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Abstract
In this paper we address the estimation of the phase shift imposed on a qubit in the presence of
phase diffusion. We evaluate the ultimate quantum limits to precision and determine optimal
probes and measurements achieving those bounds. We also analyse in detail the performances
of spin measurements and have found that although the corresponding Fisher information
depends on the unknown value of the phase shift, we may still achieve the ultimate bound
using a two-step adaptive method.

PACS numbers: 03.65.Wj, 03.67.−a, 42.50.St

Let us consider a qubit system subjected to an unknown phase
shift φ, i.e. a rotation about a given axis, say z, described
by the unitary Uφ = exp {−iσzφ}. In ideal conditions, the
estimation of the phase shift consists of preparing the
qubit in a known pure state and then performing suitable
measurements on the (pure) shifted state. In any realistic
implementation, however, the propagation of a qubit
unavoidably involves some noise, which influences the
estimation scheme and usually degrades overall precision.
In this paper, we address the estimation in the presence of
non-dissipative phase noise. This is the most detrimental kind
of noise for a phase gate since it destroys the off-diagonal
elements of the density matrix and thus the information
on the imposed phase shift. Our goal is to evaluate the
ultimate quantum limits to precision in the presence of noise,
as established by local quantum estimation theory and to
determine both the optimal preparation of the probe qubit and
the optimal measurement to be performed at the output. In
view of an experimental implementation, we also analyse in
detail the performances of spin measurements and have found
that they allow for optimal estimation upon using a two-step
adaptive method.

In our scheme, a single qubit initially prepared in the
pure state # = |ϕ〉〈ϕ| undergoes an unknown phase shift φ
imposed by the unitary Uφ . Before being measured, the shifted
state #φ = Uφ# U †

φ is degraded by a non-dissipative phase
noise occurring during propagation. The effect of this kind
of noise on the qubit density matrix can be described by
the master equation (ME) #̇φ,%2 = γ L[σ+σ−]#φ,%2 , where

L[A]#φ,%2 = 1
2 {[A#φ,%2 , A†] + [A, #φ,%2 A†]} is a Lindblad

superoperator and %2 = γ t/2 is, as we will see in the
following lines, the effective noise factor. Since L[σ+σ−]
and σz commute, we can focus on the evolution of #, i.e.
#̇%2 = γ L[σ+σ−]#%2 . Upon writing #%2 in the eigenbasis
of σz , the ME may be written as a set of differential
equations #̇nm = − 1

2 γ (n − m)2#nm for the matrix elements
#nm = 〈n|#%2 |m〉. The solution reads as follows:

#nm(t) = e−%2(n−m)2
#nm(0), (1)

where #nm(0) denotes the initial density matrix elements.
From equation (1) it is clear that the diagonal elements are
left unchanged, and in turn energy is conserved, whereas the
off-diagonal ones are progressively destroyed. Finally, the
solution of the ME is #φ,%2(t) = Uφ#%2 U †

φ . Since we can
consider the noise factor %2 as a fixed parameter, in the
following we will not write explicitly the dependence on it.
It is worth noting that the evolution (1) also corresponds to
the application of a random, zero-mean Gaussian-distributed
phase shift to a quantum state.

The goal of an estimation procedure is not only to retrieve
the value of the unknown parameter, but also to obtain this
information with minimum uncertainty. The ultimate limit
to the precision of any estimation procedure is given by
the quantum Cramér–Rao bound [1–4]: Var[φ] = H−1, where
H is the quantum Fisher information (QFI), which, for the
estimation of a shift-parameter imposed by a unitary, is
independent of φ. For a pure probe state the QFI equals four
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Figure 1. Plot of (a) the Fisher information F(φ, %2) and (b) the sensitivity S(φ, %2) in the case of equatorial qubit probe states (θ = π/4)
as a function of δ = α − φ and different values of %2.

times the fluctuation of σz , i.e. H = 4(1 − 〈ϕ|σz|ϕ〉2). For
mixed states one has [5]

H = 2
∑

n $=m

(λn − λm)2

λn + λm
|〈ψm |∂φψn〉|2 , (2)

where |ψn〉 ≡ Uφ|ϕn〉 is the eigenvector of the shifted
state and λn is its (shift independent) eigenvalue,
#φ =

∑
n λn|ψn〉〈ψn| =

∑
n λnUφ|ϕn〉〈ϕn|U †

φ . If we decom-
pose |ψn〉 in the standard basis |ψn〉 = Uφ

∑
k rnk |k〉 and

then plug this into the eigenvalue equation #φ|ψn〉 = λn|ψn〉,
we arrive at

∑
k #nk(0) e−%2(n−k)2

rqk = λqrqn , ∀n. Moreover,
since |∂φψn〉 = i

∑
k k rnk eikφ|k〉, we have |〈ψm |∂φψn〉|2 =

|
∑

k k rmk rnk |2 and thus, given λn and rnk , we can evaluate
the QFI.

The calculation of eigenvalue λn and the coefficient rnk

of the standard basis decomposition may be a difficult task
to be performed by resorting to numerical diagonalization of
the perturbed state. However, in the case of qubit systems,
calculations can be carried out analytically, as we are going to
show in the following. Using the Bloch sphere representation,
we write the initial qubit state as # = 1

2 ( + r ·σ) where
is the 2 × 2 identity matrix, r = (rx , ry, rz), |r|2 ! 1 and

σ = (σx , σy, σz) is the Pauli matrices vector. The evolution
under the action of the ME corresponds to the transformation
of the Bloch vector r (rx , ry, rz) → (rx e−%2

, rye−%2
, rz),

i.e. the Bloch sphere is deformed in such a way that the
z-component is left unchanged, while the x and y ones are
scaled by a factor e−%2

. Now, due to symmetry considerations
and without lack of generality, we focus on the initial pure
state with the Bloch vector: r = (sin 2θ, 0, cos 2θ), 2θ being
the azimuthal angle. In the density matrix representation the
evolved state reads as follows:

# =
(

cos2 θ e−%2
cos θ sin θ

e−%2
cos θ sin θ sin2 θ

)
. (3)

The eigenvalues are given by λ± = 1
2 [1 ± 1√

2
(1 + f (θ, %2))]

with f (θ, %2)=
√

e−2%2 +(1 − e−2%2
) cos 4θ . The correspon-

ding eigenvectors read are given by |ψ±〉 =
1

Z±
(g±(θ, %2)|−〉 + |+〉) with 〈ψ+|ψ−〉 = 0 and

g±(θ, %2) = cos 2θ ± f (θ, %2)/(
√

2 sin 2θ), (4a)

Z± =
√

1 + [g±(θ, %2)]2. (4b)

Substituting the previous equations into equation (2), we
obtain

H(θ, %2) = e−2%2
sin2 2θ , (5)

which reaches the maximum for θ = π/4: the best states
for phase estimation in the presence of phase noise are the
equatorial ones, i.e. the states lying in the x–y plane of
the Bloch sphere. Since the Bures metrics, and then the
Bures distance [6–12] between states, is proportional to the
QFI [5, 13], this result can be easily understood under a
geometrical point of view. If we choose two states, one of
them equatorial and the other not, and shift them by the same
amount φ, then the distance on the Bloch sphere between
the initial states and the shifted counterparts is larger for the
equatorial states: the equatorial states allow better estimation.

The optimal quantum estimator (the observable to be
measured) can be written as [5] Oφ = φI+ Lφ/H(θ, %2),
where we introduced the symmetric logarithmic derivative
∂φ#(φ, %2) = 1

2 (Lφ#(φ, %2) + #(φ, %2)Lφ). One finds

Lφ = i
2g+g−(g+ − g−)(λ− − λ+)

Z2
+ Z2

−(λ+ + λ−)

(
σ+ eiφ − σ−e−iφ)

, (6)

where λ±, g± ≡ g±(θ, %2) and Z± are as given above. If we
choose θ = π/4, equation (6) reduces to Lφ = ie−%2

(σ+eiφ −
σ−e−iφ).

Let us now consider a realistic scenario where, in order
to estimate φ, we measure the spin in a generic direction in
the plane, i.e. the observable .α = σx cos α + σy sin α. The
probabilities to obtain the outcomes ±1 given the phase shift
φ read

P%2(±1|φ) = 1
2 [1 ± e−%2

cos(α − φ) sin 2θ ], (7)

and the expectation value is 〈.α〉 = Tr[.α #(φ, %2)] =
e−%2

cos(α − φ)sin 2θ . The corresponding Fisher information
turns out to be

F(φ, %2) =
∑

k=±1

P%2(k|φ)
[
∂φ ln P%2(k|φ)

]2 (8)

= e−2%2
sin2(α − φ) sin2 2θ

1 − e−2%2 cos2(α − φ) sin2 2θ
, (9)

which is plotted in figure 1(a) for equatorial probe states
(θ = π/4) as a function of δ = α − φ and different values of
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Figure 2. Sensitivity of σx measurement to a small change dφ in
the phase shift. The projections onto the x-axis are the expectations
〈.0〉, with .0 = σx . For a fixed change dφ, the change of 〈.0〉 at
φ = 0 is smaller than the one at φ = π/2. For the sake of simplicity
we sketch only the upper right quarter of the Bloch sphere x–y
equatorial plane.

%2. As it is apparent from the plot, without noise (%2 = 0)
one has F = 1, ∀α, φ, i.e. the Fisher information of spin
measurements is equal to the QFI H and thus one may
easily achieve optimal estimation. When noise affects the
propagation, the maximum of F , which equals the QFI H ,
is achieved for δ = α − φ = π/2, while it goes to zero as
α − φ = k π , k ∈ N. These results are also understood upon
considering the sensitivity of the measurement (actually this
is the square of the sensitivity):

S = Var[.α]
(
∂φ〈.α〉

)2 = 1 − 〈.α〉2

(
∂φ〈.α〉

)2 , (10)

which is the ratio between the fluctuations of 〈.α〉 and how
〈.α〉 varies with respect to φ. The quantity

√
S represents

the smallest change of φ that can be detected with our
measurement (up to the statistical scaling). In figure 1(b)
we plot the sensitivity (10) for equatorial probe states as
a function of δ = α − φ and different values of %2. In the
present case, S(φ, %2) is just the inverse of equation (9):
the maximum of F (maximum information) corresponds to
the case of maximum sensitivity (minimum of S). If %2 = 0,
one finds that Var[.α] and (∂φ〈.α〉)2 are always equal,
irrespective of the values of α and φ. When noise is acting,
the maximum of F at δ = π/2 corresponds to the minimum
of S(φ, %2); this fact can be also understood by geometrical
means addressing the special case of α = 0 (.0 = σx ). In this
case the result of the measurement carried out onto the probe
is just the projection onto the x-axis: for a fixed change dφ,
the change of 〈.0〉 at φ = 0 is smaller than the one at φ = π/2
(see figure 2).

Remarkably, although the Fisher information depends on
the unknown value of φ, we may still achieve the QFI bound
for any value of φ using a two-step adaptive method. During
the first step, we use a small amount of data to obtain a rough
estimate φ̃ of the phase shift; then, at the second step, we
tune .α according to the transformation α → φ̃ + π/2 and
put the setup in the optimal configuration. The scheme may
be iterated, but we found numerically [14] that two steps
are enough to achieve the QFI limit. The same goal may
be obtained by fixing the measurement at a chosen α and
then tuning the probe state by applying a suitable rotation.
Overall, spin measurements are good candidates to provide
optimal estimation upon the choice of a suitable estimator, e.g.
Bayesian ones [15].

In conclusion, we have evaluated the ultimate quantum
limits to precision of phase-shift estimation for qubit in the
presence of phase diffusion. The ultimate precision does not
depend on the value of the phase shift, whereas the optimal
measurement does. We have determined the optimal probe and
analysed in detail the performance of spin measurements. We
found that a simple two-step adaptive permits one to achieve
ultimate bounds to precision, thus allowing for experimental
implementation with current technology [16].
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