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degli Studi di Milano, I-20133 Milano, Italy
4 INFN, Sezione di Milano, I-20133 Milano, Italy

E-mail: luca.razzoli@unimore.it, paolo.bordone@unimore.it and
matteo.paris@fisica.unimi.it

Received 28 February 2022, revised 7 May 2022
Accepted for publication 24 May 2022
Published 9 June 2022

Abstract
A fully connected vertex w in a simple graph G of order N is a vertex con-
nected to all the other N − 1 vertices. Upon denoting by L the Laplacian matrix
of the graph, we prove that the continuous-time quantum walk (CTQW)—with
Hamiltonian H = γL—of a walker initially localized at |w〉 does not depend
on the graph G. We also prove that for any Grover-like CTQW—with Hamil-
tonian H = γL +

∑
w λw|w〉〈w|—the probability amplitude at the fully con-

nected marked vertices w does not depend on G. The result does not hold for
CTQW with Hamiltonian H = γA (adjacency matrix). We apply our results to
spatial search and quantum transport for single and multiple fully connected
marked vertices, proving that CTQWs on any graph G inherit the properties
already known for the complete graph of the same order, including the opti-
mality of the spatial search. Our results provide a unified framework for several
partial results already reported in literature for fully connected vertices, such as
the equivalence of CTQW and of spatial search for the central vertex of the star
and wheel graph, and any vertex of the complete graph.
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(Some figures may appear in colour only in the online journal)

∗Authors to whom any correspondence should be addressed.

1751-8121/22/265303+21$33.00 © 2022 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/ac72d5
https://orcid.org/0000-0002-9129-2154
https://orcid.org/0000-0002-4313-0732
https://orcid.org/0000-0001-7523-7289
mailto:luca.razzoli@unimore.it
mailto:paolo.bordone@unimore.it
mailto:matteo.paris@fisica.unimi.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ac72d5&domain=pdf&date_stamp=2022-6-9


J. Phys. A: Math. Theor. 55 (2022) 265303 L Razzoli et al

1. Introduction

A quantum particle propagating on a discrete space, e.g., on a graph, performs a quantum walk,
the quantum analog of classical random walk. Quantum walks are a well-established model [1],
with already existing physical implementations [2]. Continuous-time quantum walks (CTQWs)
were introduced in [3] as a quantum algorithm to traverse decision trees. In a CTQW the state
of the walker evolves continuously in time according to the Schrödinger equation under a
Hamiltonian which respects the topology of the graph considered. The graph is mathematically
represented by the Laplacian matrix L = D − A, which encodes the degree D and the adjacency
A of the vertices. Hence, the matrices L and A are usually taken as generators of a CTQW. For
regular graphs, A and L are equivalent, since all the vertices have the same degree and thus D is
proportional to the identity. For irregular graphs, instead, A and L are not equivalent in general,
but it is possible to recover the same probability distributions for certain graphs and depending
on the initial states [4].

CTQWs walks inherit the versatility of application from their classical ancestors, but the
peculiar features arising from their quantum nature—e.g., the superposition of the quantum
walker in their path—make them suitable candidates not only for modeling physical processes,
such as coherent transport in complex networks [5] even in biological system [6], but also for
applications in quantum technologies. Indeed, they are of use in studying perfect state transfer
in quantum spin networks [7, 8], which are of utmost importance for quantum communication,
they can be used to develop quantum algorithms, such as spatial search [9–11] and to solve
K-SAT problems [12], and they are universal for quantum computation [13, 14].

A number of works have reported equivalent results for Laplacian CTQWs when the fully
connected vertex is involved. By fully connected vertex we mean a vertex which is adjacent
(connected) to all the other vertices of the graph, as shown in figure 1. The dynamics of the
central vertex of the star graph and that of any vertex of the complete graph are equivalent,
showing periodic perfect revivals and strong localization on the initial vertex [15], even in the
presence of a perturbation λL2 [16]. The spatial search of a marked vertex on the complete
graph or on the star graph, when the target is the central vertex, are equivalent [17], and the
same qualitative results are observed even in the presence of weak random telegraph noise [18].
The quantum–classical dynamical distance is a fidelity-based measure introduced to quantify
the differences in the dynamics of classical versus quantum walks on a graph. Such distance
turns out to be the same for the complete, star, and wheel graphs when the central vertex is
assumed as the initial state for the walker [19].

In this paper we prove the universality of the fully connected vertex in Laplacian CTQWs.
This means that when the fully connected vertex of a graph is the initial state of the walk,
or when it is the marked vertex (target) of a Grover-like CTQWs (those involved in spatial
search or quantum transport), results do not depend on the considered graph G. In other words,
those problems formulated on G of order N and on the complete graph of the same order, KN,
are equivalent. The present work thus explains the equivalent results between star, wheel, and
complete graphs already observed and reported in literature, generalizing the equivalence to
the fully connected vertices of any simple graph.

The paper is organized as follows. In section 2 we recall the CTQW model. In section 3 we
briefly review the dimensionality reduction method for quantum walks [20], according to which
in section 4 we prove the equivalence of the Laplacian CTQW of a walker initially localized
at a fully connected vertex in any simple graph. Instead, the corresponding CTQWs generated
by the adjacency matrix do depend on the graph chosen. Then, in section 5 we prove that the
equivalence applies also to Grover-like CTQWs for a single fully connected marked vertex,
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Figure 1. Examples of graphs of order N = 8 with at least one fully connected vertex
w (orange colored), deg(w) = N − 1. (a) Star graph SN, (b) wheel graph WN, and (c)
complete graph KN. (d)–(f) Random graphs.

focusing on spatial search and quantum transport. In section 6 we generalize the result to the
case of multiple marked vertices. Finally, we present our concluding remarks in section 7.

2. Continuous-time quantum walks

A graph is a pair G = (V, E), where V denotes the non-empty set of vertices and E the set
of edges. The order of the graph is the number of vertices, |V| = N. A simple graph is an
undirected graph containing no self loops or multiple edges. It is mathematically represented
by the Laplacian matrix L = D − A, where the adjacency matrix A (Avv′ = 1 if the vertices v
and v′ are connected, 0 otherwise) is symmetric and describes the connectivity of G and D is
the diagonal degree matrix with Dvv = deg(v)=: dv the degree of vertex v. According to this,
L is real, symmetric, positive semidefinite, and singular (L always admits the null eigenvalue
because every row sum and column sum of L is zero, thus det(L) = 0).5

The CTQW is the propagation of a free quantum particle when confined to a discrete
space, e.g., a graph. The CTQW on a graph G takes place on a N-dimensional Hilbert space
H = span({|v〉|v ∈ V}), and the kinetic energy term −∇2/2m is replaced by γL, where h̄ = 1
and γ ∈ R+ is the hopping amplitude of the walk. The state of the walker obeys the Schrödinger
equation

i
d
dt
|ψ(t)〉 = H|ψ(t)〉 (1)

5 There are a number of different, all related, definitions of Laplacian of a graph. Sometimes it is useful to normalize
the Laplacian matrix L to mitigate the weight of highly connected vertices. Indeed, a large degree results in large
diagonal entry, Lvv = dv , which dominates the matrix properties because much larger than the off-diagonal entries,
Lvv′ = 0, 1. The two matrices commonly known as normalized graph Laplacians are defined as Lrw :=D−1L (closely
related to a random walk) and Lsym :=D−1/2LD−1/2 (symmetric matrix), with the convention that D−1

vv = 0 for dv = 0
(i.e., v is an isolated vertex) [21, 22].
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with Hamiltonian H = γL. Hence, a walker starting in the state |ψ0〉 ∈ H continuously evolves
in time according to

|ψ(t)〉 = U(t)|ψ0〉, (2)

with U(t) = exp[−iHt] the unitary time-evolution operator. The probability to find the walker
in a target vertex w is therefore |〈w| exp [−iHt] |ψ0〉|2.

3. Dimensionality reduction method

3.1. Method

In most CTQW problems encoded on a graph G and a Hamiltonian H, the quantity of interest
is the probability amplitude at a certain vertex of G. The graph often contains symmetries that
allow us to simplify the problem, reducing the effective dimensionality of the latter. Indeed,
the evolution of the system relevant to the problem actually occurs in a subspace, also known
as Krylov subspace [23], of the complete N-dimensional Hilbert space H spanned by the ver-
tices of G. This subspace contains the vertex of interest and it is invariant under the unitary
time evolution. As a result, the original graph encoding the problem can be mapped onto an
equivalent weighted graph of lower order, whose vertices are the basis states of the invariant
subspace. The reduced Hamiltonian, i.e., H written in the basis of the invariant subspace, still
fully describes the dynamics relevant to the given problem. We can determine the invariant sub-
space and its basis by means of the dimensionality reduction method for CTQW [20], which
we briefly review.

The unitary evolution (2) can be expressed as

|ψ(t)〉 =
∞∑

n=0

(−it)n

n!
Hn|ψ0〉, (3)

so |ψ(t)〉 is contained in the subspace I(H, |ψ0〉) = span({Hn|ψ0〉|n ∈ N0}). This subspace of
H is invariant under the action of the Hamiltonian and, thus, also of the unitary evolution. Nat-
urally, dim I(H, |ψ0〉) � dim H = N. If the Hamiltonian is highly symmetrical, then only a
small number of powers of Hn|ψ0〉 are linearly independent, hence the dimension of I(H, |ψ0〉)
can be much smaller than N.

Let P be the projector onto I(H, |ψ0〉). Then

U(t)|ψ0〉 = e−iHredt|ψ0〉, (4)

where Hred = PHP is the reduced Hamiltonian. We obtain this using the power series of U(t)
and the fact that P2 = P (projector), P|ψ0〉 = |ψ0〉, and PU(t)|ψ0〉 = U(t)|ψ0〉.

For any state |φ〉 ∈ H, solution of the CTQW problem, we have

〈φ|U(t)|ψ0〉 = 〈φred|e−iHredt|ψ0〉, (5)

where |φred〉 = P|φ〉 is the reduced state. Analogously, using the projector P′ onto the subspace
I(H, |φ〉), we obtain

〈φ|U(t)|ψ0〉 = 〈φ|e−iH′
red t|ψ0red〉, (6)

with H′
red = P′HP′ and |ψ0red〉 = P′|ψ0〉.
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An orthonormal basis of I(H, |φ〉), say {|e1〉, . . . , |em〉}, can be iteratively obtained, as
follows: |e1〉 := |φ〉, then |en+1〉 follows from orthonormalizing H|en〉 with respect to the
previously obtained basis states, {|ek〉}k=1,...,n, i.e.,

|un+1〉 :=H|en〉 −
n∑

k=1

〈ek|H|en〉|ek〉 ⇒ |en+1〉 :=
|un+1〉
‖|un+1〉‖

. (7)

The procedure stops when we find the minimum m such that H|em〉 ∈ span({|e1〉, . . . , |em〉}).
The projector onto I(H, |φ〉) is therefore P′ =

∑m
n=1|en〉〈en|.

3.2. Complete graph

As an example, we review the well-known reduced problem of the CTQW on the complete
graph on N vertices, KN, when generated by the Laplacian matrix or by the adjacency matrix.
Each pair of vertices is connected by an edge, so any vertex is fully connected and has
degree N − 1. The adjacency matrix is (AK)vv′ = 1 ∀ v �= v′, the diagonal degree matrix is
DK = (N − 1)I, where I is the identity operator, and the Laplacian matrix is LK = DK − AK.
Suppose we want to study the CTQW of a walker initially localized at a certain vertex w
or, alternatively, for walker starting from any other initial state, to compute the probability
amplitude at w. The invariant subspace relevant to problem is

I(LK , |w〉) = I(AK , |w〉)

= span

({
|e1〉 = |w〉, |e2〉 =

1√
N − 1

∑
v �=w

|v〉
})

. (8)

Writing LK and AK in this subspace, we find, respectively, the reduced Laplacian matrix

LK,red =

(
N − 1 −

√
N − 1

−
√

N − 1 1

)
, (9)

and the reduced adjacency matrix [20]

AK,red =

(
0

√
N − 1√

N − 1 N − 2

)
. (10)

It is worth noticing that, consistently with LK = DK − AK, we have LK,red = DK,red − AK,red,
since DK written in the basis (8) is DK,red = (N − 1)I2×2.

The steps required to obtain the orthonormal basis (8), the reduced Laplacian matrix (9),
and the reduced adjacency matrix (10) for the complete graph are the same as those presented,
in a more general case, in the proofs of theorem 1 and proposition 1, to which we refer the
reader for details.

4. Universality of a CTQW starting from a fully connected vertex

In this section we discuss the CTQW generated either by the Laplacian matrix, H = γL, or by
the adjacency matrix, H = γA. The hopping amplitude γ plays the role of a time scaling factor
in the time-evolution operator exp[−iLγt] or exp[−iAγt]. Therefore, in the following we set
γ = 1 so that, together with h̄ = 1, time and energy are dimensionless.
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4.1. Laplacian CTQW

We will refer to the CTQW generated by the Laplacian matrix L as a Laplacian CTQW.

Theorem 1. Let G = (V, E) be a simple graph on N = |V| vertices and M = |E| edges,
with Laplacian matrix LG = D − A. Let w ∈ V be a fully connected vertex of G, with degree
dw = N − 1. Then, the time-evolution of |w〉 under the Laplacian matrix is

e−iLGt|w〉 = e−iLG,redt|w〉, (11)

is entirely contained in the invariant subspace

I(LG, |w〉) = span

({
|e1〉 = |w〉, |e2〉 =

1√
N − 1

∑
v �=w

|v〉
})

, (12)

and is generated by the reduced Laplacian matrix

LG,red =

(
N − 1 −

√
N − 1

−
√

N − 1 1

)
. (13)

Remark 1. We emphasize that dim I(LG, |w〉) = 2 � dim H = N independently of N and
of the graph considered. Theorem 1 generalizes what already known for the complete graph
in section 3.2, proving that the CTQW of the fully connected vertex |w〉 is independent of the
graph.

Proof. Let H be the N-dimensional Hilbert space of a quantum walker on G. The time
evolution of the state |w〉 generated by LG, exp [−iLGt] |w〉, belongs to a subspace of H,

I(LG, |w〉) := span({Ln
G|w〉|n ∈ N0}). (14)

The proof makes use of the dimensionality reduction method (section 3) and consists of two
parts. (i) First, we prove equation (12). (ii) Second, we prove equation (13). Therefore, if the
CTQW of a fully connected vertex w on any graph G satisfy these two conditions, then the
statement (11) follows from equation (4).

(i) The first basis state is |e1〉 = |w〉. Then we consider

LG|e1〉 = (N − 1)|w〉 −
∑
v �=w

|v〉 = :(N − 1)|e1〉 −
√

N − 1|e2〉, (15)

where we have used the fact that w is adjacent to all the other vertices, dw = N − 1. The basis
state |e2〉 follows from orthonormalizing LG|e1〉 with respect to the previous basis state, |e1〉.

To find the next basis state, we compute LG|e2〉 and then we orthonormalize it with respect to
the previous basis states. To compute the projections 〈en|LG|e2〉, with n = 1, 2, it is convenient
to use the definition of Laplacian matrix. From equation (15) we have that

〈e1|LG|e2〉 = −
√

N − 1, (16)

and

〈e2|LG|e2〉 =
1

N − 1

∑
v,v′ �=w

(Dvv′ − Avv′) =
1

N − 1

⎡
⎣∑
v �=w

dv − (2M − 2dw)

⎤
⎦

=
1

N − 1
[2M − (2M − dw)] = 1, (17)
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because D is diagonal, Dvv′ = 0 for v �= v′, and∑
v,v′ �=w

Avv′ =
∑
v∈V

∑
v′ �=w

Avv′ −
∑
v′ �=w

Awv′ =
∑
v,v′∈V

Avv′ −
∑
v∈V

Avw − dw

= 2M − 2dw, (18)

since
∑

v′ �=v Avv′ =
∑

v′∈V Avv′ = dv in a graph with no self loops (a vertex is not adjacent to
itself ), as in the present case. Summing all the elements of the adjacency matrix, as well as
summing the degrees, means counting the edges twice,

∑
v,v′∈V Avv′ =

∑
v∈V dv = 2M with M

the number of edges. In graph theory the latter is known as the degree sum formula and it
implies the handshaking lemma. We can now prove that

LG|e2〉 = −
√

N − 1|e1〉+ |e2〉, (19)

therefore that Ln
G|w〉 ∈ span({|e1〉, |e2〉})∀ n ∈ N0, by showing that

|λ〉 := (LG − I)|e2〉+
√

N − 1|e1〉 = 0, (20)

where I is the identity. First, we project it onto |w〉

〈w|λ〉 = 1√
N − 1

⎛
⎝∑

v �=w

(dv − 1)δwv −
∑
v �=w

Awv + N − 1

⎞
⎠

=
1√

N − 1
(0 − dw + N − 1) = 0, (21)

and then we project it onto any other vertex state, |v′ �= w〉,

〈v′|λ〉 = 1√
N − 1

[∑
v �=w

(dv − 1)δv′v −
∑
v �=w

Av′v + 0

]

=
1√

N − 1

[
dv′ − 1 −

(∑
v∈V

Av′v − Av′w

)]

=
1√

N − 1
[dv′ − 1 − (dv′ − 1)] = 0, (22)

where Av′w = 1 because w is adjacent to all the other vertices. This proves equation (20),
because the wth component and any other component, v′ �= w, are null. The statement (12)
follows.

(ii) We can easily prove equation (13) by taking the matrix elements

(LG,red) jk := 〈e j|LG|ek〉 = (LG,red)k j, (23)

with j, k = 1, 2, from (i).
To summarize, the time evolution of the fully connected vertex state |w〉 always belongs to

the subspace (12) and is fully described by the reduced generator (13) independently of the
graph G considered. This proves the statement (11), concluding the proof. �

Corollary 1. Let us consider the Laplacian CTQWs on a graph G1 and on a graph G2 both
of order N with a fully connected vertex w. Let us assume that the initial states are |ψ0,G1〉 and

7



J. Phys. A: Math. Theor. 55 (2022) 265303 L Razzoli et al

|ψ0,G2〉, respectively. Then, the probability amplitude of finding the walker at w is the same,
〈w| exp

[
−iLG1 t

]
|ψ0,G1〉 = 〈w| exp

[
−iLG2 t

]
|ψ0,G2〉, provided that the two initial states have

the same projection onto the subspace I(LG1 , |w〉) (12).

Proof. This directly follows from equation (6), with |φ〉 = |w〉, and theorem 1. �

4.2. Adjacency CTQW

We will refer to the CTQW generated by the adjacency matrix A as an adjacency CTQW.

Proposition 1. Let G = (V, E) be a simple graph on N = |V| vertices and M = |E|
edges, with adjacency matrix AG. Let w ∈ V be a fully connected vertex of G, with degree
dw = N − 1. Then, the adjacency CTQW of the state |w〉 does depend on the graph G
considered.

Proof. The proof makes use of the dimensionality reduction method (section 3) and consists
of three parts. (i.a) First, we prove that

dim I(AG, |w〉) � 2 = dim I(AK , |w〉), (24)

where the subscript K refers to the complete graph and, as known, I(AK , |w〉) is (8). This is a
first indication that the CTQW of |w〉 generated by AG and AK are not equivalent, in general,
revealing a first dependence on the graph considered. (i.b) In particular, if the graph G has more
than one fully connected vertex and G �= KN, then dim I(AG, |w〉) > 2. (ii) Second, we prove
that even if I(AG, |w〉) = I(AK , |w〉), the two reduced generators are different, AG,red �= AK,red,
and thus lead to different time evolutions.

(i.a) The first basis state is |e1〉 = |w〉. Then we consider

AG|e1〉 =
∑
v �=w

|v〉 =:
√

N − 1|e2〉, (25)

and |e2〉 follows from normalizing AG|e1〉, as the latter is already orthogonal to |e1〉.
To find the next basis state, we compute AG|e2〉 and then we orthonormalize it with respect to

the previous basis states. To compute the projections 〈en|AG|e2〉, with n = 1, 2, it is convenient
to use the definition of adjacency matrix. From equation (25) we have that

〈e1|AG|e2〉 =
√

N − 1, (26)

and, using equation (18),

〈e2|AG|e2〉 =
1

N − 1

∑
v,v′ �=w

Avv′ =
1

N − 1
(2M − 2dw) =

2M
N − 1

− 2, (27)

where, we recall, M is the number of edges. We can now study whether or not the state

|α〉 :=

[
AG −

(
2M

N − 1
− 2

)]
|e2〉 −

√
N − 1|e1〉 (28)

is null. If null, then the invariant subspace has dimension 2, as AG|e2〉 is a linear combination of
|e1〉 and |e2〉, otherwise it has dimension>2. First, we project the state (28) onto |w〉, observing

8
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that 〈w|α〉 = 0 from equation (26), and then we project it onto any other vertex state, |v′ �= w〉,

〈v′|α〉 = 1√
N − 1

⎡
⎣∑
v �=w

Av′v −
(

2M
N − 1

− 2

)∑
v �=w

δv′v

⎤
⎦

=
1√

N − 1

[
(dv′ − 1) − 2M

N − 1
+ 2

]

=
1√

N − 1

(
dv′ + 1 − 2M

N − 1

)
, (29)

where
∑

v �=w Av′v =
∑

v∈V Av′v − Av′w = dv′ − Av′w and Av′w = 1 because w is adjacent to all
the other vertices. We have proved that the wth component is null, but the other components
v′ �= w depend on v′, so they are not null, in general. According to this, AG|e2〉 is not just a
linear combination of |e1〉 and |e2〉, further basis states are required, and so the statement (24)
follows.

(i.b) Let us now assume that there is another fully connected vertex w′ �= w, dw′ = N − 1.
Then, 〈w|α〉 = 0 still holds and equation (29) for v′ = w′ reads as

〈w′|α〉 = 1
(N − 1)3/2

(
N2 − N − 2M

)
, (30)

which is null for N = (1 ±
√

1 + 8M)/2. However, N ∈ N requires the solution with the plus
sign and

√
1 + 8M = 2m + 1, with m ∈ N0. Solving the latter condition with respect to m

leads to m = [−1 ± (2m + 1)]/2. The only acceptable solution is m = m, i.e., any positive
odd number 2m + 1 can be written as

√
1 + 8M. The degree sum formula,

∑
v∈V dv = 2M,

allows us to write

N =
1
2

(
1 +

√
1 + 4

∑
v∈V

dv

)
. (31)

Now we study whether the equation (31) admits a solution. The presence of fully connected
vertex make the graph connected, and dv � 2∀ v ∈ V since, by assumption, there are at least
two fully connected vertices. The graph satisfying the minimal conditions is the graph with two
fully connected vertices, w,w′ with dw = dw′ = N − 1, and with all the other N − 2 vertices
connected only tow andw′, dv = 2∀ v �= w,w′. Hence,

∑
v∈V dv = 2(N − 1) + (N − 2)2, from

which the right-hand side of equation (31) is

f (N) =
1
2

(
1 +

√
16N − 23

)
. (32)

If we assume that all the vertices are fully connected, then we get the complete graph. Hence,∑
v∈V dv = N(N − 1), from which equation (31) holds for any N. However, we are interested

in graphs other than the complete one. There is no graph with only N − 1 fully connected
vertices, as, otherwise, the remaining vertex is necessarily connected to all the others and so the
graph is complete. There is, however, the graph with N − 2 fully connected vertices, obtained
by removing one edge from the complete graph. The two non-fully connected vertices thus
obtained have degree N − 2. Hence,

∑
v∈V dv = 2(N − 2) + (N − 2)(N − 1), from which the

right-hand side of equation (31) is

g(N) =
1
2

(
1 +
√

4N2 − 4N − 7
)
. (33)

9
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All the possible graphs on N vertices having a number 2 � μ � N − 2 of fully connected ver-
tices fall within these two cases. In figure 2 we study equation (31), and we observe that there
are no solutions, as none of the right-hand sides, f (N) and g(N), have intersection with the left-
hand side, the line h(N) = N. We have just proved that, under the assumption of having at least
two fully connected vertices and G �= KN, more than two basis states are required, therefore
dim I(AG, |w〉) > 2. Indeed, while the wth component is null, the components corresponding
to the other fully connected vertex (or vertices) w′ �= w (30) are not, thus AG|e2〉 is not just a
linear combination of |e1〉 and |e2〉.

(ii) Let us now assume that there is only one fully connected vertex, w. Then, 〈w|α〉 = 0
still holds and equation (29) reads as

〈v′|α〉 = 1
(N − 1)3/2

⎡
⎣(N − 1)dv′ −

∑
v �=w

dv

⎤
⎦ , (34)

since
∑

v∈V dv =
∑

v �=w dv + (N − 1) = 2M. The above expression is null if (N − 1)dv′ =∑
v �=w dv and the latter condition must apply ∀ v′ �= w to make the state (28) null. There-

fore, this condition implies that all the vertices, except w, must have the same degree dv′ . This
is the case, e.g., of the star graph (figure 1(a)) or the wheel graph (figure 1(b)). We have just
proved that if a simple graph has one fully connected vertex, w, and deg(v) = d∀ v ∈ V\{w},
then all the components of the state (28) are null. Hence, An

G|w〉 ∈ span({|e1〉, |e2〉})∀ n ∈ N0,
because

AG|e2〉 =
√

N − 1|e1〉+
(

2M
N − 1

− 2

)
|e2〉, (35)

and therefore I(AG, |w〉) = I(AK , |w〉). From (i) we have the matrix elements

(AG,red) jk := 〈e j|AG|ek〉 = (AG,red)k j, (36)

with j, k = 1, 2. Writing AG in the basis {|e1〉, |e2〉}, we find that

AG,red =

⎛
⎝ 0

√
N − 1

√
N − 1

2M
N − 1

− 2

⎞
⎠ . (37)

The reduced generator AG,red (37) differs from AK,red (10) in the element (Ared)22. We observe
that

2M
N − 1

− 2 = N − 2 ⇔ M =
N(N − 1)

2
, (38)

but only the complete graph has M = N(N − 1)/2 edges. Moreover, also the star graph and
the wheel graph differ in that element, as M = N − 1 and M = 2(N − 1), respectively. So, the
adjacency CTQW on the graphs which are regular except for the fully connected vertex w are
neither equivalent among them, in general, nor to the adjacency CTQW on the complete graph.
The reason is that the reduced generators, AG,red and AK,red, are different, as they depend on the
number of edges M, and thus they lead to different time evolutions, which, however, belong to
the same invariant subspace I(AG, |w〉) = I(AK , |w〉).

To summarize, adjacency CTQWs do depend on the given graph G. Considering the adja-
cency CTQWs of the fully connected vertex state |w〉 either the time evolutions of it belong

10
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Figure 2. Graphical solution of equation (31). The left-hand side (lhs) is N (blue solid
line, square). The right-hand side (rhs) is f (N) (32) (orange dashed line, circles) or g(N )
(33) (yellow dotted line, diamonds). All the possible graphs on N vertices having a num-
ber 2 � μ � N − 2 of fully connected vertices result in a rhs which falls within these two
cases. Results are shown for N � 4, because the graphs for N = 2, 3 and μ = 2 would
be the complete graph K2, K3, respectively. We observe that there are no intersections
between the rhs and the lhs, as highlighted in the log–log plot of N − g(N ) in the inset.
Note that, g(N) ∼ N for large N, but g(N) never reaches N. Therefore, equation (31) has
no solution.

to different subspaces (see equation (24)) or, otherwise, the reduced generators are differ-
ent, as they depend on the number of edges M. This proves the proposition 1, concluding the
proof. �

5. Grover-like CTQWs with single marked vertex

Corollary 2. Let w be a fully connected marked vertex of a simple graph G of order N with
Laplacian matrix L. Let us consider the Grover-like CTQW where the quantity of interest is
the probability amplitude at w. Let

H = γL + λ|w〉〈w| (39)

be the Hamiltonian encoding the problem, where γ ∈ R+, λ ∈ C, and Hw :=λ|w〉〈w| is
the oracle Hamiltonian. Then, given the initial state |ψ0〉, the probability amplitude at the
marked vertex is 〈w| exp [−iHred t] |ψ0red〉, where |ψ0red〉 = P|ψ0〉 with P the projector onto
the invariant subspace I(H, |w〉) (12) relevant to the problem and the reduced Hamiltonian is

Hred = γ

(
N − 1 + λ/γ −

√
N − 1

−
√

N − 1 1

)
. (40)

Grover-like CTQWs on a graph G1 and on a graph G2 both of order N result in the
same probability amplitude 〈w| exp

[
−iHG1 t

]
|ψ0,G1〉 = 〈w| exp

[
−iHG2 t

]
|ψ0,G2〉 provided

that |ψ0,G1 red〉 = |ψ0,G2 red〉.

Proof. First, we prove that the invariant subspace I(H, |w〉) relevant to the problem is (12)
and then that the reduced Hamiltonian is (40). The only effective parameter in the Hamiltonian
(39) is the ratio λ/γ. Writing H = γH′ we understand that γ only determines the timescale of

11
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the evolution. Clearly I(H, |w〉) = I(H′, |w〉) and |e1〉 = |w〉. The oracle H′
w = (λ/γ)|w〉〈w|

acts nontrivially only onto |e1〉. Therefore, after orthonormalizing H′|e1〉 with respect to |e1〉,
we find the second basis state, |e2〉 defined in equation (12). We observe that H′|e2〉 = L|e2〉, as
H′

w|e2〉 = 0, thus, according to the proof of theorem 1, there are no further basis states. Hence,
the dynamics relevant to the Grover-like CTQWs for the fully connected vertex belong to the
subspace (12). The oracle Hamiltonian Hw has a natural representation in such subspace

Hw,red = λ|e1〉〈e1| =
(
λ 0
0 0

)
. (41)

The reduced Hamiltonian (40) follows from summing the reduced Laplacian matrix (13) and
the reduced oracle Hamiltonian (41). The remark on the equal probability amplitudes at w
depending on the initial state follows from equation (6), with |φ〉 = |w〉. �

Grover-like CTQWs of great interest formulated as in the corollary 2 are spatial search [9],
λ = −1, and quantum transport, γ = 1 and λ = −iκ, with κ ∈ R+ and i =

√
−1 the imag-

inary unit [24]. In the former, solving the problem amounts to making the walker reach the
state |w〉 with the maximum probability starting from the equal superposition of all vertices.
In the latter, the quantity of interest is often the transport efficiency, η = 2κ

∫+∞
0 〈w|ρ(t)|w〉 dt,

the integrated probability of trapping at the vertex w, where ρ(t) is the density matrix of the
walker. The transport efficiency can also be read as the complement to 1 of the probability
of surviving within the graph, i.e., η = 1 − Tr

[
limt→+∞ ρ(t)

]
[25]. We point out that when-

ever Im(λ) �= 0 the Hamiltonian (39) is a non-Hermitian effective Hamiltonian that leads to
non-unitary dynamics. This is useful to phenomenologically model certain processes like, if
Im(λ) < 0, the dissipative dynamics in quantum optics [26] or the absorption of an excitation
in light harvesting systems [27, 28].

5.1. Spatial search

The Hamiltonian encoding the problem is

H = γL − |w〉〈w|, (42)

where the marked vertex, target of the search, is the fully connected vertexw. Since we have no
information about the marked vertex, the initial state is commonly chosen as the equal super-
position of all vertices, |ψ0〉 =

∑
v∈V |v〉/

√
N. The goal is to tune the hopping amplitude γ to

maximize the probability amplitude at the marked vertex after a period of time of evolution. The
time evolution of |ψ0〉 is entirely contained in I(H, |w〉), as |ψ0〉 = (|e1〉+

√
N − 1|e2〉)/

√
N

and so |ψ0red〉 = |ψ0〉. Hence, not only the success probability of finding w, but also the entire
dynamics of the system exp [−iHt] |ψ0〉 is the same on any simple graph G. According to
corollary 2, the results we have for the spatial search on the complete graph, a well-known
problem [9, 17, 29], also apply to the search of w on other graphs. Therefore, if γ = 1/N
(optimal value), then the walker reaches w with probability

Pw(t) = |〈w|e−iHt|ψ0〉|2 =
1
N

cos2

(
t√
N

)
+ sin2

(
t√
N

)
(43)

equal to one (certainty) at time t∗ = π
√

N/2.

12
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5.2. Quantum transport

The non-Hermitian effective Hamiltonian encoding the problem is

H = L − iκ|w〉〈w|, (44)

where the trapping vertex is the fully connected vertex w and the trapping rate κ ∈ R+

(λ = −iκ in (39)). We assume that the initial state is localized at a vertex different from w,
|ψ0〉 = |v �= w〉. Under such assumptions, the transport efficiency of the complete graph is
ηK = 1/(N − 1) [28]. Hence, according to corollary 2, all the graphs whose trap is the fully
connected vertex w have η = ηK. This follows from the fact that η is the overlap of the initial
state with the basis states of the invariant subspace I(H, |w〉) [20, 25],

η =
∑

n=1,2

|〈en|ψ0〉|2 = |〈e2|ψ0〉|2 =
1

N − 1
, (45)

and such invariant subspace is (12) for the problems and graphs under investigation, including
the complete graph.

Alternatively, we can prove this as follows. We define the integrated probability of trapping
within the time interval [0, t],

η̃(t) = 2κ
∫ t

0
〈w|ρ(τ )|w〉dτ ⇒ lim

t→+∞
η̃(t) = η, (46)

where 〈w|ρ(t)|w〉 = |〈w| exp [−iHt] |v〉|2. From equation (6), the probability amplitude at w,

〈w|e−iHt|v〉 = 〈w|e−iHredt
∑

n=1,2

|en〉〈en|v〉 =
1√

N − 1
〈e1|e−iHred t|e2〉, (47)

is independent (i) of the graph under investigation and (ii) of the initial vertex state |v〉, provided
that v �= w. (i) Follows from the fact that the graphs considered have the same basis states and
the same reduced Hamiltonian (corollary 2). (ii) Follows from the fact that all the vertices
other than the trap only overlap with |e2〉, which is the equal superposition of them, and have
the same overlap with it. Therefore, η̃(t) does not depend on the graph under investigation or
on the initial vertex state. As a result, in the limit of infinite time we also recover the same
transport efficiency η = ηK.

In this problem the initial state is a vertex state |v �= w〉 and cannot be written as linear
combination of the two basis states. Therefore, it evolves differently depending on the given
graph. Nevertheless, as just shown, it provides the same dynamics relevant to the problem, i.e.,
the same (trapped) population at w.

6. Grover-like CTQWs with multiple marked vertices

Theorem 2. Let G = (V, E) be a simple graph of order N = |V| with M = |E| edges. Let
W := {v ∈ V| deg(v) = N − 1 ∧ v is marked} �= ∅ be the set of fully connected marked ver-
tices and let μ := |W|, with 1 � μ < N. Let us consider a Grover-like CTQW where the
quantities of interest are the probability amplitudes at w ∈ W. Let

H = γL +
∑
w∈W

λw|w〉〈w| (48)

13
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be the Hamiltonian encoding the problem, where γ ∈ R
+ is constant and λw ∈ C depends

on the fully connected vertex. Then, given the initial state |ψ0〉, the probability amplitude at
a marked vertex is 〈w| exp [−iHred t] |ψ0red〉, where |ψ0red〉 = P|ψ0〉 with P the projector onto
the (μ+ 1)-dimensional invariant subspace relevant to the problem,

I = span

({
{|ek〉 = |wk〉}k, |eμ+1〉 =

1√
N − μ

∑
v/∈W

|v〉
})

, (49)

with k = 1, . . . , μ, and the reduced Hamiltonian is

Hred = γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Δ1 + λ′
w1

−1 . . . −1 −
√
Δμ

−1
. . .

. . .
...

...
...

. . .
. . . −1

...
−1 . . . −1 Δ1 + λ′

wμ
−
√
Δμ

−
√
Δμ . . . . . . −

√
Δμ μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (50)

where Δn = N − n and λ′
w = λw/γ. Grover-like CTQWs on a graph G1 and on a graph

G2 both of order N result in the same probability amplitude 〈w| exp
[
−iHG1 t

]
|ψ0,G1〉 =

〈w| exp
[
−iHG2 t

]
|ψ0,G2〉 provided that |ψ0,G1 red〉 = |ψ0,G2 red〉.

Remark 2. The dimensionality of the problem can be further reduced if subsets of vertices in
W have the same λ, Wα = {w ∈ W|λw = λα} such that

⋃
α Wα = W and Wα ∩ Wβ = ∅ ∀ α �=

β. Instead of having one basis state per marked vertex, the equal superposition of all vertex
states from the same set Wα defines one basis state, |eWα〉 =

∑
w∈Wα

|w〉/
√

|Wα|. This fol-
lows from the symmetries of the problem, as they allow to group together identically evolving
vertices [30]. The reduced Hamiltonian (50) will change according to the new basis.

Proof. We have more than one marked vertex and we cannot apply straightforwardly the
dimensionality reduction method, because neither the initial state is unique (except in the spa-
tial search) nor the target state is unique (multiple marked vertices). The Hamiltonian (48)
inherits the symmetries of the graph (Laplacian matrix), but each oracle Hamiltonian Hw breaks
the symmetries involving the corresponding fully connected vertex w. Here we consider the
Hamiltonian in the general framework, with no assumptions on λ’s.

During the time evolution of the system the population at the marked vertices is determined
only by the Hamiltonian eigenstates having nonzero overlap with the marked vertices. Our
aim is to prove that the subspace E spanned by those eigenstates is the subspace I (49). Let us
define the subspace

E := span
(
{|ε〉|H|ε〉 = ε|ε〉 ∧ 〈w ∈ W|ε〉 �= 0}

)
, (51)

where the |ε〉 are the minimum number of Hamiltonian eigenstates overlapping with the fully
connected marked vertices w ∈ W. By minimum we mean that in the case of degenerate
eigenspaces more than one eigenstate can have a nonzero overlap with the marked vertices.
We can solve this ambiguity by choosing the eigenstate from this degenerate eigenspace which
has the maximum possible overlap with the marked vertices and then by orthogonalizing all
the other vectors within this eigenspace with respect to it. Therefore, after orthogonalization,
the remaining eigenstates in the degenerate space would have zero overlap with the marked
vertices. This approach to the problem is explained in [28], where it provides a simple way to
compute the efficiency of transport to a trapping vertex on a graph (in the absence of dephasing
and dissipation).

14
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Lemma 1. The Hamiltonian eigenstates that do not overlap with the marked vertices have
projections onto the vertex states that sum to zero,∑

v

〈v|ε /∈ E〉 =
∑
v/∈W

〈v|ε /∈ E〉 = 0. (52)

Proof. We study the eigenproblem H|ε〉 = ε|ε〉 by components in the basis of vertex states,
projecting the eigenvalue equation onto a generic |v〉

〈v|H|ε〉 − ε〈v|ε〉 =
∑
v′

[γ(Dvv′ − Avv′)] 〈v′|ε〉+
∑
w∈W

λw〈v|w〉〈w|ε〉 − ε〈v|ε〉

= (γdv − ε+ λwδvw)〈v|ε〉 − γ
∑
v′

Avv′ 〈v′|ε〉 = 0. (53)

Let us focus on |ε〉 /∈ E and v ∈ W. Then, from equation (53), we have∑
v′ �=v

〈v′|ε〉 =
∑
v′

〈v′|ε〉 =
∑
v′ /∈W

〈v′|ε〉 = 0, (54)

as v ∈ W is fully connected, thus Avv′ = 1∀ v �= v′ (Avv = 0). The index of summation can be
extended to all the vertices v′ ∈ V or limited to v′ /∈ W as 〈v′ ∈ W|ε /∈ E〉 = 0 by definition. �
Lemma 2. The Hamiltonian eigenstates that overlap with the marked vertices have constant
projection onto the non-marked vertex states,

〈v /∈ W|ε ∈ E〉 = γ

γμ− ε

∑
v′∈W

〈v′|ε〉 = const ∀ v /∈ W. (55)

Proof. From equation (53), the components under investigation are

〈v /∈ W|ε ∈ E〉 = γ
∑

v′Avv′ 〈v′|ε〉
γdv − ε

=
γ

γdv − ε

(
ξ +

∑
v′ /∈W

Avv′ 〈v′|ε〉
)

, (56)

where we have defined ξ :=
∑

v′∈W〈v′|ε〉, which does not depend on the v /∈ W chosen, and
we have used Avv′ = 1∀ v′ ∈ W. Indeed, v /∈ W, thus v �= v′, and the vertices v′ are the fully
connected ones.

Let us start with a particular case. If the vertices v /∈ W are only connected to the vertices
w ∈ W, then dv = μ = |W|∀ v /∈ W and Avv′ = 0∀ v, v′ /∈ W. Hence, all the components are
constant and equal to

〈v /∈ W|ε ∈ E〉 = γξ

γμ− ε
∀ v /∈ W. (57)

In general, instead, we have a system of μ̄ :=N − μ linear equations like (56) in μ̄ unknowns
x j := 〈v j /∈ W|ε ∈ E〉, with 1 � j � μ̄,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1 −
γ

γd1 − ε

∑
k �=1

A1kxk =
γξ

γd1 − ε

...

xμ̄ −
γ

γdμ̄ − ε

∑
k �=μ̄

Aμ̄kxk =
γξ

γdμ̄ − ε
.

(58)
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We make the following ansatz on the solution

x1 = · · · = xμ̄ =
γξ

γμ− ε
, (59)

based on the analytical solution (57) for a particular case and on numerical evidence for gen-
eral graphs, including the complete graph. Hence, focusing on the left-hand side of the jth
equation (58), we recover the identity with the right-hand side of the same equation

γξ

γμ− ε

⎡
⎣1 − γ

γd j − ε

∑
k �= j

A jk

⎤
⎦ =

γξ

γμ− ε

[
1 − γ

γd j − ε
(d j − μ)

]

=
γξ

γμ− ε

γμ− ε

γd j − ε
=

γξ

γd j − ε
, (60)

where
∑

k�= j A jk = dj − μ because the index of summation does not run over all the vertices
but runs over the non-marked vertices, hence we get the degree dj lowered by the number of
fully connected marked vertices, μ. This identity applies to all j = 1, . . . , N − μ, i.e., to all
v /∈ W. This verifies the correctness of the ansatz (59) and therefore proves the lemma. �

According to the previous lemmas, we now prove that E = I. First, we prove that E ⊆ I.
Let c := 〈v /∈ W|ε ∈ E〉 (lemma 2). Then, we can write any |ε〉 ∈ E as

|ε〉 =
∑
v

|v〉〈v|ε〉 =
∑
w∈W

|w〉〈w|ε〉 + c
∑
v/∈W

|v〉

=

μ∑
n=1

|en〉〈en|ε〉+ c
√

N − μ|eμ+1〉 ∈ I, (61)

as it is a linear combination of the basis states (49). Second, we prove that I ⊆ E . We start
with the basis states |e j〉 = |w j〉 for j = 1, . . . , μ

|e j〉 =
∑
ε

|ε〉〈ε|e j〉 =
∑
ε∈E

|ε〉〈ε|e j〉 ∈ E , (62)

as it is a linear combination of the Hamiltonian eigenstates |ε〉 ∈ E . The summation over ε
denotes the summation over all the Hamiltonian eigenstates. The second equality follows from
〈w j|ε /∈ E〉 = 0, by definition. The last basis state is

|eμ+1〉 =
1√

N − μ

∑
ε

∑
v/∈W

|ε〉〈ε|v〉

=
1√

N − μ

[∑
ε∈E

∑
v/∈W

|ε〉〈ε|v〉+
∑
ε/∈E

∑
v/∈W

|ε〉〈ε|v〉
]

=
1√

N − μ

[∑
ε∈E

∑
v/∈W

|ε〉〈ε|v〉+ 0

]
∈ E , (63)

where the last equality follows from lemma 1. To summarize, I = E (49), since E ⊆ I and
I ⊆ E , and this also implies that dim E = dim I = μ+ 1.
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Now that we have the basis of the invariant subspace, we can write the reduced Hamil-
tonian. Given the Hamiltonian (48), the matrix elements of the reduced Hamiltonian for
j, k = 1, . . . , μ are

〈e j|H|ek〉 = γ
(
〈e j|D|ek〉 − 〈e j|A|ek〉

)
+ λw jδ jk

=
[
γ(N − 1) + λw j

]
δ jk − γ, (64)

since dw = N − 1 and the vertices w j and wk are necessarily adjacent,

〈e j|H|eμ+1〉 = −γ〈e j|A|eμ+1〉 =
−γ√
N − μ

∑
v/∈W

Aw jv = −γ
√

N − μ, (65)

since the basis is orthonormal and Aw jv = 1 ∀ v /∈ W ∧ ∀ w ∈ W (w is fully connected). The
last element is

〈eμ+1|H|eμ+1〉 =
γ

N − μ

∑
v,v′ /∈W

Lvv′ = γμ. (66)

Indeed, ∑
v/∈W

dv =
∑
v∈V

dv − μ(N − 1) = 2M − μ(N − 1), (67)

and ∑
v,v′ /∈W

Avv′ =
∑
v,v′∈V

Avv′ −
∑
v∈W

∑
v′∈V

Avv′ −
∑
v/∈W

∑
v′∈W

Avv′

=
∑
v,v′∈V

Avv′ −
∑
v∈W

dv −
∑
v/∈W

μ

= 2M − μ(N − 1) − (N − μ)μ, (68)

since Avv′ = 1∀ v′ �= v ∧ v ∈ W and, we recall, μ = |W| and N = |V|. Hence, the reduced
Hamiltonian (50) follows. �

6.1. Spatial search

The Hamiltonian encoding the problem is

H = γL −
∑
w∈W

|w〉〈w|, (69)

where the marked vertices, theμ possible solutions of the spatial search, are the fully connected
vertices w ∈ W. The oracles are unbiased, λw = −1∀w ∈ W in equation (48), as the solutions
are usually assumed to be equivalent [31, 32]. The goal is to tune the hopping amplitude γ
to maximize success probability PW(t) =

∑
w∈W Pw(t) after a period of time of evolution. The

overall success probability PW is the sum of the probabilities at each w ∈ W because these are
equivalent solutions. Solving the problem amounts to finding one of them. The initial value
is PW(0) = μ/N, since the initial state is the equal superposition of all vertices. The time evo-
lution of |ψ0〉 is entirely contained in I, as |ψ0〉 = (

∑μ
j=1|e j〉+

√
N − μ|eμ+1〉)/

√
N and so

|ψ0red〉 = |ψ0〉. Hence, not only the success probability PW(t), but also the entire dynamics of
the system exp [−iHt] |ψ0〉 is the same on any simple graph G. According to theorem 2, the
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results we have for the spatial search on the complete graph also apply to the search of w ∈ W
on other graphs. The spatial search of μ marked vertices in the complete graph is known to
be optimal (PW = 1) for γ = 1/N at time t∗ = (π/2)

√
N/μ [32]. We point out that in [32]

the CTQW is generated by the adjacency matrix, but this is equivalent to using the Laplacian
matrix since the complete graph is regular. Hereafter we prove these results on the optimal
search without assuming that the graph is complete.

Spatial search is a suitable case study to apply remark 2, as all the fully connected
marked vertices have the same λ = −1. Therefore, the Hamiltonian (69) is invariant under
permutations of the vertices in W. This symmetry allows us to further reduce the dimen-
sionality of the problem by grouping together such identically evolving vertices in the state
|ẽ1〉 =

∑
w∈W |w〉/√μ [30]. This state is the solution of the search and is the first basis state of

the reduced invariant subspace. Then, it can be shown that

H|ẽ1〉 = [γ(N − μ) − 1]|ẽ1〉 − γ
√
μ(N − μ)|ẽ2〉, (70)

H|ẽ2〉 = −γ
√
μ(N − μ)|ẽ1〉+ γμ|ẽ2〉, (71)

where |ẽ2〉 :=
∑

v/∈W |v〉/
√

N − μ is the second basis state. Therefore, the orthonormal states
|ẽ1〉 and |ẽ2〉 span the invariant subspace relevant to the spatial search. The reduced Hamiltonian
is

Hred = γ

(
N − μ− 1/γ −

√
μ(N − μ)

−
√
μ(N − μ) μ

)
. (72)

For γ = 1/N, the eigenvalues are ε± = ±
√
μ/N and the corresponding eigenstates are

|ε±〉 =

√√
N ±√

μ

2
√

N

(
∓

√
N − μ√

N ±√
μ
|ẽ1〉+ |ẽ2〉

)
. (73)

The success probability

PW(t) = |〈ẽ1|e−iHt|ψ0〉|2 =
μ

N
cos2

(√
μ

N
t

)
+ sin2

(√
μ

N
t

)
, (74)

is equal to one (certainty) at time t∗ = (π/2)
√

N/μ. Forμ = 1 we recover the results—reduced
Hamiltonian, success probability, and optimal time—for the spatial search of a single marked
vertex discussed in section 5.1.

6.2. Quantum transport

The non-Hermitian effective Hamiltonian encoding the problem is

H = L − i
∑
w∈W

κw|w〉〈w|, (75)

where the μ trapping vertices are the fully connected vertices w ∈ W and have,
in general, different trapping rates κw ∈ R+ (λw = −iκw in (48)). Accordingly,
η := 2

∑
w∈Wκw

∫ +∞
0 〈w|ρ(t)|w〉 dt [24]. We assume |ψ0〉 = |v /∈ W〉, therefore, according to

the basis states (49),

η =

μ+1∑
n=1

|〈en|ψ0〉|2 = |〈eμ+1|ψ0〉|2 =
1

N − μ
. (76)
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The transport efficiency improves as the number of fully connected traps μ increases
and does not depend on the trapping rates. Changing the κw affects the timescale on
which the trapping occurs, not η as it is defined in the limit of infinite time. Moreover,
η̃(t) = 2

∑
w∈Wκw

∫ t
0〈w|ρ(τ )|w〉dτ does not depend on the initial vertex state |v〉, provided

that v /∈ W. Indeed, from equation (6), the probability amplitude at w ∈ W,

〈w|e−iHt|v〉 = 〈w|e−iHredt
μ+1∑
n=1

|en〉〈en|v〉 =
1√

N − μ
〈ew|e−iHred t|eμ+1〉, (77)

is independent of v /∈ W. For μ = 1 we recover the transport efficiency for the single trapping
vertex discussed in section 5.2.

7. Conclusions

In this paper we have investigated the role of the fully connected vertex w in CTQWs on
simple graphs G of order N. In particular, we have analytically proved that when the dynamics
of the walker is governed by the Laplacian matrix, the CTQW starting from the state |w〉 does
not depend on the graph G considered and it is therefore equivalent, e.g., to the CTQW on
the complete graph of the same order, KN. Instead, the corresponding adjacency CTQWs do
depend on the graph considered.

After that, we have investigated Grover-like CTQWs, i.e., systems with Hamiltonian of the
form H = γL +

∑
w∈W λw|w〉〈w|, where W is the subset of vertices made of μ fully connected

marked vertices. Here the quantity of interest is the probability amplitude at the verticesw ∈ W.
For these systems, we have analytically proved that the probability amplitudes of interest do not
depend on the graph considered. In this case, the equivalence concerns the dynamics relevant
to the computation of the probability amplitude at w, whereas the full dynamics of the walkers
are not necessarily equivalent.

As applications of the above results, we have considered spatial search of w ∈ W and quan-
tum transport to w ∈ W. These problems on a simple graph G of order N inherit the results
already known for the corresponding problems on the complete graph KN, independently of
the considered graph. In particular, the spatial search of equivalent solutions (unbiased oracles)
is optimal for γ = 1/N at time t∗ = (π/2)

√
N/μ, and the full dynamics of the equal superpo-

sition of all vertices under the search Hamiltonian on G and on KN are equivalent. Regarding
quantum transport of an initially localized excitation, the transport efficiency η increases with
the number of fully connected traps as η = 1/(N − μ), and does not depend on the initial vertex
state |v /∈ W〉.

Our proofs are based on the notion of Krylov subspaces. We have determined the invari-
ant subspace relevant to the considered Laplacian problems, and the corresponding reduced
Hamiltonian, thus reducing the dimensionality of the original problem. Whenever a fully con-
nected vertex is the initial state of the CTQW or a marked vertex of a Grover-like CTQW,
results do not depend on the graph considered. Hence, the universality of the fully connected
vertex.

One of most relevant consequences of our work is that the spatial search of fully connected
vertices is always optimal and does not depend on the full topology of the involved graph.
We can always find the solution with certainty and we know the parameters, γ and time, to
achieve this result. This can be exploited, e.g., in finding the fully connected hubs of a network.
Indeed, most often the hub is not connected to all the nodes, but serves as the center of star-
shaped subnetwork [33] and our results hold when applied to the subnetwork. More generally,
our results provide a coherent and unified framework to understand and extend several partial
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results already reported in literature for fully connected vertices, and pave the way for further
development in the area, e.g., understanding whether universality survives in the presence of
chirality [34, 35].

Acknowledgments

Work done under the auspices of GNFM-INdAM. The authors thank Claudia Benedetti and
Massimo Frigerio for helpful discussions.

Data availability statement

All data that support the findings of this study are included within the article (and any
supplementary files).

ORCID iDs

Luca Razzoli https://orcid.org/0000-0002-9129-2154
Paolo Bordone https://orcid.org/0000-0002-4313-0732
Matteo G A Paris https://orcid.org/0000-0001-7523-7289

References

[1] Portugal R 2018 Quantum Walks and Search Algorithms (New York: Springer)
[2] Wang J and Manouchehri K 2013 Physical Implementation of Quantum Walks (New York: Springer)
[3] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915–28
[4] Wong T G and Lockhart J 2021 Phys. Rev. A 104 042221
[5] Mülken O and Blumen A 2011 Phys. Rep. 502 37–87
[6] Mohseni M, Rebentrost P, Lloyd S and Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106
[7] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[8] Alvir R, Dever S, Lovitz B, Myer J, Tamon C, Xu Y and Zhan H 2016 J. Algebr. Comb. 43 801–26
[9] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314

[10] Wong T G, Tarrataca L and Nahimov N 2016 Quantum Inf. Process. 15 4029–48
[11] Chakraborty S, Novo L and Roland J 2020 Phys. Rev. A 102 032214
[12] Campos E, Venegas-Andraca S E and Lanzagorta M 2021 Sci. Rep. 11 16845
[13] Childs A M 2009 Phys. Rev. Lett. 102 180501
[14] Lahini Y, Steinbrecher G R, Bookatz A D and Englund D 2018 npj Quantum Inf. 4 2
[15] Xu X P 2009 J. Phys. A: Math. Theor. 42 115205
[16] Candeloro A, Razzoli L, Cavazzoni S, Bordone P and Paris M G A 2020 Phys. Rev. A 102 042214
[17] Benedetti C, Rossi M A C and Paris M G A 2019 Europhys. Lett. 124 60001
[18] Cattaneo M, Rossi M A C, Paris M G A and Maniscalco S 2018 Phys. Rev. A 98 052347
[19] Gualtieri V, Benedetti C and Paris M G A 2020 Phys. Rev. A 102 012201
[20] Novo L, Chakraborty S, Mohseni M, Neven H and Omar Y 2015 Sci. Rep. 5 13304
[21] Chung F R K 1997 Spectral Graph Theory vol 92 (Providence, RI: American Mathematical Society)
[22] von Luxburg U 2007 Stat. Comput. 17 395–416
[23] Jafarizadeh M A, Sufiani R, Salimi S and Jafarizadeh S 2007 Eur. Phys. J. B 59 199–216
[24] Rebentrost P, Mohseni M, Kassal I, Lloyd S and Aspuru-Guzik A 2009 New J. Phys. 11 033003
[25] Razzoli L, Paris M G A and Bordone P 2021 Entropy 23 85
[26] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101–44
[27] Olaya-Castro A, Lee C F, Olsen F F and Johnson N F 2008 Phys. Rev. B 78 085115
[28] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106
[29] Farhi E and Gutmann S 1998 Phys. Rev. A 57 2403–6

20

https://orcid.org/0000-0002-9129-2154
https://orcid.org/0000-0002-9129-2154
https://orcid.org/0000-0002-4313-0732
https://orcid.org/0000-0002-4313-0732
https://orcid.org/0000-0001-7523-7289
https://orcid.org/0000-0001-7523-7289
https://doi.org/10.1103/physreva.58.915
https://doi.org/10.1103/physreva.58.915
https://doi.org/10.1103/physreva.58.915
https://doi.org/10.1103/physreva.58.915
https://doi.org/10.1103/physreva.104.042221
https://doi.org/10.1103/physreva.104.042221
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1103/physrevlett.92.187902
https://doi.org/10.1103/physrevlett.92.187902
https://doi.org/10.1007/s10801-015-0642-x
https://doi.org/10.1007/s10801-015-0642-x
https://doi.org/10.1007/s10801-015-0642-x
https://doi.org/10.1007/s10801-015-0642-x
https://doi.org/10.1103/physreva.70.022314
https://doi.org/10.1103/physreva.70.022314
https://doi.org/10.1007/s11128-016-1373-1
https://doi.org/10.1007/s11128-016-1373-1
https://doi.org/10.1007/s11128-016-1373-1
https://doi.org/10.1007/s11128-016-1373-1
https://doi.org/10.1103/physreva.102.032214
https://doi.org/10.1103/physreva.102.032214
https://doi.org/10.1038/s41598-021-95801-1
https://doi.org/10.1038/s41598-021-95801-1
https://doi.org/10.1103/physrevlett.102.180501
https://doi.org/10.1103/physrevlett.102.180501
https://doi.org/10.1038/s41534-017-0050-2
https://doi.org/10.1038/s41534-017-0050-2
https://doi.org/10.1088/1751-8113/42/11/115205
https://doi.org/10.1088/1751-8113/42/11/115205
https://doi.org/10.1103/physreva.102.042214
https://doi.org/10.1103/physreva.102.042214
https://doi.org/10.1209/0295-5075/124/60001
https://doi.org/10.1209/0295-5075/124/60001
https://doi.org/10.1103/physreva.98.052347
https://doi.org/10.1103/physreva.98.052347
https://doi.org/10.1103/physreva.102.012201
https://doi.org/10.1103/physreva.102.012201
https://doi.org/10.1038/srep13304
https://doi.org/10.1038/srep13304
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1140/epjb/e2007-00281-5
https://doi.org/10.1140/epjb/e2007-00281-5
https://doi.org/10.1140/epjb/e2007-00281-5
https://doi.org/10.1140/epjb/e2007-00281-5
https://doi.org/10.1088/1367-2630/11/3/033003
https://doi.org/10.1088/1367-2630/11/3/033003
https://doi.org/10.3390/e23010085
https://doi.org/10.3390/e23010085
https://doi.org/10.1103/revmodphys.70.101
https://doi.org/10.1103/revmodphys.70.101
https://doi.org/10.1103/revmodphys.70.101
https://doi.org/10.1103/revmodphys.70.101
https://doi.org/10.1103/physrevb.78.085115
https://doi.org/10.1103/physrevb.78.085115
https://doi.org/10.1063/1.3223548
https://doi.org/10.1063/1.3223548
https://doi.org/10.1103/physreva.57.2403
https://doi.org/10.1103/physreva.57.2403
https://doi.org/10.1103/physreva.57.2403
https://doi.org/10.1103/physreva.57.2403


J. Phys. A: Math. Theor. 55 (2022) 265303 L Razzoli et al

[30] Wang Y and Wu S 2021 SPIN 11 2140002
[31] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308
[32] Wong T G 2016 Quantum Inf. Process. 15 1411–43
[33] Sakarya O, Winczewski M, Rutkowski A and Horodecki K 2020 Phys. Rev. Res. 2 043022
[34] Frigerio M, Benedetti C, Olivares S and Paris M G A 2021 Phys. Rev. A 104 L030201
[35] Frigerio M, Benedetti C, Olivares S and Paris M G A 2022 Phys. Rev. A 105 032425

21

https://doi.org/10.1142/s2010324721400026
https://doi.org/10.1142/s2010324721400026
https://doi.org/10.1103/physreva.65.042308
https://doi.org/10.1103/physreva.65.042308
https://doi.org/10.1007/s11128-015-1239-y
https://doi.org/10.1007/s11128-015-1239-y
https://doi.org/10.1007/s11128-015-1239-y
https://doi.org/10.1007/s11128-015-1239-y
https://doi.org/10.1103/physrevresearch.2.043022
https://doi.org/10.1103/physrevresearch.2.043022
https://doi.org/10.1103/physreva.104.l030201
https://doi.org/10.1103/physreva.104.l030201
https://doi.org/10.1103/physreva.105.032425
https://doi.org/10.1103/physreva.105.032425

	Universality of the fully connected vertex in Laplacian continuous-time quantum walk problems
	1.  Introduction
	2.  Continuous-time quantum walks
	3.  Dimensionality reduction method
	3.1.  Method
	3.2.  Complete graph

	4.  Universality of a CTQW starting from a fully connected vertex
	4.1.  Laplacian CTQW
	4.2.  Adjacency CTQW

	5.  Grover-like CTQWs with single marked vertex
	5.1.  Spatial search
	5.2.  Quantum transport

	6.  Grover-like CTQWs with multiple marked vertices
	6.1.  Spatial search
	6.2.  Quantum transport

	7.  Conclusions
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


