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Optimized quantum nondemolition measurement of a field quadrature

Matteo G. A. Paris
Quantum Optics & Information Group, Istituto Nazionale per la Fisica della Materia, Universita` di Pavia,

via Bassi 6, I-27100 Pavia, Italy
~Received 17 July 2001; published 14 December 2001!

We suggest an interferometric scheme assisted by squeezing and linear feedback to realize the whole class
of field-quadrature quantum nondemolition measurements, from Von Neumann projective measurement to a
fully nondestructive noninformative one. In our setup, the signal under investigation is mixed with a squeezed
probe in an interferometer and, at the output, one of the two modes is revealed through homodyne detection.
The second beam is then amplitude-modulated according to the outcome of the measurement, and finally
squeezed according to the transmittivity of the interferometer. Using strongly squeezed or antisqueezed probes
respectively, one achieves either a projective measurement, i.e., homodyne statistics arbitrarily close to the
intrinsic quadrature distribution of the signal, and conditional outputs approaching the corresponding eigen-
states, or a fully nondestructive one, characterized by an almost uniform homodyne statistics, and by an output
state arbitrarily close to the input signal. By varying the squeezing between these two extremes, or simply by
tuning the internal phase shift of the interferometer, the whole set of intermediate cases may also be obtained.
In particular, an optimal quantum nondemolition measurement of quadrature may be achieved, which mini-
mizes the information gain versus state disturbance tradeoff.
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I. INTRODUCTION

In order to be manipulated and transmitted, informat
should be encoded into some degree of freedom of a phy
system. Ultimately, this means that the input alphabet sho
correspond to the spectrum of some observable, i.e., tha
formation is transmitted usingquantum signals. At the end of
the channel, to retrieve this kind of quantum informatio
one should measure the corresponding observable. As a
ter of fact, the measurement process unavoidably introdu
some disturbance, and may even destroy the signal, as
pens in many quantum optical detectors, which are mo
based on the irreversible absorption of the measured ra
tion. Actually, even in a measurement scheme that some
preserves the signal for further uses, one is faced by
information gain versus state disturbance tradeoff, i.e., by
fact that the more information is obtained, the more the s
nal under investigation is being modified.

Actually, the most informative measurement of an obse
ableX on a stateuc& corresponds to its ideal projective me
surement, which is also referred to as Von Neumannsecond
kind quantum measurement@1#. In an ideal projective mea
surement, the outcomex occurs with the intrinsic probability
densityu^cux&u2, whereas the system after the measurem
is left in the corresponding eigenstateux&. A projective mea-
surement is obviously repeatable, since a second mea
gives the same outcome as the first one. However, the in
state is erased, and the conditional output does not perm
to obtain further information about the input signal. The o
posite case corresponds to a fully nondestructive detec
scheme, where the state after the measurement can be
arbitrarily close to the input signal, and that is characteriz
by an almost uniform output statistic, i.e., by a data sam
that provides almost no information.

Besides fundamental interest, the realization of a pro
tive measurement of the quadrature would have an app
1050-2947/2001/65~1!/012110~5!/$20.00 65 0121
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tion in quantum communication based on continuous v
ables. In fact, it provides a reliable and controlled source
optical signals. On the other hand, a fully nondestruct
measurement scheme is an example of a quantum repe
another relevant tool for the realization of a quantum n
work. Between these two extremes we have the entire c
of quantum nondemolition~QND! measurements. Such in
termediate schemes provide only partial information ab
the measured observable, and correspondingly, are only
tially distorting the signal under investigation. In particula
in this paper, we show how to attain an optimized QN
measurement of a quadrature, i.e., or a scheme that m
mizes the information gain versus a state disturbance tr
off.

Most of the schemes suggested for back-action evad
measurements are based on nonlinear interaction betwe
signal and a probe taking place either inx (2) or x (3) media
~both fibers and crystals! @2–8#, or on optomechanical cou
pling @9,10#. Earlier, it had been suggested that a bea
splitter-based scheme realize optical Von Neumann meas
ments @11#. Here, we focus our attention on a
interferometric scheme that requires only linear elements
single-mode squeezers.

A schematic diagram of the suggested setup is given
Fig. 1. The signal under examinationucS& and the probe
~meter! stateucP& are given by

ucS&5E dxcS~x!ux&1 ,

ucP&5E dxcP~x!ux&2 , ~1!

where ux& j , j 51,2 are eigenstates of the field quadratu
xj5

1
2 (aj

†1aj ), j 51,2 of the two modes, andcS(x) and
cP(x) are the corresponding wave functions. The two bea
©2001 The American Physical Society10-1
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are linearly mixed in a Mach-Zehnder interferometer with
internal phase shift given byf. There are also twol/4
plates, each imposing ap/2 phase shift. Overall, the interfer
ometer equipped with the plates is equivalent to a beam s
ter of transmittivityt5cos2 f. However, the interferometric
setup is preferable to a single beam splitter since it perm
fine tuning of the transmittivity. After the interferometer, on
of the two output modes is revealed by homodyne detect
whereas the second mode is first displaced by an amount
depends on the outcome of the measurement~feedback-
assisted amplitude modulation!, and then squeezed accordin
to the transmittivity of the interferometer~see details below!.
As we will see, either by tuning the phase shift of the int
ferometer, or by exciting the probe stateucP& in a squeezed
vacuum, and by varying the degree of squeezing, the ac
of the setup ranges from a projective to a nondestruc
measurement of the field quadrature as follows:

~1! The statistics of the homodyne detector ranges from
distribution arbitrarily close to the intrinsic quadrature pro
ability density of the signal stateucS(x)u2 to an almost uni-
form distribution.

~2! The conditional output state, after registering a va
x0 for the quadrature of the signal mode, ranges from a s
arbitrarily close to the corresponding quadrature eigens
ux0& to a state that approaches the input signalucS&.

The two features may be summarized by saying that
present scheme realizes the whole set of QND measurem
of a field quadrature. In addition, the interferometer may
tuned in order to minimize the information gain versus st
disturbance trade off, i.e., to achieve an optimal QND m
surement of quadrature. Such a kind of measurement
vides the maximum information about the quadrature dis
bution of the signal, while keeping the conditional outp

FIG. 1. Setup for QND measurements of a field quadrature
the stateucS&. The signal is linearly mixed with a probe mode in
Mach-Zehnder interferometer, which, equipped with two additio
l/4 plates, shows a transmittivity cos2f. Such transmittivity can be
tuned by varying the internal phase-shiftf. One of the modes ex
iting the interferometer is then revealed by homodyne detect
and the resulting outcomex0 is used for a feedback-assisted d
placement, by an amountx0sinf tanf of the other mode. Such
displacement is obtained by mixing the mode with a strong cohe
state of amplitudez ~e.g., the laser beam also is used as a lo
oscillator for the homodyne detector! in the beam splitter of trans
mittivity t close to unity, with the requirement thatzA12t
5x0 sinf tanf. Finally, the conditional output is squeezed by

degenerate parametric amplifier by an amountS(r * ) with er*

5cosf. By varying the degree of squeezing of the probe mode,
resulting measurement ranges from a projective to a fully non
structive detection of the field quadrature.
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state as close as possible to the incoming signal.
The paper is structured as follows. In the next section,

analyze the dynamics of the measurement scheme, and
scribe in detail the action of linear feedback and tuna
squeezing on the conditional output state and on the ho
dyne distribution. In Sec. III, we analyze the limiting cas
of strongly squeezed and antisqueezed probes, which co
spond to projective and nondestructive measurements,
spectively. In Sec. IV, we introduce two fidelity measures,
order to quantify how close are the conditional output a
the homodyne distribution to the input signal and its quad
ture distribution, respectively. As a consequence, we are
to individuate an optimal set of configurations that minimi
the trade off between information gain and state disturban
Section V closes the paper with some concluding remark

II. HOMODYNE INTERFEROMETRY WITH LINEAR
FEEDBACK

Let us now describe the interaction scheme in detail. T
evolution operator of the interferometer is given byU(f)
5exp@if(a1

†a21a2
†a1)#, such that the input stateuC IN&&

5ucS& ^ ucP& evolves as

uCOUT&&5U~f!ucS& ^ ucP&

5E dx1E dx2cS~x1!cP~x2!ux1 cosf1x2 sinf&1

^ u2x1 sinf1x2 cosf&2

5E dy1E dy2cS~y1 cosf2y2 sinf!cP~y1 cosf

1y2 sinf!uy1&1^ uy2&2 . ~2!

After the interferometer, the quadrature of one of the mo
~say mode 2! is revealed by homodyne detection. The dist
bution of the outcomes is given by

p~X!5Tr@ uCOUT&&^^COUTuI1^ P2~X!#, P~X!5uX&^Xu,

~3!

P(x) being the POVM of the homodyne detector. Since t
reflectivity of the interferometer is given by sinf from an
outcome X by the homodyne, we infer a valuex05
2X/sinf for the quadrature of the input signal. The corr
sponding probability density is given by

p~x0!52sinfp~X!

5tanfE dyucS~y!u2ucP@ tanf~y2x0!#u2, ~4!

and the conditional output state for mode 1,
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uwx0
&5Asinf^2X sinfuCOUT&&

5Asinf

p~x0!
E dycS~y cosf1x0 sin2f!cP~y sinf

2x0 cosf sinf!uy&. ~5!

The amplitude of this conditional state is then modulated
a feedback mechanism, which consists in the application
displacementD(x0 sinf tanf), with D(z)5exp(za†2z̄a).
Such displacing action may be obtained by mixing the mo
with a strong coherent state of amplitudez ~e.g., the laser
beam is also used as a local oscillator for the homod
detector, see Fig. 1! in a beam splitter of transmittivityt
close to the unit, with the requirement thatzA12t
5x0 sinf tanf @12#. An experimental implementation usin
a feed-forward electro-optic modulator has been presente
@13#. The resulting state is given by

D~x0 sinf tanf!uwx0
&

5Asinf

p~x0!
E dycS~y cosf!cP~y sinf2x0 tanf!uy&.

~6!

Finally, this state is subjected to a single-mode squeez
transformationS(r )5exp@1/2r (a†22a2)# by a degenerate
parametric amplifier~DOPA!. By tuning the squeezing pa
rameter to a valuer !5cosf and using the relationS(r )uy&
5er /2uery&, we arrive at the final state

ucx0
&5S~r * !D~x0sinf tanf!uwx0

&

5A tanf

p~x0!
E dycS~y!cP@~y2x0!tanf#uy&. ~7!

The wave function of this conditional output state is th
given by

cx
0
~x!5

cS~x!cP@~x2x0!tanf#

AE dyucS~y!u2ucP@ tanf~y2x0!#u2
. ~8!

Equations~4!, ~7!, and~8! summarize the filtering effects o
the probe wave function on the output statistics and the c
ditional state, respectively.

III. MEASUREMENTS USING SQUEEZED OR
ANTISQUEEZED PROBES

For the probe mode in the vacuum state, we havecP(x)
5(2/p)21/4exp(2x2) such that the homodyne distribution o
Eq. ~4! results in

p~x0!5ucS~x!u2* GS x,x0 ,
1

4 tan2f
D , ~9!
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where* denotes convolution andG(x;x0 ,s2) a Gaussian of
meanx0 and variances2. The quadrature distribution of th
corresponding output state is given by

ucx0
~x!u25

1

p~x0!
ucS~x!u2GS x,x0 ,

1

4 tan2f
D . ~10!

Equations~9! and ~10! account for the noise introduced b
vacuum fluctuations. This noise may be manipulated by s
ably squeezing the probe, thus realizing the whole se
QND measurement.

Squeezed or antisqueezed vacuum probes are desc
by the wave functions

cSQ~x!5
1

~2pS2!1/4
expH 2

x2

4S2J ,

cASQ~x!5S S2

2p D 1/4

expH 2
S2x2

4 J , ~11!

where the information about squeezing stays in the requ
ment 0,S2<1/4. Notice that squeezing the probe intr
duces additional energy in the system. The mean pho
number of the states in Eq.~11! is given byN5(S211/S2

22)/4. Using a squeezed vacuum probe, Eqs.~9! and ~10!
rewrite as

p~x0!5ucS~x!u2* G~x,x0 ,S2/tan2f! →
S→0

ucS~x0!u2,
~12!

ucx0
~x!u25

1
p~x0! ucS~x!u2G~x,x0 ,S2/tan2f! →

S→0
d~x2x0!.

~13!

Equation~12! says that by squeezing the probe, the statis
of the homodyne detectors can be made arbitrarily close
the intrinsic quadrature distributionucS(x0)u2, whereas Eq.
~13! shows that for any value of the outcomex0, the condi-
tional outputucx0

& approaches the corresponding quadrat

eigenstateux0&. For S→0, the mean energy of the cond
tional output stateucx0

& increases, since it is approaching
quadrature eigenstate~an exact eigenstate would have in
nite energy!. Notice that this amount of energy is most
provided by the probe state itself, rather than by the displa
ment and squeezing stages of the setup. The improveme
the precision due to squeezing, compared to that of a vac
probe, may be quantified by the ratio of variances in
filtering Gaussian of Eqs.~10! and~13!. Calling this ratioD,
we haveD5S2 and thus, for squeezing not too low,D.N.

For an antisqueezed vacuum probe, Eqs.~9! and ~10! re-
write as

p~x0!5ucS~x!u2* G„x,x0 ,~S2 tan2f!21
…

→
S→0

expH 2
x2

2s2J
A2ps2

, s25
1

S2 tan2f
, ~14!
0-3
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ucx0
~x!u25

1
p~x0! ucS~x!u2G„x,x0 ,~S2 tan2f!21

…

→
S→0

ucS~x!u2 ; x0 . ~15!

Equations~14! and~15! say that by antisqueezing the prob
the statistics of the homodyne detectors are approachin
flat distribution over the real axis, and correspondingly, t
the conditional output may be made arbitrarily close to
incoming signal, independently of the actual value ofx0.

Notice that in principle, both projective and nondestru
tive measurements could be obtained with a vacuum pro
simply by varying the internal phase shift of the interfero
eter according to Eqs.~9! and~10!. However, this would also
affect therate of the events at the output~sincef governs
the transmittivity of the interferometer!, and therefore may
not be convenient from a practical point of view. On t
other hand, when a fine tuning of the variances in Eqs.~12!–
~15! is needed~as, for example, in the optimization of th
scheme, see the next section! it can be conveniently obtaine
by varying f, without the need of varying the degree
squeezing of the probe.

IV. OPTIMIZED QND MEASUREMENT

So far, we have considered the two extreme cases o
finitely squeezed or antisqueezed probes. Now we procee
quantify the trade off between the state disturbance and
gain of information for the whole set of intermediate cas
There are two relevant parameters:~i! how close the outpu
signal is to the input state, and~ii ! how close the homodyne
distribution is to the intrinsic quadrature probability. Accor
ing to Eq. ~7!, after the outcomex is being registered, the
conditional output state is given byucx&. Since the outcome
x occurs with the probabilityp(x) of Eq. ~4!, the density
matrix describing the output ensemble after a large num
of measurements is given by

%OUT5E dxp~x!ucx&^cxu. ~16!

Indeed, this is the state that may be subsequently man
lated, or used to gain further information on the system. T
resemblance between input and output may be quantifie
the average state fidelity

F5^cSu%OUTucS&5E dxp~x!u^cSucx&u2. ~17!

Inserting Eq.~7! into Eq. ~17!, we obtain

F5E E dy8dy9ucS~y8!u2ucP~y9!u2Tf~y8,y9!, ~18!

where, for the squeezed vacuum probes we are taking
account, the transfer function is given by

Tf~y8,y9!5expH 2tan2f
~y82y9!2

8sP
2 J , ~19!
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sP
2 being the variance of the probe wave function, i.e.,sP

5S for squeezed probe, andsP5S21 for antisqueezed
probes.F take values from zero to unit, and it is a decreas
function of the probe squeezing.

If also the initial signal is Gaussian the fidelity results

F5
A2x

A112x2
x5

sP

sS tanf
, ~20!

sS
2 being the variance of the signal’s wave function. Equat

~20! interpolates between the two extreme cases of the
vious section. In order to check this behavior, we evalu
Eq. ~20! for strong squeezing or antisqueezing. We have

F5HA2x→0, x!1 squeezed probe,

12~4x2!21→1, x@1 antisqueezed probe.
~21!

In order to quantify how close the quadrature probabil
of the input signal is to the homodyne distribution at t
output, we employ theaverage distribution fidelity

G5S E dxAp~x!ucS~x!u D 2

, ~22!

which also ranges from zero to one and it is an increas
function of the probe squeezing. For both Gaussian sig
and probe, we obtain

G52
A11x2

21x2
x5

sP

sS tanf
, ~23!

and therefore

G5H 12
1

8
x4→1, x!1 squeezed probe,

2x21→0, x@1 antisqueezed probe.

~24!

Notice thatF and G are global figures of fidelity@14#, i.e.,
compare the input and the output on the basis of the wh
quantum state or probability distributions rather than by th
first moments, as it happens by considering customary Q
parameters~see, for example,@16#, for a more general ap
proach in the case of two-dimensional Hilbert space
@17#!.

As a matter of fact, the quantityF1G is not constant, and
this means that by varying the squeezing of the probe
obtain a different trade off between information gain a
state disturbance. An optimal choice of the probe, cor
sponding to maximum information and minimum distu
bance, maximizesF1G. The maximum is achieved forx
[xM.1.2, corresponding to fidelitiesF@xM#.86% and
G@xM#.91%. Notice that for a chosen signal, the optimiz
tion of the QND measurement may be achieved by tun
the internal phase shift of the interferometer, without t
need of varying the squeezing of the probe. For a nea
balanced interferometer, we have tanf.1: in this case, the
optimal choice for the probe is a state slightly antisquee
0-4
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with respect to the signal, i.e.,sP.1.2sS . Finally, the fideli-
ties are equal forx[xE.1.3, corresponding toF@xE#
5G@xE#.88%

For non-Gaussian signals the behavior is similar, thou
no simple analytical form may be obtained for the fidelitie
In this case, in order to find the optimal QND measureme
one should resort to numerical means@15#.

V. CONCLUSIONS

In conclusion, we have suggested an interferome
scheme assisted by squeezing and linear feedback to re
an arbitrary QND measurement of a field quadrature. Co
pared to previous proposals, the main features of our s
may be summarized as follows:~i! it involves only linear
coupling between signal and probe,~ii ! only single-mode
transformations on the conditional output are needed,
~iii ! the whole class of QND measurements may be obtai
with the same setup either by tuning the internal phase s
-
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of the interferometer, or by varying the squeezing of t
probe.

The present setup permits, in principle, to achieve bot
projective and a fully nondestructive quantum measurem
of a field quadrature. In practice, however, the physical c
straints on the maximum amount of energy that can be
pinged into the optical channels pose limitations to the p
cision of the measurements. This agrees with the fact
both an exact repeatable measurement and a perfect
preparation cannot be realized for observables with cont
ous spectrum@18#. Of course, other limitations are impose
by the imperfect photodetection and by the finite resolut
of detectors @19#. Compared to a vacuum probe, th
squeezed/antisqueezed meters suggested in this paper
vide a consistent noise reduction in the desired fidelity fig
already for moderate input probe energy. In addition,
varying the squeezing of the probe, an optimal QND m
sure may be achieved, which provides the maximum inf
mation about the quadrature distribution of the signal, wh
keeping the conditional output state as close as possibl
the incoming signal.
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