation of the transverse wave vector permits
one to simplify the geometry of the system, by
considering in the following a generation angle, say
"i, as a function of the other quantities !s, !i, "s.

The mismatch function f (!kk) has the same
meaning as F, but derives from an integration along
the crystal length LC, and reads:

f ð!kkÞ ¼
sinð!kkLC=2Þ
!kkLC=2

ð3Þ

Figure 1. Experimental apparatus for generating and analyzing entangled states. HWP: half-wave plate, QWP: quarter-wave
plate, BBO: beta barium borate nonlinear crystal, UV laser: 405 nm, 40mW laser diode. (The color version of this figure is
included in the online version of the journal.)
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where

!kk ¼ kpð!pÞ $ ksð!sÞ cosð"sÞ $ kið!iÞ cos "ið!s,!i, "sÞ½ (:

As a matter of fact the pump spectrum width,
determining the visibility effects, is very small with
respect to the spectral width of the down-conversion;
this means that f is slightly dependent on !p¼!sþ!i,
as can be verified numerically. We will not consider
such a dependence by substituting !p with the
reference pump frequency O0

p as the argument of f.
This approximation turns out to be very good for
crystal lengths below a few millimetres, but around
3mm (our maximum crystal length) the
conservation of the longitudinal wave vector starts to
shrink the down-conversion spectrum. A similar
consideration can be given for the dependence of f
over the internal angle "s; since the experimental
configuration is highly collinear, the optical couplers
are practically insensible to its variation (within the
acceptance cone). Therefore, we can substitute "s with
the fixed reference angle"s, and the mismatch function
becomes:

f ð!p,!s, "sÞ ) f ðO0
p,!s, sÞ * f ð!sÞ: ð4Þ

The wavefunction of the photon pair can now be
written in the more simple form:

jCi ¼
ð
d!p d!s d"sAð!p $ O0

pÞf ð!sÞj!s, "sisj!p

$ !s, "ið!p,!s, "sÞii:
ð5Þ

In the first approximation we can solve for the
integral over the internal generation angle "s because
neither A nor f depend on it, but a more refined
reasoning put forward the fact that the conservation of

the transverse wave vector introduces a limitation in
the effective spectral width of the mismatch function,
hence affecting the integration over !s. This happens
because by varying !s around the down-converted
reference O0

p=2, the idler angle "i may go outside from
the optical coupler acceptance limit, as verified by
means of the experimental data discussed in Appendix
1. This problem does not affect the integral over !p for
the smallness of the pump spectral width. To take care
of this spectral limitation we introduce a correction
factor RðO0

p=2,!!sÞ centered around the reference
O0

p=2 and having the limited spectral width !!s (see
Appendix 1). Defining ~fð!sÞ ¼ f ð!sÞ + R, we arrive at
this wavefunction for the photon pairs:

jCi ¼
ð
d!p d!sAð!p $ O0

pÞ ~f ð!sÞj!sisj!p $ !sii: ð6Þ

This expression is used to construct the proper
wavefunction (or the proper state vector) for the
entangled state generated in our experiment using the
pair of oriented crystals [1,3], as described in the
previous section. In particular we consider a suitable
superposition of the single crystal wavefunctions of
Equation (6), introducing the degree of freedom of
polarization on state vectors, because the first crystal
generates a vertical polarized (VV) and the second
crystal generates a horizontal polarized (HH) photon
pairs, respectively. Moreover, we have a delay time
between these pairs, due to the different optical length
of the photon trajectories in the inner of crystals. This
can be represented in the model by assuming photon
generation in the crystals’ middle [11,12] (in Appendix
2 we show that this is a very good approximation) and
introducing propagation factors for the internal state
transport.

In the Figure 3 a sketch of the geometry for entangled
photon generation is shown, limited for clarity to the
signal trajectories. In the first crystal V photons are
generated, the state is jV, !sisjV, !p$!sii, and the
complex exponential for the product of the signal and
idler propagation factor (as required by the form of
Equation (6)) till to exiting the crystal is given by:

PðVÞ ¼ exp iLC kos ð!sÞ
1

2cosð#1Þ
þkoi ð!p$!sÞ

1

2cosð#1Þ

"#

þkesð!sÞ
1

cosð#2Þ
þkei ð!p$!sÞ

1

cosð#2Þ

$%
, ð7Þ

where the superscripts ‘o’ and ‘e’ on wave vectors
indicates ordinary and extraordinary propagation, and
the angles #1¼ 1.807, #2¼ 1.84 can be found using the
laws of wave rays in birefringent crystals [13] and
Snell’s law, under the request of an exit angle of 3!. For
the second crystal, in which H photons are generated

Figure 2. Geometry for the generation of photon pairs. (The
color version of this figure is included in the online version of
the journal.)
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and the state is jH, !sisjH, !p$!sii, the respective
propagation factor is:

PðH Þ ¼ exp

(

iLC

"
kopð!pÞ

2
þ
kepð!pÞ

2
þ kos ð!sÞ

1

2 cosð#3Þ

þ koi ð!p $ !sÞ
1

2 cosð#3Þ

#)

: ð8Þ

where #3¼ 1.806, and is included in the propagation of
the pump ray from the generation point of the (VV)
pair (note that #3 is slightly different from #2 due the
different refraction index for ‘o’ and ‘e’ propagation).
The entangled state wavefunction is therefore:

jCi ¼
ð
d!p d!sAð!p $ O0

pÞ ~f ð!sÞ

, 1

21=2
PðH ÞjH,!sisjH,!p $ !sii
&

þ PðVÞjV,!sisjV,!p $ !sii
'
: ð9Þ

This expression can be recast in a more useful form
in the following way. Let’s write the frequencies as
!p ¼ O0

p þ Op, !s ¼ O0 þ O (with of course O0
p ¼ 2O0),

where #p and # represent the frequency shift with
respect to reference for the pump and for the down-
conversion, respectively. Now, in the propagation
factors we introduce a first-order approximation for
the wave vectors putting:

kpð!pÞ ) kðO0
pÞ þ Op=Vp, ksð!sÞ ) kðO0Þ þ O=V,

kið!p $ !sÞ ) kðO0Þ þ Op=V$ O=V,

where Vp and V are the proper group velocities of the
pump and of the down converted signal, and these
relations must be considered both for the ordinary
wave and for the extraordinary wave. With these

substitutions, and rewriting for future convenience the
quantum states by factorizing the polarization part
from the frequency one, the final form of the
wavefunction Equation (9) read:

jCi ¼
ð
dOp dOAðOpÞ ~f ðO0 þ OÞ 1

21=2

, exp½ið#H þ !HOpÞ(jHisjHiijOisjOp $ Oii
&

þ exp½ið#V þ !VOpÞ(jVisjViijOisjOp $ Oii
'
, ð10Þ

where the phase terms coming from propagation
factors are the sum of a constant phase:

#H ¼ koðO0
pÞ þ keðO0

pÞ þ
2koðO0Þ
cosð#3Þ

# %
LC

2
,

#V ¼ 2koðO0Þ
cosð#1Þ

þ 4keðO0Þ
cosð#2Þ

# %
LC

2

and frequency dependent terms !H #p, !V #p contain-
ing the total propagation time inside the crystals:

!H ¼ 1

Vo
p

þ 1

Ve
p

þ 1

Vo cosð#3Þ

( )
LC

2
,

!V ¼ 1

Vo cosð#1Þ
þ 2

Ve cosð#2Þ

# %
LC

2
:

It is important to note that these delay factors depend
on pump frequency (not on the down converted
frequency); this fact can be interpreted saying that
the states (HH) and (VV) exiting the crystals are
generated from the pump in two different temporal
events in the past, depending on the different
trajectories across the crystals. For all these four
phase factors, their numerical value are determined
from the data on refraction indexes and group
velocities taken from [14], and listed in Table 1.

As a final observation, we note that in writing the
final expression for the wavefunction Equation (10), it
has discarded the variation of the propagation factors
with respect to the propagation angles. Due to small
angular acceptance of the detectors, it is possible
to verify that, with excellent approximation, this
dependence does not introduce any relevant effect.

4. The polarization density matrix

For the calculation of the density matrix and the
complete characterization of the wavefunction it is
important to define at best the statistical properties of
the CW pump radiation, because our experimental
data depend strongly on its coherence length. In the
temporal domain, this light is characterized by
a constant amplitude A0 and a rapidly varying phase

Figure 3. Entangled photon generation and propagation
inside the crystals. For clarity, only signal photon trajectories
(red lines) are drawn (idler ones are symmetrically upset).
The horizontal blue line is the pump ray. (o) and (e) indicates
ordinary and extraordinary rays, respectively. Lc is the length
of both crystals. (The color version of this figure is included
in the online version of the journal.)
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with a characteristic time equal to the coherence time
of the pump !c. Therefore we can write:

ð
d!Að!Þ expði!tÞ ¼ A0 exp½i$ðtÞ(, ð11Þ

where the pump amplitude in the temporal domain is
expressedas theFourier transformof the complex spectral
amplitude, with $(t) as a proper fluctuating phase.

Our experiment mainly concerns the reconstruction
of the density matrix of the entangled system on the
basis composed by the four signal and idler polariza-
tion combinations HH, HV, VH, VV. The relative
density operator %, from which we derive the reduced
density matrix on this polarization basis, is obtained
from the full density operator %tot¼ j$ih$j by tracing
the degree of freedom on the frequencies, e.g. by
integrating over the frequency state matrix elements:

% ¼
ð
d!0

p d!
0
ih!

0
p $ !

0jsh!0jCihCj!0isj!0
p $ !

0ii ð12Þ

corresponding to the fact that we do not perform
frequency measurements.

The form of the wavefunction in Equation (10)
implies that only four elements of the 4, 4 reduced
density matrix are different from zero. Using the
general relation h!j!0i¼ $ (!$!0), we straightfor-
wardly obtain for the first diagonal element:

%HH,HH ¼ 1

2

ð
d! j f ð!Þj2

ð
d!pjAð!pÞj2 ¼

1

2
&A2

0

!T

2p
,

ð13Þ
where we put &¼

Ð
j f (!)j2 and

Ð
d!pjAð!pÞj2

¼ A2
0ð!T=2pÞ where !T is a large time interval. With

similar calculation the other nonzero diagonal element
results in %VV,VV¼ %HH,HH, as expected by symmetry
arguments.

For the two off diagonal elements one has
%HH,VV ¼ %-VV,HH, and in particular:

%HH,VV ¼ 1

2

ð
d!jf ð!Þj2

ð
d!pjAð!pÞj2 exp½$ið#H $ #VÞ(

exp½$i!pð!H $ !VÞ(

¼ 1

2
& expð$i#Þ

ð
d!pjAð!pÞj2 exp½$i!pð!H $ !VÞ(,

ð14Þ
where #¼#H$#V.

With the Wiener–Khinchin theorem the frequency
integral can be recast as a two time correlation
function over the interval !T, very large with respect
to the coherence time of the pump, and smaller than
the detector characteristic time:

ð
d!pjAð!pÞj2 exp½$i!pð!H $ !VÞ(

¼ A2
0

!T

2p
1

!T

ð

!T
dt exp½$i$ðtÞ þ i$ðt$ ð!H $ !VÞÞ(

) *

¼ A2
0

!T

2p
exp $!!

!c

) *
, ð15Þ

where !!¼ j!H$ !Vj, and the result is taken from [15].
If !!. !c we have an incoherent superposition of
random phases and the average of the complex
exponentials tends to zero, otherwise we have
a coherent sum, and the integral tends to one.

Finally, setting the state generator QWP in order to
have #¼ 0 (see [1]) and putting for simplicity
p¼ exp($!!/!c), the reduced density matrix is:

HH HV VH VV
HH

HV

VH

VV

1
2 0 0 1

2 p

0 0 0 0

0 0 0 0
1
2 p 0 0 1

2

0

BBB@

1

CCCA,
ð16Þ

which can also be conveniently derived from a sum of
two distinct density matrices, one of a pure entangled
state and the other of a statistical mixture:
%¼ p%eþ (1$ p)%m where %e¼ j$ei h$ej with
j$ei¼ 2$1/2(jHHiþ jVVi) and %m ¼ ð1=2ÞjHHihHHjþ
ð1=2ÞjVVihVVj. This is the more suitable form used for
a comparison between theory and experimental data.

5. Experimental tomographic reconstruction of the
density matrix and correlation visibility

In order to fully characterize the generated states at the
quantum level we employ quantum tomography of
their density matrices [16]. The experimental procedure
goes as follows: upon measuring a set of independent
two-qubit projectors P'¼ j 'i h 'j ('¼ 1, . . . , 16)
corresponding to different combinations of polarizers
and phase-shifters, the density matrix may be recon-
structed as %¼

P
'p'%', where p'¼Tr [%P'] are the

probabilities of getting a count when measuring P' and
%' is the corresponding dual basis, i.e. the set of
operators satisfying Tr [P'%(]¼ $'( [17]. Of course in
the experimental reconstruction the probabilities p' are
substituted by their experimental samples, i.e. the

Table 1. Refraction indexes and group velocities for wave
propagation in a BBO crystal.

Pump Signal/idler

(o) (e) (o) (e)

n 1.691719 1.659273 1.659984 1.632171
V c/1.77878 c/1.73901 c/1.68376 c/1.65483
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frequencies of counts obtained when measuring P'. In
order to minimize the effects of fluctuations and avoid
non-physical results we use maximum-likelihood
reconstruction of two-qubit states [7,18]. At first we
write the density matrix in the form

%̂ ¼ T̂ yT̂, ð17Þ

which automatically guarantees that %̂ is positive and
Hermitian. The remaining condition of unit trace
Tr %̂ ¼ 1 will be taken into account using the method
of Lagrange multipliers. In order to achieve the
minimal parametrization, we assume that T̂ is
a complex lower triangular matrix, with real elements
on the diagonal. This form of T̂ is motivated by the
Cholesky decomposition known in numerical analysis
[19] for an arbitrary non-negative Hermitian matrix.
For an M-dimensional Hilbert space, the number of
real parameters in the matrix T̂ is Mþ 2M(M$ 1)/
2¼M2, which equals the number of independent real
parameters for a Hermitian matrix. This confirms that
our parametrization is minimal, up to the unit trace
condition.

In numerical calculations, it is convenient to
replace the likelihood functional by its natural
logarithm, which of course does not change the
location of the maximum. Thus, the function subjected
to numerical maximization is given by

LðT̂Þ ¼
XN

k¼1

ln Tr ðT̂ yT̂P'k
Þ $ )Tr ðT̂ yT̂Þ, ð18Þ

where ) is a Lagrange multiplier accounting for
normalization of %̂ that equals the total number of
measurements N. This may be easily proved upon
writing %̂ in terms of its eigenvectors j#'i as
%̂ ¼

P
' y

2
'j#'ih#'j, with real y', the maximum like-

lihood condition @L/@y(¼ 0 reads

)y( ¼
XN

k¼1

y(h#(jP'k
j#(i

Tr ð%̂P'k
Þ , ð19Þ

which, after multiplication by y( and summation over
(, yields )¼N.

The above formulation of the maximization pro-
blem allows one to apply standard numerical proce-
dures for searching for the maximum over the M2 real
parameters of the matrix T̂. The examples presented
below use the downhill simplex or the simulated
annealing methods [20]. Results of the reconstruction
are reported for crystals with three different thick-
nesses, precisely 0.5, 1 and 3mm, and in the case of
compensation of the delay time between generated
photons, as discussed later. Moreover, we present an

analysis on the direct measurement of the visibility of
the entangled state.

Data on correlation visibility are simply obtained
by removing the HWP and QWP plates of the
tomographic analyzer (see Figure 1) and detecting the
signal and idler coincidence counts in a time interval,
as a function of the signal polarizer angle, and having
fixed the idler polarization angle at 45!. The theoretical
prediction is:

Pð*s, 45!i Þ ¼ ih45!jsh*sj%j*sisj45!ii

¼1

2
pðcosð*s $ 45!ÞÞ2 þ 1

4
ð1$ pÞ,

ð20Þ

where *s is the angle of the signal polarizer in the
counter-clockwise direction, with the horizontal axis as
the 0! reference. As is apparent from this formula,
when p is near unity (delay time smaller with respect
the coherence time of the pump) the oscillating
contribution due to the non-local correlations is
dominant. Conversely, with greater delay time (and
small p) the correlations are washed out and the result
is that of a statistical mixture which does not depend
on the angle. In particular, the maximum of Pð*s, 45!i Þ
is at 45!, while the minimum is at 135!, hence we can
write explicitly the visibility V of the oscillation as:

V ¼ Pð45!s , 45!i Þ $ Pð135!s , 45!i Þ
Pð45!s , 45!i Þ þ Pð135!s , 45!i Þ

¼ p: ð21Þ

In Figure 4 we show the visibility measurements as
a function of the signal polarizer angle for the three
different crystal pairs, with the theoretical prediction of
Equation (21) indicated by a full line. The comparison
between the theoretical density matrix elements
of Equation (16) and their tomographic reconstruction
from experimental data is shown in Figure 5. It is
confirmed that the off-diagonal elements tend to
reduce in magnitude for larger crystal thickness; in
particular for 3mm crystals we obtain the density
matrix of a statistical mixture. This is worth nothing
since in this case it is very difficult to find the proper
alignment of the QWP because of very low visibility;
this fact could justify the difference between the
observed visibility and the expected one.

The general behavior is confirmed also by the
calculation of entanglement, as measured by concur-
rence [21], which gives C0.5¼ 0.635, C1.0¼ 0.473, and
C3.0¼ 0.002, respectively, using the reconstructed
values of the density matrix elements.

In our model the lack of visibility of the entangled
state is fully ascribed to the decoherence effect due to
the fluctuating phase difference between H and V parts
of the SPDC, depending on the delay !!. Having
a very small area of the fiber collimator, we have
neglected any decoherence of spatial origin, which
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introduces a phase variation depending on the detector
viewing angle. In order to verify this statement, we
have performed a series of measurements with the
3mm crystal, putting windows of 0.5mm linear
aperture in front of the collimators: if the decoherence
had a spatial contribution, we would have expected an
increase in the state purity. In fact, the results of the
state reconstruction were the same as the original
configuration, thus supporting our hypothesis.

This fact also suggests how to improve the purity of
the entangled state by a phase retardation on the H
polarized part of the pump with respect to the V
polarized part [5]. This can be accomplished by
inserting, along the pump ray and before the state
generator, a properly oriented birefringent crystal with
a suitable length. In this way we introduce on the pump
two different delay times !cH and !cV, with
!cH $ !cV ¼ ½ð1=Vc

H Þ $ ð1=Vc
VÞ(Lcomp, where Lcomp is the

compensation crystal length, and Vc
H and Vc

V are the

pump group velocities. These delays must be summed
to the original delay times !H and !V, to obtain a new
!! ¼ j!H $ !V þ !cH $ !cVj which must be set equal to
zero to obtain maximum visibility. This condition of
perfect compensation requires selecting proper crystal
length and orientation.

With the BBO crystals used in our lab it was
possible to achieve partial compensation, and only in
one selected configuration. We performed a series of
measurements using the 1mm double crystal as state
generator, and a 3mm single crystal as pump phase
retarder. The length of this crystal is near to the ideal
one, but we can not select the better orientation for the
principal axis because it is too similar to the phase
matching angle for the SPDC generation.

The visibility is expected to vary from a maximum
to a minimum for a 90! change in compensation crystal
orientation with respect to the longitudinal axis, as
confirmed by the tomographic reconstruction shown in

60
Lc = 0.5 mm Lc = 1mm Lc = 3mm
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Figure 4. Entangled state visibility as a function of the polarizer angle, for generating crystals of 0.5, 1 and 3mm thickness. (The
color version of this figure is included in the online version of the journal.)

Figure 5. Tomographic reconstruction of the generated state for three different crystals. The measured and calculated visibility
are shown in the table. (The color version of this figure is included in the online version of the journal.)
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Figure 6. Notice that the maximum visibility of 0.66 is
larger than the corresponding visibility without the
auxiliary crystal (see Figure 5), thus demonstrating
a partial time delay compensation. Again this is
confirmed by the value of concurrence, which gives
CðcompÞ

1:0 ¼ 0:566.

6. Measurements on the violation of Bell’s inequality

We have also performed a series of measurements of
the S parameter, characterizing the Bell’s inequality in
the CHSH version [23], for a comparison with the
prediction of our theoretical model. To obtain reliable
data on the S parameter we used the
same experimental apparatus previously employed for
correlation measurements. We considered as usual the
16 different configurations of the polarization angles
on the signal and on the idler [3].

The Bell S parameter is theoretically defined as:

S ¼ Eða, bÞ $ Eða, b0Þ þ Eða0, bÞ þ Eða0, b0Þ, ð22Þ

where the arguments a, a0 and b, b0 are the selected
angles for signal polarizer and idler polarizer, respec-
tively. The function E is defined as E(+,,)¼P(+,,)þ
P(+?,,?)$P(+,,?)$P(+?,,), where +?¼ +þ 90!

and ,?¼ ,þ 90!. The function P is exactly that

described in Equation (20), but with the idler angle
specified by the argument. For any realistic local
theory one has jSj/ 2, while for quantum mechanics
jSj can be greater than 2, reaching a maximum value of
2(21/2). The following choice for the angles is used:
a¼ 0!, b¼ ", a0 ¼ bþ " and b0 ¼ a0 þ ". In this way S is
a function of the angle " alone. In Figure 7 we show the
calculated S(") for three states with different visibility
V¼ p¼ (1, 0.7, 0.5); by decreasing p, the values of S
tend to return in the limit of a local theory.

For a comparison with these results of our model,
we have measured the S parameter for three different
angles using as state generator the pair of 0.5mm
crystals, that is the case with higher visibility. In
Figure 8 we show the theoretical curve of the S
parameter for a visibility equal to 0.77 (full line),
together with two other curves (dashed lines) indicat-
ing the extremal of the experimental errors, relative to
the limited number of counts during data acquisition.
The three measurements of S for the angles of 16!, 24!,
40! are indicated with error bars. In particular we get
S(16!)¼ 2.380 0.03, S(24!)¼ 2.4170 0.025 and
S(40!)¼ 0.800 0.05. From these data we can conclude
that in the case of 24! the Bell’s inequality is violated
for more than 17 standard deviations.

7. Conclusions

We have analyzed, both theoretically and experimen-
tally, the generation of polarization-entangled photon
pairs by parametric down-conversion from solid state
CW lasers with small coherence time. In particular, we
have analyzed in some detail a compact and low-cost
setup based on a two-crystal scheme with Type-I phase
matching. The effect of pump coherence time on the
entanglement and the nonlocality has been studied as
a function of the crystal length. The full density matrix
has been reconstructed by quantum tomography and
the proposed theoretical model is verified using
a purification protocol based on a compensation
crystal. We conclude that laser diode technology is of

Figure 6. Tomographic reconstruction with a delay compensation crystal (see text). (a) Crystal angle set for maximum
compensation, visibility 0.66. (b) Crystal angle at 90! with respect to (a), visibility 0.17. (The color version of this figure is
included in the online version of the journal.)

Figure 7. S parameter as a function of " for three different
visibility values. Full line: V¼ 1; dashed line; V¼ 0.7; dotted
line V¼ 0.5.
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interest in view of large scale application and that it is
the characterization of the generated state that allows
one to suitably tailor entanglement distillation
protocols.
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Appendix 1. Measurement of the coherence length

In this Appendix we experimentally verify that the spectrum
of the down-converted signal is reduced when coincidence
photon counts are performed, as a consequence of the
transverse momentum conservation.

If we observe only a single photon of the generated pair,
the part of the spectrum incident on the coupling device is
described in practice by the mismatch function f(!s) defined
in Equations (3) and (4). But if we observe both photons and
measure the simultaneous counts between signal and idler,
we will detect a spectrum with a smaller width, and therefore
we have a greater coherence length of the radiation. This
because if we have a very wide spectrum for the signal at
a fixed angle of observation, the idler photons, correlated
with the signal photons also by transverse momentum
conservation, will be dispersed over an angle that can be
wider with respect to the acceptance angle of the coupling
device. Hence, the pair of coupling devices work as a filter
limiting the spectral window for observation. For the
purpose of a determination of this effective spectral width,
we present here some measurements using interference
methods. In particular we performed two series of measure-
ments, the first relative to the direct counts on a single
detector to find the width associated with f (!s), the second
relative to the coincidence counts on the two detectors to
determine the width of the corrected mismatch function ~f ð!sÞ
used in Equation (6).

In Figure 9 we show the experimental scheme (based on
a single BBO crystal) employed for these types of measure-
ments. An interferometer equal to that described in [6] is
placed among the signal ray. This interferometer is easy to
align and is a very stable device. In both types of counting
measurements we expect to see interference fringes as
a function of the delay time introduced by the interferometer

Figure 8. Experimental results for S parameter for three
values of ", compared with the theoretical S for a visibility of
0.77. (The color version of this figure is included in the online
version of the journal.)

Journal of Modern Optics 223

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
l
a
n
]
 
A
t
:
 
1
6
:
5
7
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



between two optical paths, and within the radiation
coherence time. In particular we would determine a greater
coherence length in the case of coincidence counts with
respect to the case of signal single counts.

The theoretical description of the interferometric experi-
ment is as follows. In the case of a single photon observation,
and with a crystal generating horizontal photons, the density
matrix for the signal before the interferometer can be built by
integrating over the idler frequency, and reads as:

%1 ¼
ð
dOjf ðO0 þ OÞj2jH,!is shH,!j: ð23Þ

The density matrix after the interferometer follows by
considering: (a) a polarization rotation of 45! due to the
HWP plate placed before the first calcite crystal; (b) the delay
time ! introduced by the interferometer between the H and V
parts; (c) the projection of these states over the axis of
the final polarizer oriented at 45!, placed before the coupling
device. The final state vector is easily obtained as:

%1 ¼
ð
dOj f ðO0 þ OÞj2 1

4
1þ expðiO!Þ
++ ++2j45!,!is sh45!,!j:

ð24Þ

The probability to observe a count on the detector is then
proportional to:

P1ð!Þ ¼
ð
dO0

sh45
!,!0j%1j45!,!0is

¼
ð
dOj f ðO0 þ OÞj2 1

4
1þ expðiO!Þ
++ ++2

ð25Þ

from which it is clear that the pump does not participate in
the creation of interference fringes. The width of the
interference pattern representing count numbers as
a function of the delay !, is given by a factor similar to
a Fourier transform of the down-converted amplitude
spectrum; hence this width scales as the inverse of the
spectral power width of the function f.

In the case of signal and idler coincidence counting, the
state vector is again derived from Equation (10), by taking
only the H part and discarding the propagation factor. As

before, after the passage in the interferometer, the state
vector is given as:

jCi2 ¼
ð
dOp dOAðOpÞ ~f ðO0 þ OÞ

, 1

2
1þ expðiO!Þð Þj45!isjHiijOisjOp $ Oii

ð26Þ

with the modified mismatch function ~f. The probability of
coincidence counts will be proportional to:

P2 ¼
ð
dO0

p dO
0
sh45

!jihHjshO0jihO0
p $ O0jjCi2

++++

++++
2

¼ P1

,
f ) ~f

-
,

ð27Þ
which is exactly the previous result in which f(#0þ#) is
replaced by ~fðO0 þ OÞ. Hence, in this case the width of the
interference curve is governed by the modified spectral power
width !!s of ~f.

In Figure 10 we show on the left the interference pattern
obtained with signal single counts, using the BBO crystal of
3mm length. The width of the curve is near 30 fs,
corresponding to a down-converted spectrum of about
64 nm. On the right we show the pattern in the case of
signal and idler coincidence counts: the coherence time is
enlarged to 70 fs, corresponding to a spectral width of 27 nm.
In both cases the coherence length is well below that of the
pump light. These data are used to determine the appropriate
correction factor Rð!!sÞ ¼ ~fð!sÞ=f ð!sÞ in the definition of
the wavefunction Equation (6).

Appendix 2. Complete calculation of the delay times
in state generation

In deriving the delay time between (HH) and (VV) photons,
we assumed state generation in the crystals’ middle. But in
fact these states can be generated at any point in the inner of
the crystals, therefore the propagation factors P(H ) and
P(V ) must be position dependent. Let’s indicate with z1 and
z2 the longitudinal coordinates of the internal generation
points for the first crystal and for the second
crystal, respectively. Referring to Figure 3, we now have

Figure 9. Sketch of the experimental apparatus for measuring the coherence length. (The color version of this figure is included
in the online version of the journal.)
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the following two equations for the propagation times !H
and !V:

!Hðz1, z2Þ ¼
LC $ z1

Vo
p

þ z2
Ve

p

þ LC $ z2
Vo cosð#3Þ

, ð28Þ

!Vðz1, z2Þ ¼
LC $ z1

Vo cosð#1Þ
þ LC

Ve cosð#2Þ
: ð29Þ

Generally speaking, the state visibility p would depend
on the delay time !!(z1, z2)¼ !H(z1, z2)$ !V(z1, z2). Because
we do not have any information about the effective position
in which a particular photon pair is generated, we consider
an average over the possible positions, by integrating with
a flat distribution probability:

pz ¼
1

LC
2

ð
dz1 dz2 exp½$!!ðz1, z2Þ=!c(: ð30Þ

In Figure 11 we show a comparison between the visibility for
state generation in the crystals’ middle, and that obtained
from the above formula. It is clear that there is some
difference only for very small visibilities obtained with very
long crystals.

Figure 10. Interference patterns: (a) single signal counts; (b) signal and idler coincidence counts.

Figure 11. Entangled state visibility as a function of the
crystal length for the different assumptions on the state
generation position. Full line: in the whole crystal length;
dotted line: in the crystals’ middle. (The color version of this
figure is included in the online version of the journal.)

Journal of Modern Optics 225

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
l
a
n
]
 
A
t
:
 
1
6
:
5
7
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9


