
PHYSICAL REVIEW A 104, 053706 (2021)

Technique for active stabilization of the relative phase between seed and pump in an optical
parametric oscillator
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We design and demonstrate a technique for the active stabilization of the relative phase between seed and
pump in an optical parametric oscillator (OPO). We show that two error signals for the stabilization of the
OPO frequency, based on Pound-Drever-Hall (PDH), and of the seed-pump relative phase can be obtained just
from the reflected beam of the OPO cavity, without the necessity of two different modulation and demodulation
stages. We also analyze the effect of the pump in the cavity stabilization for different seed-pump relative phase
configurations, resulting in an offset in the PDH error signal, which has to be compensated. Finally, an application
of our technique in the reliable generation of squeezed coherent states is presented.
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I. INTRODUCTION

“Squeezing” is a fundamental resource in continuous-
variable quantum information science [1] and in gravitational-
wave detection [2]. For these and other applications a key
ingredient is the use of squeezed states, which are commonly
generated via an optical parametric oscillator (OPO) [3–7].
The basic elements of an OPO are an optical cavity (the
resonator) with a nonlinear crystal. Whereas the cavity allows
us to select a particular frequency of the field, the crystal,
suitably “pumped” by an input laser beam (the “pump”),
provides the “squeezing.” The generated states can be fur-
ther manipulated by changing their coherent amplitude and
phase. However, this requires using a “seed,” namely, a co-
herent state with a well-determined complex amplitude, that
interacts with the nonlinear crystal, leading to the so-called
squeezed coherent states. Mechanical vibrations largely affect
this kind of device, forcing the use of active stabilization.
Different techniques have been developed to this aim: the
Pound-Drever-Hall (PDH) technique [8], homodyne locking
[9], the modulation-free technique [10], and tilt locking [11],
just to mention the most commonly used. Moreover, also
the relative phase between the seed and the pump used for
squeezing has to be stabilized. This has been performed using
modulation techniques such as in Ref. [12,13], or in GEO600
[14] or through the weak pump depletion (WPD) technique
[15].

Here we present the theoretical basis and the demonstration
of an innovative technique for the seed-pump relative phase
stabilization of an OPO with an application to the genera-
tion of squeezed coherent states. With respect to modulation
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techniques [12], ours allows us to obtain two different error
signals directly from the reflected beam. The first signal is
for the OPO frequency stabilization and it is based on the
PDH technique, but taking into account the presence of the
pumped nonlinear crystal inside the cavity. In fact, since the
standard PDH technique is based on an empty cavity, here we
first have to derive the theoretical model to include the effect
of the crystal. The other signal is for the seed-pump phase sta-
bilization and does not require an additional modulation and
demodulation stage. Thanks to this method, we do not need
a detection system for the pump, that is instead necessary,
for instance, in the WPD technique [15]. Remarkably, our
approach allows us to retrieve relevant information about the
dynamics of the error signal and to show how the pump affects
the PDH error signal and how to correct this error signal.

The article is structured as follows: In Sec. II the technique
is theoretically described, taking into account the presence of
the crystal inside the cavity. The setup for the implementation
and the experimental results are shown in Sec. III. Our pump-
seed stabilization technique is applied in Sec. IV to generate
squeezed coherent states. Finally, we draw some concluding
remarks in Sec. V.

II. THEORY

As in the case of the usual PDH stabilization technique,
our approach is based on the detection of the beam reflected
off the cavity but in the presence of a nonlinear crystal in
it, that is also pumped to produce squeezing. It is worth
noting that the seed (at 1064 nm in our experiment, see
Sec. III) and the pump (at 532 nm) have different frequencies.
Therefore, in this Section we develop a proper theoretical
model to describe a two-mirror cavity with a pumped non-
linear crystal inside, namely, the OPO.

As sketched in Fig. 1, the mirror M1, with reflectivity R1,
serves as the input coupler for the seed Ein, while the mirror
M2, with reflectivity R2, acts as the input coupler for the pump
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FIG. 1. Scheme of the OPO with the main elements. See text for
details.

and as the output coupler for the OPO field. The aim is now
to obtain the amplitude of the reflected field ER as a function
of the cavity frequency ν, the crystal nonlinearity γ , and the
pump phase φp.

If the OPO does not contain the nonlinear crystal, the elec-
tric field in the cavity Ec(t + τ ) after a round trip with duration
τ can be written as the sum of the field already circulating
inside the cavity Ec(t ) and the input field Ein, that is

Ec(t + τ ) =
√

1 − R1Ein +
√

ReiφEc(t ), (1)

where R = R1R2(1 − �)2, � is the internal power losses for
the single round trip, and φ = 2πν/�. Here, ν = νin − νc is
the detuning between the input and the cavity frequencies and
� is the free spectral range of the cavity.

In the presence of the nonlinear crystal inside the cavity,
Eq. (1) has to be modified by adding a term accounting for
interaction between the light and the crystal. The interaction
can be effectively described by introducing a dimensionless
complex parameter γ which depends on the nonlinearity of
the crystal and on the pump field amplitude and its phase.
Assuming a round trip much faster than the intracavity fields
dynamics, we can expand Ec(t + τ ) up to the first order in τ ,
and Eq. (1) leads to

dEc

dt
τ =

√
1 − R1Ein + (

√
Reiφ − 1)Ec + iγ E∗

c . (2)

The fact that here appears the complex conjugate of the cavity
field, E∗

c , directly follows from energy conservation in the
nonlinear interaction [16]. Therefore, at equilibrium we have

(1 −
√

Reiφ )Ec − iγ E∗
c =

√
1 − R1Ein. (3)

Without loss of generality, from now on we can set Ein = 1
(or, equivalently, we are measuring the fields in units of the
input field) and, thus, the phases of the involved fields are
relative to the phase of the input field. From Eq. (3) we obtain

Ec =
√

1 − R1
1 − √

Re−iφ + i|γ |eiφp

1 + R − 2
√

R cos φ − |γ |2 , (4)

where γ = |γ |eiφp , φp being the pump phase relative to the
seed phase. It is worth noting that Ec can be continuously
modulated from an amplification regime (φp = −π/2) to a
de-amplification regime (φp = π/2). As a matter of fact, if
γ → 0 we find the usual equation of a two-mirror cavity
without the nonlinear crystal, as one may expect.

The actual value of |γ | can be obtained experimentally and
we can relate it to a measurable quantity. In fact, one has

G = G+
G−

=
∣∣∣∣
1 + δ

1 − δ

∣∣∣∣
2

, (5)

where δ = |γ |/(1 − √
Reiφ ) and G+ and G− are the power

of Ec in the amplification and de-amplification regime, re-
spectively. Since the OPO output (see Fig. 1) is clearly
proportional to Ec, then G can be measured by monitoring the
output power in the two regimes.

Now, we turn our attention to the reflected beam ER (see
Fig. 1), since it will be used to obtain two different error
signals for the stabilization of the OPO frequency and the
stabilization of the seed-pump relative phase. The reflected
beam ER is the sum of the field directly reflected from the
input coupler, with an additive π phase, and the transmitted
one through M1, thus it can be written as (we still set Ein = 1):

ER = −√
R1 +

√
1 − R1√

R1
(
√

ReiφEc + i|γ |eiφp E∗
c ). (6)

By substituting Eq. (4) into Eq. (6), we explicitly find

ER = (
√

Reiφ − R1)(1 − √
Re−iφ )√

R1(1 + R − 2
√

R cos φ − |γ |2)

+ i[(1 − R1)eiφp + |γ |]|γ |√
R1(1 + R − 2

√
R cos φ − |γ |2)

. (7)

Again, if γ → 0, then ER reduces to the usual reflected field
without the nonlinear crystal. ER depends on the detuning
between seed frequency and cavity frequency though φ, but
also on the pump phase φp.

In Fig. 2 (top and center panels) we plot |Ec|2 and |ER|2 as
functions of the phase φ, proportional to the detuning ν, and of
the pump phase φp for realistic values of the other parameters
involved (similar to those we shall use in our experiment
described in Sec. III). Remarkably, the minimum value of the
intensity of the reflected beam, |E (min)

R |2, depends on the pump
phase φp (see Fig. 2, bottom panel). In particular, the mini-
mum and the maximum of |E (min)

R |2 occur in the amplification
(φp = −π/2) and de-amplification (φp = π/2) regimes, re-
spectively, as shown in the bottom panel of Fig. 2: between
these two extremes, |E (min)

R |2 is monotone with respect to φp

and this allows us to retrieve an error signal to stabilize the
pump phase. Note that, in other cavity configurations, namely,
for a different choice of R1 and R2, one can find a minimum
of the reflected field and a maximum of the transmitted one,
but the effect of the φp on their actual values is still the same.
Therefore, also in this case we can retrieve the error signal by
a suitable electronic inversion.

The stabilization of the cavity frequency is performed by
the standard PDH technique, where a phase modulation φm is
added to the seed Ein at a frequency νm [8]. The equation for
the normalized error signal is (we recall that φ ∝ ν) [8,17]

εPDH = Im[ER(ν)E∗
R (ν − νm) − E∗

R (ν)ER(ν + νm)]. (8)

Since ER depends on φp, the pump phase influences also
the PDH error signal (8). This is a very important point and
it will be better discussed in Sec. III. Here we just observe
that, in the amplification or in the de-amplification regime,
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amplificationt

de-amplification

FIG. 2. (top and center) Plots of |Ec|2 and |ER|2 (dimensionless
units) with Ein = 1 as functions of the phase φ, proportional to the
detuning ν, and the pump phase φp. The blue lines refer to the behav-
ior of |Ec|2 and |ER|2 for a particular choice of the pump phase, from
left to right φp = −π , −π/2, 0, π/2, and π . (bottom) Plot of the
minimum value |E (min)

R |2 of the reflected beam amplitude as a func-
tion of the pump phase φp. The other involved parameters have been
set to the realistic values R1 = 0.999, R2 = 0.9, � = 3.0 × 10−3, and
|γ | = 2.0 × 10−2. See text for details.

the PDH error signal vanishes at resonance, i.e., φ = 0 (top
panel of Fig. 3): the field inside the cavity and, in turn, the
transmitted beam has a maximum or a minimum when the
OPO is resonant with the input field, i.e., φ = 0, only in
these two regimes (Fig. 4, top and center panels). More in
general, the pump phase φp may lead to a PDH error signal
which is no longer equal to zero at resonance (bottom panel of
Fig. 3). To have εPDH = 0 also in this case, the vertical offset
has to be compensated. As mentioned, this offset vanishes
in the amplification (φp = −π/2) or in the de-amplification
(φp = π/2) regime: the field inside the cavity and, in
turn, the transmitted beam, has a maximum or a minimum
when the OPO is resonant with the input field, i.e., φ = 0,

p =
π
2

p = −π
2

p = 0

p = π

= 0

FIG. 3. Plots of the PDH error signal εPDH as a function of φ ∝ ν

for fixed phase modulation φm = 0.1 and for different values of the
pump phase φp. (top) In the amplification (φp = −π/2) or in the
de-amplification (φp = π/2) regime the PDH error signal vanishes
at resonance (φ = 0). (center) If φp �= ±π/2 the PDH error sig-
nal becomes zero at φ �= 0: there is an offset (arrows) due to the
effect of the pump phase. (bottom) Plot of εPDH as a function of
the pump phase φp at resonance (φ = 0). The other involved pa-
rameters have been set to the realistic values R1 = 0.999, R2 = 0.9,
� = 3.0 × 10−3, and |γ | = 2.0 × 10−2.

only in these two regimes (Fig. 4, top and center panels),
otherwise the presence of the pump introduces a detuning of
the resonance (Fig. 4, bottom panel). This last effect can be
understood by inspecting the analytic expression of the field
intensity inside the cavity, namely,

|Ec|2 = 1 − R1

1 + R − 2
√

R cos φ − |γ |2

− 2|γ |(1 − R1)
sin φp − √

R sin(φ + φp)

(1 + R − 2
√

R cos φ − |γ |2)2
. (9)

On the one hand, it is clear that the crystal may lead to the
amplification process: for instance, if we set φp = 0 and φ = 0
(resonance), |Ec|2 increases as |γ | grows. On the other hand,
the second term of the right-hand side (r.h.s.) in Eq. (9) is re-
sponsible for the detuning mentioned above, since it depends
on |γ | and, in particular, on φp. In fact, given φp �= 0, the
considered term can be positive or negative depending on the
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φp = π
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FIG. 4. Plots of |Ec|2 (solid blue lines), proportional to the OPO
output, and |ER|2 (dashed red lines) with Ein = 1 (dimensionless
units) as functions of the phase φ ∝ ν for different values of the
pump phase: (top) φp = −π/2, amplification regime; (center) φp =
π/2, de-amplification regime; (bottom) φp = π . The other involved
parameters have been set to the realistic values R1 = 0.999, R2 =
0.9, � = 3.0 × 10−3, and |γ | = 2.0 × 10−2.

value of φ ∝ ν and, thus, it eventually results in the detuning
of the resonance. In particular, for φp = ±π/2 we have

|Ec|2 = 1 − R1

1 + R − 2
√

R cos φ − |γ |2

∓ 2|γ |(1 − R1)(1 − √
R cos φ)

(1 + R − 2
√

R cos φ − |γ |2)2
. (10)

If we now consider the second term on the r.h.s. in Eq. (10) at
resonance (φ = 0), it is clearly positive in the amplification
regime (φp = −π/2) and negative for the de-amplification
regime (φp = π/2). In this last case, we may also have a local
minimum at φ = 0 and two maxima at φ �= 0, as shown in
Fig. 5.

For the sake of completeness, in Fig. 6 we plot |Ec|2 and
|ER|2 as functions of the pump phase φp at resonance, i.e.,
φ ∝ ν = 0, where |ER|2 = |E (min)

R |2 (see the bottom panel of
Fig. 2), and for φ = 0.02. Overall, two different offsets have
to be kept under control in order to generate two error signals:
one for the OPO stabilization, obtained by centering the PDH
error signal in zero (top panel of Fig. 7), and one for seed-
pump stabilizer (SPS), retrieved by fixing the minimum of the
reflected beam in zero (bottom panel of Fig. 7). In the next

FIG. 5. Plots of the |Ec|2 as a function of φ in the de-
amplification regime (φp = π/2) for different values of |γ | as
reported in the figure. The dashed line refers to the empty cavity.
The other parameters involved have been set to the realistic values
R1 = 0.999, R2 = 0.9, and � = 3.0 × 10−3.

section (III) we show the experimental technique to achieve
both goals.

III. EXPERIMENTAL SETUP AND RESULTS

The theory introduced in the previous section has been
tested using the experimental setup depicted in Fig. 8. Our
setup allows us to generate, manipulate and detect displaced
squeezed states. We have control on both the amplitude and
the phase of the state and also on the amplitude and phase of
the pump. Following the scheme in Fig. 8, the setup consists
of three main blocks. A homemade laser source (LASER) is
a Nd:YAG and it generates both the seed (at 1064 nm) and
the pump (at 532 nm, 320 mW for the results presented) for
the OPO, since it is internally frequency doubled with a PPNL

FIG. 6. Plots of |Ec|2 (solid blue lines), proportional to the OPO
output, and |ER|2 (dashed red lines) with Ein = 1 (dimensionless
units) as functions of the phase φp for different values of φ ∝ ν: (top)
φ = 0 (resonance), in this case |ER|2 corresponds to the minimum
value of the reflected beam displayed in the bottom panel of Fig. 2;
(bottom) φ = 0.02. The other involved parameters have been set
to the realistic values R1 = 0.999, R2 = 0.9, � = 3.0 × 10−3, and
|γ | = 2.0 × 10−2.
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p = 0

p = 0

original signal

original signal

FIG. 7. Plots of the PDH error signal εPDH (top panel) and the
amplitude of the reflected beam |ER|2 (bottom panel) as functions
of φ ∝ ν for the pump phase φp = π . The dashed lines refer to the
original signals (see the center panel of Fig. 3 and the lower panel of
Fig. 3), while the solid lines are obtained by setting to zero the εPDH

offset and the minimum of |ER|2, respectively. The other involved
parameters have been set to the realistic values R1 = 0.999, R2 =
0.9, � = 3.0 × 10−3, and |γ | = 2.0 × 10−2.

FIG. 8. Scheme of our setup. The main parts are three: a LASER
which produces both the pump at 532 nm and the seed and the local
oscillator (LO) at 1064 nm for the state detection; a state genera-
tion part (SG) used for quantum states generation and squeezing;
a detection part based on homodyne detection (HD). An amplitude
modulator (AM) is used to control the pump intensity. The OPO
frequency is stabilized implementing the canonical PDH technique
exploiting a high-frequency generator (HF) and a phase modulator
(PM), while the seed-pump phase stabilization is performed by the
seed-pump stabilizer (SPS) and it is based on our technique. See text
for details.

FIG. 9. Transmitted beam (lower red line), reflected beam (upper
blue line) and PDH error signal (lower black line) as functions of
the detuning ν, obtained with a frequency scan of the OPO cavity.
Solid lines are experimental data, while dashed lines are theoretical
trends obtained from R1, R2, �, and |γ |. We plot curves in the am-
plification regime (φp = −π/2, upper left), de-amplification regime
(φp = π/2, upper right), minus regime (φp = 0, lower left), and
plus regime (φp = π , lower right). For the theoretical previsions we
used the following measured values of the experimental parameters
R1 = 0.9988, R2 = 0.917, � = 2.4 × 10−3, and |γ | = 1.85 × 10−2.

crystal. The internal second-harmonic generation has a major
advantage: it behaves as a damping force which suppresses the
laser relaxing oscillations, dramatically decreasing its noise.
Therefore, this configuration avoids the necessity of building
an external cavity for the second-harmonic generation and
of introducing other elements for the noise suppression [18].
The second block, the state generation (SG), is composed of
two modulators (MOD1 and MOD2), which create quantum
states on 3 MHz sidebands, and an OPO used for squeezing.
A 10-mm-long MgO:LiNbO3 crystal with antireflection coat-
ing is placed inside the cavity. States are then detected with
a conventional homodyne detection scheme (HD), the third
block of the setup, where a fraction of the source laser serves
as the local oscillator (LO).

Both generation and detection are controlled by a com-
puter. The OPO is stabilized by using a standard PDH
technique [8,17], while the pump phase stabilization is per-
formed with our method (SPS) based on the theoretical
considerations given in Sec. II. As shown in Fig. 8, the de-
tector D3 monitors the laser amplitude fluctuations (LP), so
that the SPS error signal (DC) can be compensated for them.
This error signal is manipulated with a proportional-integral
controller (PI) and applied to a piezoelectric which varies
the pump path length, resulting in a change of its phase
in the OPO. The laser has a free spectral range of 200 MHz,
while OPO of 3025 MHz (cavity length 37 mm). Figure 9
shows the experimental intensity of the transmitted beam
(red), of the reflected beam (blue), and of the PDH error signal
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(black) as functions of the detuning ν, obtained with a scan of
the OPO. The scan is performed by applying a linear voltage
to a piezoelectric actuator attached to the output coupler of
the OPO. The solid lines represent experimental data, while
the dashed ones are the theoretical previsions. In the figure
we consider four configurations with different relative seed-
pump phases. The upper-left panel refers to the amplification
regime, where φp = −π/2: in this configuration the transmit-
ted beam is maximum, the reflected beam is minimum, and
the PDH error signal is zero when the OPO is resonant with
the laser. The upper-right panel refers to the de-amplification
regime, where φp = π/2: as in the previous case, both the
transmitted and the reflected beams are centered around the
OPO resonance, i.e., φ = ν = 0, with ν being the detuning.
Notice the two small relative maxima in the transmitted beam
around the resonance, both in theoretical and in experimental
curves (see also the center panel of Fig. 4). The lower-left and
lower-right panels of Fig. 9 refer to two intermediate regimes
that we call minus, where φp = 0, and plus, respectively. We
can clearly see that the PDH error signal has a negative (for
φp = 0) or positive (φp = π ) offset for the OPO resonance
(see also the center panel of Fig. 3).

The experimental data are in very good agreement with the
theoretical predictions obtained using the derived parameters
of mirror reflectivities and nonlinear crystal losses, namely,
R1 = 0.9988, R2 = 0.917, and � = 2.4 × 10−3, that have
been measured experimentally and are compatible with the
values listed in the data sheet. Moreover, from the transmitted
powers in amplification and de-amplification regimes we cal-
culated G = 5.68 and, finally, we derived |γ | = 1.85 × 10−2

using Eq. (5). We stress that, in the two regimes, minus and
plus the PDH error signal presents an offset in the reso-
nance condition; that is, the error signal does not vanish at
resonance. If we shift the PHD signal offset to zero with a
suitable compensation, the PDH technique will allow us to
stabilize the OPO cavity at resonance also with φp �= ±π/2.
Moreover, since the actual value of the minimum of the re-
flected beams is a monotonic function of the pump phase for
(2k − 1)π/2 + kπ < φp < (2k + 1)π/2, k ∈ Z, as one can
see from Fig. 2, we can always set this minimum to zero in
order to retrieve an error signal to stabilize the pump phase.
This point will be better clarified in the following.

Figure 10 shows the amplitudes of the reflected and trans-
mitted beams for a pump phase scan. A piezoelectric actuator
is attached to a mirror used to change the pump phase φp

and a linear voltage is applied. The OPO is actively stabilized
during the scan, where we put the PDH error signal offset to
zero. It is clear that the reflected beam has a maximum in the
de-amplification regime and a minimum in the amplification
regime, as expected. Thus, after the application of a proper
offset, the reflected beam power is a good error signal and
can be used to stabilize φp at any value but ±π/2, where the
derivative of the error signal vanishes.

The advantage of our technique is that both PDH error
signal for OPO stabilization and SPS error signal for the
pump phase stabilization are obtained from the same reflected
beam. This allows us to not touch the transmitted beam, which
cannot suffer power losses since it contains the squeezed state.

The procedure for the optimization of the two offsets (PDH
and SPS) is rather simple. Once the phase of the pump is

re ected

transmitted
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pl

itu
de

 (a
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)

time (ms)

FIG. 10. Transmitted beam (lower red line) and reflected beam
(upper blue line) for a scan of the cavity (here the time is related
to the pump phase φp). A triangular signal has been applied to the
PIEZO in Fig. 8 acting on the pump phase. For comparison with the
theory, see the plots of |ER|2 and |Ec|2 as functions of φ and φp in
Figs. 2 and in 6, respectively.

chosen and, thus, the amplitude of the reflected beam at res-
onance, a scan of the OPO is performed and the two error
signals mentioned above are monitored. An offset is added
electronically to the PDH error signal in order to set it to
zero where the reflected beam has its minimum, while another
offset is added to the SPS error signal to shift to zero the value
of the amplitude of the reflected beam at the same point (see
also Fig. 7). Figure 11 shows the two experimental signals
after this optimization in a configuration near the minus con-
figuration. It is worth noting that the needed offset is added to
the values of the signals not by physically acting on the optical
setup, but by electronic means. To compensate the SPS error
signal for the laser power fluctuations, we subtract the direct
laser power from it. Finally, both the resulting SPS error signal
and the PDH error signal are independently processed with
two homemade PIs and applied to the piezoelectric actuator
for changing φp and the cavity length, respectively. Figure 12
displays the amplitude of the transmitted beam of the OPO
in three different cases. The red line refers to the condition
without the pump and the relative power fluctuations are 0.6%.
The black line refers to the minus condition (φp = 0). Both the
integrative and the proportional of the SPS PI are activated
and the relative power fluctuations are 1.9%. Finally, the light
blue line refers again to the minus condition, but now the
proportional is switched off and the relative power fluctuations
are 6.2%. In this last case the fluctuations have the typical
frequency of the mountings mechanical vibrations, which is
of the order of kHz. Black and blue curves have been rigidly
shifted in the amplitude direction of −0.2 and −0.4, respec-
tively, in order to better visualize them. It is worth noting that,
once the OPO and the pump phase are stabilized, the system
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FIG. 11. PDH error signal (lower red line) and SPS error signal
(upper blue line) during a scan of the cavity frequency with all the
offsets optimized (here the time is related to the phase φ ∝ ν). The
two signals can be electronically shifted along the vertical axis, as
highlighted by the arrows: we can set to zero the signals without
physically affecting the optical setup.

no pump

pump and I

pump and PI

N
or

m
al

iz
ed

 a
m

pl
itu

de

time (ms)

FIG. 12. Example of OPO stabilization in different conditions
as a function of time. Lines represent the transmitted beam in three
cases: (i) pump turned off (lower red line), (ii) pump on and pump
phase stabilized at φp = 0 with both integrator and proportional
(upper black line), and (iii) pump on and pump phase stabilized at
φp = 0 with the only integrator (upper light blue line). The relative
intensity noise is 0.6%, 1.9%, and 6.2%, respectively. Notice that the
black line has been rigidly shifted of −0.4 for a better visualization.

remains stable for a long time, even hours. The only limit-
ing factor is the dynamics of the two piezoelectric actuators,
which can reach their maximum (or minimum) elongation if
the thermal deformations are too large.

IV. APPLICATION: RELIABLE GENERATION OF
DISPLACED SQUEEZED STATES

In this section we demonstrate the potentiality of our tech-
nique by applying the method to create displaced squeezed
states. More precisely, taking into account the losses, the den-
sity operator describing the single-mode states we generate
and analyze can be written in the following compact form
[19,20]:

ρ = D(α)S(ξ )ρthS†(ξ )D†(α), (11)

where, as usual, D(α) = exp(αa† − α∗a) and S(α) =
exp[ 1

2ξa2 − 1
2ξ ∗(a†)2] are the displacement and squeezing op-

erators, respectively, a being the annihilation operator of the
field, [a, a†] = I. In the previous formula we also introduced
the density operator of the thermal state

ρth =
∞∑

n=0

(Nth )n

(1 + Nth )n+1 |n〉〈n|. (12)

We remark that the state (11) is the overall state generated by
our setup [19,21]. In this context, the average number Nth of
thermal photons can be seen as an effective parameter summa-
rizing the effect of losses (only if Nth = 0 we have no losses
at all and the generated state is thus pure). For such a state the
squeezing level in dB is given by −10 log10[(1 + 2Nth )e−2|ξ |].
For the sake of simplicity, but without loss of generality, we
considered states with α ∈ R and ξ ∈ C and we also obtain
arg(ξ ) = φp + π/2.

The addressed states have been generated through our
setup following the well-established procedure described in
Refs. [6,7,22,23]. Figure 13 shows the experimental homo-
dyne traces of three examples of different states (left) and
their tomographic reconstructions, represented in the phase
space (right). In the plots it is clear the modulation of the
quadrature standard deviation due to the squeezing (dashed
lines in the left plots) as well as the relative phase between the
coherent amplitude (set to zero) and the squeezing parameter
ξ (related to the angle between the x0 axis and the major axis
of the ellipses in the right plots). The latter is indeed a proof of
the reliability of our pump-seed phase stabilization technique,
being the pump and seed phases connected to the squeezing
parameter and coherent amplitude parameters.

We remark that, since the aim of our study was to demon-
strate the effectiveness of the technique we developed, in
our experiments we used a pump laser with a not very high
intensity, thus resulting in a squeezing level around 3 dB, as
shown in Fig. 13.

V. CONCLUSIONS

In this work we presented a theoretical model and exper-
imental verification of a method for the stabilization of the
relative phase between seed and pump of an OPO. To this
aim, we have also developed a proper model of the OPO to
obtain the analytical expression for the amplitude of the beam
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FIG. 13. Examples of displaced squeezed states generation with
different homodyne traces (left plots) and the corresponding to-
mographic reconstruction in the phase space (right plots). (top)
Amplification regime with φp ≈ −π/2 ⇒ arg(ξ ) ≈ 0, α = 2.93 and
Nth = 0.13. (center) φp ≈ 0 ⇒ arg(ξ ) ≈ π/2, α = 1.97, and Nth =
0.12. (bottom) De-amplification regime φp ≈ π/2 ⇒ arg(ξ ) ≈ π ,
α = 1.44, and Nth = 0.14. In the left plots, the solid lines refer to
the average value of the experimental trace, while the dashed lines
represents the standard deviation, better highlighting the effect of
squeezing. Note that, in the phase space (right plots), the angle
between the major axis of the ellipses and the horizontal one is
given by arg(ξ )/2. In the pictures we also report the corresponding
squeezing level and total average number of photons. The vacuum
variance is set to 1.

reflected off the cavity as a function of the cavity frequency, of
the crystal nonlinearity, and of the pump phase. In particular,
our technique allows us to extract two error signals from the
reflected beam, one for the stabilization of the pump-seed
phase and one for the OPO frequency with the PDH technique,
without the necessity of two different modulation and demod-

ulation systems required by other methods (see, for instance,
the Appendix). Our analysis shows that the pump affects the
PDH error signal adding an offset that has to be compensated
and that depends on the pump phase. We have also shown
that our system allows the suppression of the noise caused
by pump phase fluctuations to 1.9% on the transmitted beam,
leading to an improvement of the squeezing level. Eventually,
the reliability of our technique can pave the way not only
for practical applications exploiting squeezed coherent states
but also for studying more fundamental aspects of quantum
information science based on continuous-variable systems.
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APPENDIX: ALTERNATIVE METHOD FOR PUMP
STABILIZATION

In this Appendix we present another method for the pump
stabilization that is suggested in Ref. [12]: it is based on
modulating the pump entering the OPO with sidebands. In this
case the γ parameter can be written as

γm = γ − iβ sin (2πνmt ). (A1)

The two sidebands of the pump stimulates the generation
of two sidebands at frequency νm, which are not resonant
with the OPO cavity. This leads to an error signal with
three terms: the central term ER and the two sidebands at
frequency νm given by the transmitted part of ER on the side-
bands. Thus the error signal for this technique can be written
as

εB = Im[ER(ν)E∗
m(ν) − E∗

R (ν)Em(ν)],

where the field Em can be obtained from ER in Eq. (7) by tak-
ing into account the contribution from iγ (1 − R1). Therefore,
one has

Em = iγ

√
1 − R1√

R1
E∗

c . (A2)

It is clear that, in order to work, the present technique requires
a modulation on the pump as well as a modulation on the
seed for the PDH OPO stabilization. This last modulation has
to be performed at a different frequency with respect to the
pump modulation. For this reason, one needs two different
modulation, demodulation and detection stages, which is a
possible disadvantage.
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