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Abstract
Impurities hosted in semiconducting solid matrices represent an extensively studied
platform for quantum computing applications. In this scenario, the so-called flip-flop
qubit emerges as a convenient choice for scalable implementations in silicon.
Flip-flop qubits are realized implanting phosphorous donor in isotopically purified
silicon, and encoding the logical states in the donor nuclear spin and in its bound
electron. Electrically modulating the hyperfine interaction by applying a vertical
electric field causes an Electron Dipole Spin Resonance (EDSR) transition between the
states with antiparallel spins {| ↓⇑〉, | ↑⇓〉}, that are chosen as the logical states. When
two qubits are considered, the dipole-dipole interaction is exploited to establish
long-range coupling between them. A universal set of quantum gates for flip-flop
qubits is here proposed and the effect of a realistic 1/f noise on the gate fidelity is
investigated for the single qubit Rz(–π

2 ) and Hadamard gate and for the two-qubit√
iSWAP gate.

Keywords: Semiconductor qubits; Gate fidelity; Noise effects

1 Introduction
Quantum computing applications encompass a variety of different scientific, social and
economical contexts, from fundamental science to finance, security and medical sectors.
In the variegated landscape of physical qubits, semiconducting qubits encoding quan-
tum information in the spin of electrons or nuclei confined through artificial atoms, such
as quantum dots and donor atoms, are an established powerful tool [1–6]. In particu-
lar, donor spins have unprecedented advantages in terms of their long coherence time,
high control and scalability. When a phosphorus donor is implanted in silicon, eventu-
ally using isotopically purified nanostructures (28Si) to drastically reduce magnetic noise,
another advantage comes out, that is the integrability with the Complementary Metal-
Oxide-Semiconductor (CMOS) technology for the qubit fabrication [7].

The main obstacle to the realization of a donor-based quantum processor following
Kane’s seminal proposal [8] is the use a short-range interaction (10–15 nm) among qubits,
namely the exchange interaction between the donor bound electrons, that requires a
strong near-atomic precision in the donor implantation. One way to get around this issue,
relaxing the strict requirement on donor placement, is based on the possibility to access
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long-range electric dipole-dipole interaction, thus reaching qubit distance up to hundreds
of nm. In Ref. [9], a qubit in which an electric dipole is created sharing the electron be-
tween the donor and the interface has been proposed and called flip-flop qubit [10–14].
This qubit is manipulated by microwave electric field that modulates the hyperfine in-
teraction. In addition, a dc electric field is applied to perform qubit rotations along the
ẑ-axis of the Bloch sphere, and an ac electric field is required to perform x̂ and ŷ rotations.
The electrical control clearly makes the flip-flop qubit more sensitive to charge noise, that
typically shows a 1/f spectrum, representing a not negligible source of decoherence [15]
especially in the low-frequency range [9].

In this paper, we present a universal set of quantum gates for quantum computation with
flip-flop qubits. It is composed by the Rz(– π

2 ) and the Hadamard (H) one-qubit gates and
the

√
iSWAP two-qubit gate. It is indeed possible to demonstrate that a universal gate set

is G = {H ,�(S)}, where �(S) is a two-qubit gate in which the operation S is applied to the
target qubit if and only if the control qubit is in the logical state |1〉, for example the CNOT
gate [16]. Moreover, a construction of the CNOT gate using only Rz(– π

2 ), H and
√

iSWAP
gates is feasible [17]. For each gate operation, we consider the effect of the charge noise
using the 1/f model for the power spectral density.

The paper is organized as follows. In Sect. 2 we present the flip-flop qubit, its Hamilto-
nian model and the study on the noise effects on the fidelity for the single-qubit gates. In
Sect. 3 we focus on the description of two interacting flip-flop qubits including the dipole-
dipole interaction in the Hamiltonian model and then showing a fidelity analysis on the√

iSWAP two-qubit gate. Section 4 contains the main conclusions.

2 Flip-flop qubit
The flip-flop qubit is realized embedding a phosphorous 31P donor atom in a 28Si nanos-
tructure at a depth d from the interface (SiO2 layer) as shown in Fig. 1.

A vertical electric field Ez applied by a metal gate on top, controls the position of the
electronic wavefunction [9, 10]. The electronic spin (S = 1/2) is described in the basis
{| ↓〉, | ↑〉} and has a gyromagnetic ratio γe = 27.97 GHzT–1, while for the nuclear spin (I =
1/2) the basis is denoted by {| ⇓〉, | ⇑〉} and the gyromagnetic ratio is γn = 17.23 MHzT–1,
they interact through the hyperfine coupling A. Applying a large static magnetic field B0,
(i.e. (γe + γn)B0 � A), the eigenstates of the system are the four qubit states: {| ↓⇑〉, | ↓⇓
〉, | ↑⇓〉, | ↑⇑〉}. Electrically modulating the hyperfine interaction A by Ez causes an Elec-
tron Dipole Spin Resonance (EDSR) transition between the states with antiparallel spins
{| ↓⇑〉, | ↑⇓〉}, that are in turn chosen to encode the qubit.

Figure 1 Scheme of the flip-flop qubit. A donor atom
of 31P is embedded in a bulk of 28Si at a distance d
from the Si/SiO2 interface. The metal gate controls
through an electric field Ez the electron position
between the nucleus (|d〉) and the interface (|i〉) with
the dielectric. A constant magnetic field B0 is also
applied
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2.1 Hamiltonian model
The flip-flop qubit Hamiltonian model Hff is given by the sum of three contributions [9, 12]

Hff = Horb + HB0 + HA. (1)

The first term is the orbital Hamiltonian that reads (in units of Hz):

Horb = –
ε0

2
σz –

deEac(t)
2h

(
de�Ez

hε0
σz +

Vt

ε0
σx

)
, (2)

where Vt is the tunnel coupling between the donor and the interface potential wells; �Ez =
Ez – E0

z where E0
z is the vertical electric field at the ionization point, i.e. the point in which

the electron is shared halfway between the donor and the interface; ε0 =
√

V 2
t + (de�Ez/h)2

is the energy difference between the orbital eigenstates, where h is the Planck’s constant, d
is the distance from the interface, hereafter d = 15 nm, and e is the elementary charge. For
completeness, the ac electric field Eac(t) is also included and is equal to Eac cos(ωEt +φ). It is
applied in resonance with the flip-flop qubit, i.e. ωE = 2πεff , where εff is the flip-flop qubit
transition frequency, and φ is an additional phase. The Pauli matrices are expressed in the
basis of the orbital eigenstates: σz = |g〉〈g| – |e〉〈e| and σx = |g〉〈e| + |e〉〈g|, where |g〉(|e〉) is
the ground (excited) state of the orbital part of the Hamiltonian. We point out that the
electron position operators, i.e. σ id

z = |i〉〈i| – |d〉〈d| and σ id
x = |i〉〈d| + |d〉〈i|, where |i〉(|d〉)

denotes the interface (donor) electron position, are expressed in the orbital eigenbasis, by
the following relation: σ id

z = de�Ez
hε0

σz + Vt
ε0

σx and σ id
x = – Vt

ε0
σz + de�Ez

hε0
σx.

The second term in Eq. (1) is the Zeeman interaction due to the presence of the static
magnetic field B0 oriented along the ẑ axis and includes also the dependence of the electron
Zeeman splitting on its orbital position through the quantity �γ (that in the following we
set to –0.2%). The Zeeman term HB0 may be written

HB0 = γeB0

[
1 +

(
1

2
+

de�Ez

2hε0
σz +

Vt

2ε0
σx

)
�γ

]
Sz – γnB0Iz, (3)

where 1 is the identity operator on the orbital subspace, the electron (nuclear) spin oper-
ators are S (I), with ẑ component Sz (Iz), and B0 = 0.4T .

Finally, the hyperfine interaction is given by

HA = A
(

1

2
–

de�Ez

2hε0
σz –

Vt

2ε0
σx

)
S · I, (4)

where A is the hyperfine coupling that is a function of the applied electric field �Ez . To
obtain the functional form of A, that changes from the bulk value A0 = 117 MHz to 0
when the electron is at the interface, we fit the results from Ref. [9] with the function
A0/(1 + ec�Ez ), obtaining c = 5.174 · 10–4 m/V.

We assume a qubit working temperature of T = 100 mK, so as to ensure that the thermal
energy kBT (where kB is the Boltzmann constant) is always lower than the minimum qubit
energy εff =

√
(γe + γn)2B2

0 + A(Ez)2, that is 
11 GHz.
We chose to describe the flip-flop qubit expressing its Hamiltonian in the complete

eight-dimensional basis {|g ↓⇑〉, |g ↓⇓〉, |e ↓⇑〉, |g ↑⇑〉, |g ↑⇓〉, |e ↓⇓〉, |e ↑⇑〉, |e ↑⇓〉},
where the states are ordered from the lower to the higher corresponding energy values,
and {|g ↓⇑〉, |g ↑⇓〉} are respectively the {|0〉, |1〉} logical states.
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2.2 Single-qubit gates
In this subsection we present the results obtained analyzing the entanglement fidelity for
the single-qubit Rz(– π

2 ) and H gates when the 1/f noise model is included [15, 18–21].
The sequences that realize all the quantum gates are obtained optimizing the results

presented in Ref. [9] slightly modifying the control parameters in such a way to have adia-
batic operations. Rotations around the z-axis of the Bloch sphere are obtained by exploit-
ing the phase accumulation between the two qubit states generated during the interaction
of the qubit with an external dc electric field. For x̂-axis and ŷ-axis rotations an additional
ac electric field is needed beyond the dc one. The parameters obtained are included in
the Hamiltonian model (1) that is in turn employed to calculate the evolution operator
U = e–iHt . It is exactly the operator U that, at the end of the sequence and once expressed
in the qubit logical basis {|0〉, |1〉}, must coincide with the matrix form of the quantum gate
under investigation.

The 1/f noise model is based on the definition of the Power Spectral Density (PSD) that
is inversely proportional to the frequency and is given by S(ω) = α/(ωt0), where α is the
noise amplitude, that does not depend on ω and t0 is the time unit. Following Ref. [22] we
generated the 1/f noise in the frequency domain as

n(ω) = m(ω)–1/2eiϕ(ω), (5)

where m(ω) is generated from a standard Gaussian white process and the phase factor
ϕ(ω) = [0, 2π ] is chosen uniformly. To obtain the noise in the time domain, we calculate
the inverse Fourier transform and then multiply the result by the noise amplitude α.

2.2.1 Rz(– π
2 ) gate

The rotation of an angle –π/2 around the ẑ-axis of the Bloch sphere is obtained in the
following way: a dc electric field �Ez(t) is adiabatically swept to move the electron from
the interface at an idling electric field �Eidle to, tuning appropriately the tunnel coupling
Vt , the value of the clock transition (CT) �Ect, where ∂εff /∂Ez = 0 and the dephasing rate is
reduced, and back. The adiabatic set-up consists of a first fast step of duration τ1, reaching
an intermediate value �Eint, and a second slower step of duration τ2 reaching �Ect. Then,
the electron remains at the CT for a time T before coming back at the idling. The ac electric
field is zero. In Table 1 all the parameters set to implement the Rz(– π

2 ) gate are reported,
Tgate denotes the total gate time.

The coefficient K , representing the adiabatic factor, is calculated as the minimum value
between the charge adiabatic factor Kc and the spin-orbit adiabatic factor Kso. Both are
derived from a simple two-level Hamiltonian model [9]

H = �σz + �σx (6)

Table 1 Rz(–π
2 ) gate parameters

�Eidle �Eint �Ect τ1 τ2 T Vt K Tgate
[V/m] [V/m] [V/m] [ns] [ns] [ns] [GHz] [ns]
10,000 500 290 1.7 3.5 21.6 11.29 
20 31.9
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(a)

(b)

Figure 2 (a) Time evolution of the dc applied electric field �Ez (t) and of the mean values of the operators
σ ff
z , σ

ff
x , σ

id
z and |e〉〈e| during the evolution of the Rz (–π

2 ) gate for the initial state |ψ0〉 = |0〉+|1〉√
2

. (b) Bloch
sphere representation of the Rz (–π

2 ) gate. The blue (yellow) arrow represents the initial (final) state in the
laboratory frame (left) and in the rotating frame (right)

and the adiabatic condition holds when

K =
∣∣∣∣ωeff

β̇

∣∣∣∣ � 1, (7)

where ωeff =
√

�2 + �2 and β = arctan( �
�

). For the Rz(– π
2 ) gate, in order to find Kc for the

charge qubit, we use �c = πed�Ez
h and �c = πVt , whereas for the spin-charge coupling we

use �so = πδso, where δso = ε0 – εff with εff =
√

(γe + γn)2B2
0 + A(�Ez)2, that is the flip-flop

qubit transition frequency, and �so = 2πgso where gso = A
4

Vt
ε0

.
In Fig. 2(a) we report the dynamical behaviour of the dc field �Ez(t) as well as the mean

values of the single qubit operators: σ ff
z = | ↑⇓〉〈↑⇓ |– | ↓⇑〉〈↓⇑ |, σ ff

x = |+ff
x 〉〈+ff

x |– |–ff
x 〉〈–ff

x |
with |±ff

x 〉 = (| ↑⇓〉± e–i2πεt=0
ff | ↓⇑〉)/√2, σ id

z and the charge excitation |e〉〈e| in the flip-flop
subspace during the evolution of the Rz(– π

2 ) gate. To provide an example, that allows to vi-
sualize on the Bloch sphere the dynamical qubit evolution under the action of the external
control field, we have chosen to start from the initial condition |ψ0〉 = |0〉+|1〉√

2 . Figure 2(b)
shows the Bloch sphere representation of the Rz(– π

2 ) gate operation when the qubit is ob-
served in the laboratory frame (left) and in a frame rotating at the angular frequency of
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Table 2 H gate parameters

�Eidle �Eint �Ect Eac τ1 τ2 T TONEac Vt K KE Tgate
[V/m] [V/m] [V/m] [V/m] [ns] [ns] [ns] [ns] [GHz] [ns]
10,000 500 0 180 1.7 3.5 41.5 40 11.5 
21 
57 51.9

an idling qubit (right). The yellow arrow represents the expected final state obtained after
the application of the sequence.

2.2.2 Hadamard gate
The Hadamard gate acts on the qubit as a rotation of an angle π around the (x̂ + ẑ)/

√
2

axis. It is obtained by applying both the dc and the ac electric fields. The dc electric field is
applied following the procedure described before for the Rz(– π

2 ) gate. In addition, when
�Ez(t) = �Ect an ac electric field Eac(t) in resonance with the flip-flop transition frequency
is applied for a time TON

Eac with φ = –π/2. In Table 2 all the parameters set to implement
the H gate are reported.

For the H gate, in addition to the adiabaticity factor K , we evaluated KE using �E = πδE

where δE = ωE/(2π ) – ε0 and �E = 2πgE where gE = edEac
4h

Vt
ε0

.
Analogously to the Rz(– π

2 ) gate, in Fig. 3 we observe the behavior of the H gate starting
from the qubit initial condition |ψ0〉 = |0〉.

2.2.3 Entanglement fidelity
In order to assess the performance of our gates in the presence of noise, we adopt the
entanglement fidelity F [23, 24], that does not depend on the qubit initial condition, and
is defined as

F = tr
[
ρRS1R ⊗ (

U–1
i Ud

)
Sρ

RS1R ⊗ (
U–1

d Ui
)

S

]
, (8)

where Ud (Ui) is the disturbed (ideal) quantum gate and ρRS = |ψ〉〈ψ | where |ψ〉 rep-
resents a maximally entangled state in a double state space generated by two identi-
cal Hilbert spaces R and S, that is |ψ〉 = 1√

2 (|00〉 + |11〉 for the single qubit gates and
|ψ〉 = 1√

2 (|0000〉 + |1111〉 for the two-qubit gate.
In Fig. 4 we show the entanglement infidelity 1 – F for the Rz(– π

2 ) and the H gates when
a noise amplitude α�Ez on the electric field �Ez in the interval [1, 1000] V/m is considered.

For both the quantum gates we observe the same qualitative behaviour of the infidelity.
In the intervals α�Ez 
 [1, 20] V/m for Rz(– π

2 ) and α�Ez 
 [1, 40] V/m for H , the infidelities
show a plateau that reflects the non-adiabaticity of the sequence. Increasing the value of
the coefficient K leads to a more adiabatic operation that returns a lower value of the
infidelities in the plateau. This is possible when K is increased up to an optimum value in
such a way that gate times are still fast as to keep noise errors low [9]. For K values higher
than the optimum value thus for longer gate times, the noise effects strongly increase the
gate infidelity. In the plateau region, the Rz(– π

2 ) gate shows the higher values of fidelity, that
is, around 99.9999%, followed by the H gate fidelity that starts approximately from 99.9%.
Then the infidelities slowly grow up until they settle to higher values in correspondence
to high values of the noise amplitude. For all the gates under study, the fidelities show very
promising values up to very reasonable values of the experimental noise amplitude, i.e.
α�Ez ≤ 100 V/m. Indeed, we have F ≥ 99.99% for the Rz(– π

2 ) gate and F ≥ 99.3% for the
H gate.



Ferraro et al. EPJ Quantum Technology             (2022) 9:2 Page 7 of 11

(a)

(b)

Figure 3 (a) Time evolution of the dc applied electric field �Ez (t), of the amplitude of the ac electric field
Eac(t) and of the mean values of the operators σ ff

z , σ
id
z and the charge operator |e〉〈e| – |g〉〈g| in the flip-flop

subspace during the evolution of the H gate for the initial state |ψ0〉 = |0〉. (b) Bloch sphere representation of
the H gate. The blue (yellow) arrow represents the initial (final) state in the laboratory frame (left) and in the
rotating frame (right)

Figure 4 Entanglement infidelity for the Rz (–π
2 ) and H gates

as a function of the noise amplitude α�Ez

3 Two flip-flop qubits
The universal set of quantum gates may be completed by the

√
iSWAP two-qubit gate. In

the first part of this section, we present the Hamiltonian model describing two interacting
flip-flop qubits, whereas in the second part the

√
iSWAP is derived and the effects of the

noise are investigated.
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3.1 Hamiltonian model
The two flip-flop qubits Hamiltonian model H2ff is obtained adding up two single-qubit
Hamiltonians, supposed identical, and an interaction term

H2ff = Hff ⊗ I + I ⊗ Hff + Hint. (9)

Hint is the dipole-dipole interaction and is equal to

Hint =
1

4πε0εrr3

[
p1 · p2 –

3(p1 · r)(p2 · r)
r2

]
, (10)

where ε0 (εr) is the vacuum permittivity (material dielectric constant, that we set to the
silicon value 11.7) and r is the two-qubit distance. The dipole operator is pk = de(I +σ id

z,k)/2,
(k = 1, 2), and we assume that the dipoles are oriented perpendicularly to their separation,
i.e. pk · r = 0. From all these considerations, we have

Hint =
d2e2

16πε0εrhr3

(
I1I2 + σ id

z,1I2 + I1σ
id
z,2 + σ id

z,1σ
id
z,2

)
. (11)

3.2 Two-qubit gate:
√

iSWAP
Following the same method exposed in Sect. 2.2 for the one quantum gates, the two qubit
quantum gate is here derived and the effect of the 1/f noise analyzed.

The matrix that represents the
√

iSWAP gate in the two-qubit logical basis is given by

√
iSWAP =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1√

2
1√
2 i 0

0 1√
2 i 1√

2 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠ (12)

and the set of parameters included into the sequence that realize the transformation in
Eq. (12) is reported in Table 3.

The operation is obtained by first applying to both the qubits Q1Q2 a dc electric field
�Ez(t) with τ1 = 1.7 ns, τ2 = 99 ns and T = 2 ns, and then by applying two identical single
qubit rotations to Q1 and later to Q2 along the ẑ axis with τ1 = 1.7 ns, τ2 = 3.5 ns and
T = 1.2 ns, that corresponds to a rotation angle θ 
 –0.5 rad. When Q1 performs the ẑ-
rotation, Q2 is in �Eidle, and viceversa. The total time to perform the

√
iSWAP is given by

Tgate = TQ1Q2
gate + TQ1

gate + TQ2
gate = 226.6 ns.

The dynamical behaviour of the two electric fields �Ez,1(t) and �Ez,2(t) applied respec-
tively to Q1 and to Q2 are shown in Fig. 5(a). In addition, the mean values of the operators
for both the qubits are shown. In Fig. 5(b) we report the dynamical behaviour on the Bloch

Table 3
√
iSWAP gate parameters

�Eidle
[V/m]

�Eint
[V/m]

�Ect
[V/m]

τ1
[ns]

τ2
[ns]

T
[ns]

Vt
[GHz]

K Tgate
[ns]

Q1Q2 10,000 500 0 1.7 99 2 11.58 
21 203.4
Q1 (Q2) 10,000 500 0 1.7 3.5 1.2 11.58 
21 11.6
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(a)

(b)

Figure 5 (a) Time evolution of the dc applied electric fields �Ez,1(t) and �Ez,2(t) and of the mean values of
the operators σ ff

z,(1,2) , σ
id
z,(1,2) and the charge operator |e〉〈e| – |g〉〈g| for the two flip-flop qubits during the

evolution of the
√
iSWAP gate for the initial state |ψ0〉 = |ψ01 〉 ⊗ |ψ02 〉 with |ψ01 〉 = |1〉 and |ψ02 〉 = |0〉.

(b) Bloch sphere representation of the
√
iSWAP gate. The blue (yellow) arrow represents the initial (final) state

for Q1 (left) and Q2 (right) in the rotating frame

Figure 6 Entanglement infidelity for the
√
iSWAP gate as a

function of the noise amplitude α�Ez

sphere during the application of the entire sequence for Q1 (left) and Q2 (right) in the ro-
tating frame, starting from the initial condition |ψ0〉 = |ψ01〉 ⊗ |ψ02〉 with |ψ01〉 = |1〉 for
Q1 and |ψ02〉 = |0〉 for Q2.

In Fig. 6 we report the entanglement infidelity for the
√

iSWAP gate when a noise am-
plitude α�Ez in the interval [1, 1000] V/m is considered.

When the noise amplitude lies in the interval [1, 10] V/m, the fidelity is F 
 99.98% and
it remains larger than F 
 99.5% up to α�Ez 
 50 V/m.
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4 Conclusions
In this paper we have addressed quantum computation by flip-flop qubits, a donor-based
qubits in which the logical states are encoded in the donor nuclear and its bound electron.
Flip-flop qubits represent an interesting advancement compared to the Kane’s seminal
proposal, due to the possibility of exploiting the long range electric dipole-dipole inter-
action. A universal set of quantum gates composed by {Rz(– π

2 ), H ,
√

iSWAP} has been
presented, and the noise effect on the entanglement fidelity has been studied. The noise
model adopted shows a 1/f spectrum, typical of qubits sensitive to charge noise. In terms
of fidelity, results are very promising: for example in correspondence to a realistic noise
level around 50 V/m, we obtain F ≥ 99.999% for the Rz(– π

2 ) gate and 99.8% for the H
gate. Under the same condition, the two-qubit

√
iSWAP gate may be realized with a fi-

delity above 99.5%. We conclude that flip-flop qubits with long range coupling represent
a promising platform for solid state quantum computation.
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