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Abstract
In a recent paper by D’Auria et al (2009 Phys. Rev. Lett. 102 020502) we reported the full
experimental reconstruction of Gaussian entangled states generated by a type-II optical
parametric oscillator (OPO) below threshold using a single homodyne detector. Here we
investigate more deeply the Gaussian character of the OPO output addressing the homodyne
traces. More precisely, we apply a suitable normality test to check the actual Gaussian
distribution of the homodyne data and then we perform the full reconstruction of the signal.

PACS numbers: 03.67.Mn, 03.65.Wj, 03.67.Bg, 42.65.Yj

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Light beams endowed with non-classical correlations [1, 2]
are key ingredients for quantum technology and find
applications in quantum communication [3], imaging [4]
and precision measurement [5, 6]. Among others, entangled
states produced by optical parametric oscillators (OPOs) are
Gaussian states [7, 8] and thus may be fully characterized by
the first two statistical moments of the field modes. In turn,
the covariance matrix (CM) contains complete information
about entanglement [9, 10], i.e. about their performances as a
resource for quantum technology. Their full characterization
is of fundamental interest on its own and represents a tool
for the design of quantum information processing protocols
in realistic conditions.

Recently, we presented the full experimental
reconstruction of Gaussian entangled states generated
by a type-II OPO below threshold [11]. The reconstruction
setup was based on a single homodyne detector and we
demonstrated the convenience and robustness of this method
for the full characterization of OPO signals. Nevertheless,
under particular conditions, OPO outputs may present
non-Gaussian behaviours [12, 13]: in these scenarios a

preliminary check on the Gaussian character of the signal
under investigation is extremely important.

In this paper, the full reconstruction of the CM associated
with OPO states is preceded with the analysis of its Gaussian
character by applying a suitable normality test to the
homodyne data.

2. Reconstruction method: the theory

This section briefly reviews the reconstruction method [14].
The CM σ of a bipartite state ! can be written as the block
matrix:

σ =
(

A C

CT B

)

, (1)

A, B and C being 2 × 2 real matrices. The entries of σ
are given by σhk = 1

2 〈{Rk, Rh}〉 − 〈Rk〉〈Rh〉, where 〈O〉 =
Tr[! O] and { f, g} = f g + g f is the anti-commutator; we
also introduced the vector R= (x1, y1, x2, y2) of canonical
operators in terms of the field mode operators ak , xk =
(a†

k + ak)/
√

2, yk = i(a†
k − ak)/

√
2, k = 1, 2. From the CM of

Gaussian states follow all their properties, such as positivity
of the density matrix, state purity and separability [2].
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Figure 1. Experimental setup: a type-II OPO containing a periodically poled crystal (PPKTP) is pumped by the second harmonic of a
Nd:YAG laser. At the OPO output, a half-wave plate (λ/2out), a quarter-wave plate (λ/4out) and a PBSout select the mode for homodyning.
The resulting electronic signal is acquired via a PC module.

Our reconstruction method considers the four
additional auxiliary modes c = (a + b)/

√
2, d = (a − b)/

√
2,

e = (ia + b)/
√

2 and f = (ia − b)/
√

2 obtained by the action
of polarizing beam splitters (PBSs) and phase shifters on
modes a ≡ a1 and b ≡ a2. In our experiment, block A of the
CM is retrieved by measuring the single-mode quadratures of
mode a: the variances of xa and ya give the diagonal elements,
while the off-diagonal ones are obtained from the additional
quadratures za ≡ (xa + ya)/

√
2 and ta ≡ (xa − ya)/

√
2 as

σ12 = σ21 = 1
2 (〈z2

a〉 − 〈t2
a 〉) − 〈xa〉〈ya〉 [14]. Block B is

reconstructed in the same way from the quadratures of b,
whereas the elements of block C are obtained from the
quadratures of the auxiliary modes c, d , e and f as follows:

σ13 = 1
2
(〈x2

c 〉 − 〈x2
d〉) − 〈xa〉〈xb〉, (2)

σ14 = 1
2
(〈y2

e 〉 − 〈y2
f 〉) − 〈xa〉〈yb〉, (3)

σ23 = 1
2
(〈x2

f 〉 − 〈x2
e 〉) − 〈ya〉〈xb〉, (4)

σ24 = 1
2
(〈y2

c 〉 − 〈y2
d〉) − 〈ya〉〈yb〉. (5)

Notice that the measurement of the f -quadratures is not
mandatory, since 〈x2

f 〉 = 〈x2
b〉 + 〈ya〉2 − 〈x2

e 〉 and 〈y2
f 〉 =

〈x2
a 〉 + 〈y2

b〉 − 〈y2
e 〉. Analogous expressions hold for 〈x2

e 〉
and 〈y2

e 〉.

3. Reconstruction method: the experiment

3.1. Experimental setup

The experimental setup, shown in figure 1, is thoroughly
described in [11]. In order to select modes a and b, coming
from the OPO crystal, or their combinations c and d , the
OPO beams are sent to a half-wave plate and a PBS. Modes e
and f are obtained by inserting an additional quarter-wave
plate [14]. The PBS output goes to a homodyne detector,
described in detail in [6, 12], exploiting the laser output at
1064 nm as the local oscillator (LO). The overall homodyne
detection efficiency is η = 0.88 ± 0.02. The LO reflects on
a piezo-mounted mirror (PZT), which allows variation of its

phase θ . In order to avoid the laser low-frequency noise, data
sampling is moved away from the optical carrier frequency
by mixing the homodyne current with a sinusoidal signal of
frequency & = 3 MHz [12]. The resulting current is low-pass
filtered (B = 300 kHz) and sampled by a PCI acquisition
board (Gage 14100, 1M points per run, 14-bit resolution). The
total electronic noise power was measured to be 16 dB below
the shot-noise level, corresponding to a signal-to-noise ratio
of about 40.

Acquisition is triggered by a linear ramp applied to the
PZT and adjusted to obtain a 2π variation in 200 ms. Upon
spanning the LO phase θ , the quadratures x(θ) = x cos θ +
y sin θ are measured. Calibration with respect to the noise
of the vacuum state is obtained by acquiring a set of data
with the output from the OPO obscured. All the expectation
values needed to reconstruct σ are obtained by quantum
tomography [15], which allows one to compensate non-unit
quantum efficiency and to reconstruct any expectation value,
including those of specific quadratures and their variances, by
averaging special pattern functions over the whole data set.
As a preliminary check of the procedure, we verified that the
CM of the vacuum state is consistent with σ0 = 1

2 I within
experimental error.

3.2. Check on the OPO output Gaussian character

We start our analysis by checking the Gaussian character of
the OPO signals, i.e. testing the Gaussianity of the homodyne
distribution at fixed phase of the LO [12]. To this aim, we
divided the homodyne traces into bins of ≈ 5000 data and
applied the Shapiro–Wilk normality test [16] to each bin: if the
p-value associated with the test exceeds the threshold value
0.05, then the null hypothesis (namely, the data are normally
distributed) is true. In figure 2, we show the experimental
homodyne traces for modes a, b, c and d (plots on the left)
as well as the corresponding p-value of the Shapiro–Wilk
test (plots on the right). As is apparent from the plots, both
modes c and d are squeezed with quadrature noise reduction,
corrected for non-unit efficiency, of about 2.5 dB for mode c
and 2.8 dB for mode d . Analogous behaviour was observed
for modes e and f .

In addition, we checked that the mean values of all the
involved quadratures are negligible, in agreement with the
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Figure 2. Left: from top to bottom, experimental homodyne traces
of modes a, b, c and d . Right: p-value of the Shapiro–Wilk
normality test as a function of bin number (see the text for details).
Since we have p-values ! 0.05 (the dashed line in the plots), we
can conclude that our data are normally distributed. θ is the relative
phase between the signal and the LO.

description of OPO output as a zero-amplitude state. Then,
we measured the needed quadratures of the six modes a– f .
We found modes a and b excited in a thermal state, thus
confirming the absence of relevant local squeezing. Their
combinations c, d, e and f are squeezed thermal states with
squeezing appearing on yc, xd , te and z f , respectively.

3.3. Experimental results and OPO state characterization

The reconstructed CM reads

σ =





1.406 0.000 1.200 0.076
0.000 1.406 0.021 −1.219
1.200 0.021 1.380 0.000
0.076 −1.219 0.000 1.380



 . (6)

It is worth noting that, in the ideal case, the OPO output
is in a twin-beam state S(ζ )|0〉, S(ζ ) = exp{ζa†b† − ζ ∗ab}
being the entangling two-mode squeezing operator: the
corresponding CM has diagonal blocks A, B, C with the two

diagonal elements of each block equal in absolute value. In
realistic OPOs, the state at the output is expected to be a
zero-amplitude Gaussian entangled state, whose general form
may be written as [11, 17]

!g = S(ζ ) U(β) LS(ξ1, ξ2) T LS†(ξ1, ξ2) U†(β) S†(ζ ), (7)

where T = τ1 ⊗ τ2, with τk = (1 + n̄k)
−1[n̄k/(1 + n̄k)]a†a ,

denotes a two-mode thermal state with n̄k average
photons per mode, LS(ξ1, ξ2) = S(ξ1) ⊗ S(ξ2), S(ξk) =
exp{ 1

2 (ξka†2 − ξ ∗
k a2)}, denotes local squeezing and

U(β) = exp{βa†b − β∗ab†} is a mixing operator, ζ , ξk

and β being complex numbers. For our configuration, besides
a thermal contribution due to internal and coupling losses, we
expect a relevant entangling contribution with a small residual
local squeezing and, as mentioned above, a possible mixing
among the modes. In the present case, the relevant parameters
to characterize the density matrix !g corresponding to CM (2)
are the mean number of thermal photons n̄1 * 0.25, n̄2 * 0.13
and entangling photons n̄s = 2 sinh2 |ζ | * 1.02 (the other
parameters are given by ζ * 0.66 e−i 0.04, ξ1 * 0.03 e−i 0.41 π ,
ξ2 * 0.04 ei 0.38 π , β * 0.68 ei 0.39 π ). A few considerations
should be made about uncertainties on the CM elements.
With respect to blocks A, B, and σ13 and σ24 of block
C , uncertainties are of the order δσ jk * 0.003 and were
obtained by propagating tomographic errors [11]. In all the
previous cases the phase fluctuations are irrelevant, since the
two modes a and b are both excited in a thermal state and
the elements σ13 and σ24 are retrieved as combinations of
squeezed/anti-squeezed variances, which are quite insensitive
to fluctuations of θ . On the other hand, the elements σ14 and
σ23 of block C depend on the determination of x2

e, f and y2
e, f ,

which are sensible to phase fluctuations. Now, the resulting
uncertainties are about δσ14 = δσ23 * 0.02 for both CM
elements, and are induced by a δθ * 20 mrad variation in the
LO phase, corresponding to the experimental phase stability
of the homodyne detection.

Starting from CM σ, we can fully characterize
our state. Since the minimum symplectic eigenvalue of
σ is ν− = 0.66 ± 0.02! 0.5, the CM corresponds to a
physical state with purity µ(σ) = (4

√
Det[σ])−1 = 0.53 ±

0.01. The minimum symplectic eigenvalue for the partial
transpose is ν̃− = 0.18 ± 0.02, which corresponds to a
logarithmic negativity EN (σ) = 1.01 ± 0.02, i.e. the state is
entangled [18], with entanglement of formation EF (σ) =
1.28 ± 0.02 [19]. In turn, it satisfies the Duan inequality [10]
with the results 0.37 ± 0.01 < 2.00 and the EPR criterion [20]
with 0.12 ± 0.01 < 1/4.

In figure 3, we also report the single-mode photon
distributions (either from data or from the single-mode CM)
for modes a, b, c and d: distributions of a and b are thermal,
whereas the statistics of modes c and d correctly reproduce the
even–odd oscillations expected for squeezed thermal states.

4. Concluding remarks

We presented the full reconstruction of the CM of a bipartite
state generated by an OPO below threshold following the
method proposed in [14] and demonstrated in [11]. In
particular, we faced the relevant problem of the actual
Gaussian character of the state under investigation, which
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Figure 3. Left: joint photon number distribution p(n, m) for the
entangled state of modes a and b at the output of the OPO. Right:
single-mode photon distributions p(n) for modes a and c (top right)
and b and d (bottom right). The single-mode distributions of modes
a and b are thermal and correspond to the marginals of p(n, m). The
distributions of modes c and d are those of squeezed thermal states.

is assumed as a requirement by the reconstruction method.
To this aim, we applied the Shapiro–Wilk normality test to
the homodyne traces. We have shown that the state outgoing
the OPO is a Gaussian state, and we have reconstructed its
CM and obtained its main properties, such as purity and
separability/entanglement.
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