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Optimized quantum nondemolition measurement of a field quadrature
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We suggest an interferometric scheme assisted by squeezing and linear feedback to realize the whole class
of field-quadrature quantum nondemolition measurements, from Von Neumann projective measurement to a
fully nondestructive noninformative one. In our setup, the signal under investigation is mixed with a squeezed
probe in an interferometer and, at the output, one of the two modes is revealed through homodyne detection.
The second beam is then amplitude-modulated according to the outcome of the measurement, and finally
squeezed according to the transmittivity of the interferometer. Using strongly squeezed or antisqueezed probes
respectively, one achieves either a projective measurement, i.e., homodyne statistics arbitrarily close to the
intrinsic quadrature distribution of the signal, and conditional outputs approaching the corresponding eigen-
states, or a fully nondestructive one, characterized by an almost uniform homodyne statistics, and by an output
state arbitrarily close to the input signal. By varying the squeezing between these two extremes, or simply by
tuning the internal phase shift of the interferometer, the whole set of intermediate cases may also be obtained.
In particular, an optimal quantum nondemolition measurement of quadrature may be achieved, which mini-
mizes the information gain versus state disturbance tradeoff.
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[. INTRODUCTION tion in quantum communication based on continuous vari-
ables. In fact, it provides a reliable and controlled source of
In order to be manipulated and transmitted, informationoptical signals. On the other hand, a fully nondestructive
should be encoded into some degree of freedom of a physiciteasurement scheme is an example of a quantum repeater,
system. Ultimately, this means that the input alphabet shoul@nother relevant tool for the realization of a quantum net-
correspond to the spectrum of some observable, i.e., that ivvork. Between these two extremes we have the entire class
formation is transmitted usinguantum signalsAt the end of ~ of quantum nondemolitiofQND) measurements. Such in-
the channel, to retrieve this kind of quantum information,termediate schemes provide only partial information about
one should measure the corresponding observable. As a mdfie measured observable, and correspondingly, are only par-
ter of fact, the measurement process unavoidably introducd&lly distorting the signal under investigation. In particular,
some disturbance, and may even destroy the signal, as halp- this paper, we show how to attain an optimized QND
pens in many quantum Optica| detectors, which are mosﬂweasurement of a quadrature, i.e., or a scheme that mini-
based on the irreversible absorption of the measured radi&nizes the information gain versus a state disturbance trade
tion. Actually, even in a measurement scheme that someho®@ff.
preserves the signal for further uses, one is faced by the Most of the schemes suggested for back-action evading
information gain versus state disturbance tradeoff, i.e., by theneasurements are based on nonlinear interaction between a
fact that the more information is obtained, the more the sigSignal and a probe taking place eitheryff) or x{*) media
nal under investigation is being modified. (both fibers and crystal§2—8], or on optomechanical cou-
Actually, the most informative measurement of an observpling [9,10]. Earlier, it had been suggested that a beam-
ableXon a staté¢> Corresponds to its ideal projecti\/e mea- splitter-based scheme realize optical Von Neumann measure-
surement, which is also referred to as Von Neumsecond ments [11]. Here, we focus our attenton on an
kind quantum measuremeft]. In an ideal projective mea- interferometric scheme that requires only linear elements and
surement, the outcomeoccurs with the intrinsic probability ~ single-mode squeezers. o
density|(1|x)|?, whereas the system after the measurement A schematic diagram of the suggested setup is given in
is left in the corresponding eigenstdse. A projective mea-  Fig. 1. The signal under examinatidis) and the probe
surement is obviously repeatable, since a second measui@ete) state|p) are given by
gives the same outcome as the first one. However, the initial
state is erased, a_md the c_ondltlonal output dogs not permit us )= f dxrg(X)|X)1,
to obtain further information about the input signal. The op-
posite case corresponds to a fully nondestructive detection

scheme, where the state after the measurement can be made P >:f dxep(X)|X) 1)

arbitrarily close to the input signal, and that is characterized P P 2

by an almost uniform output statistic, i.e., by a data sample

that provides almost no information. where|x);, j=1,2 are eigenstates of the field quadratures
Besides fundamental interest, the realization of a projecx;=3(a] +a;), j=1,2 of the two modes, angs(x) and

tive measurement of the quadrature would have an applicagp(x) are the corresponding wave functions. The two beams
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z V1=t = x,sindtan ¢ state as close as possible to the incoming signal.
Displacement ~ Squeezing$(:*) The paper is structured as follows. In the next section, we
> w lz>| D(xosingtand)  e"’= cos ¢ analyze the dynamics of the measurement scheme, and de-
o T : {DoPA}— V> scribe in detail the action of linear feedback and tunable
Lo A sedback squeezing on the conditional output state and on the homo-
gl A /4 @ i dyne distribution. In Sec. Ill, we analyze the limiting cases
X=—% (sin ¢ of strongly squeezed and antisqueezed probes, which corre-
Homodyne spond to projective and nondestructive measurements, re-
detection spectively. In Sec. IV, we introduce two fidelity measures, in

FIG. 1. Setup for QND measurements of a field quadrature orfPrder to quantify how close are the conditional output and
the statd ¢s). The signal is linearly mixed with a probe mode in a the homodyne distribution to the input signal and its quadra-
Mach-Zehnder interferometer, which, equipped with two additionalture distribution, respectively. As a consequence, we are able
N4 plates, shows a transmittivity as Such transmittivity can be  to individuate an optimal set of configurations that minimize
tuned by varying the internal phase-shift One of the modes ex- the trade off between information gain and state disturbance.
iting the interferometer is then revealed by homodyne detectionSection V closes the paper with some concluding remarks.
and the resulting outcome, is used for a feedback-assisted dis-
placement, by an amounigsin¢tan¢g of the other mode. Such
displacement is obtained by mixing the mode with a strong coherent 1l. HOMODYNE INTERFEROMETRY WITH LINEAR
state of amplitudez (e.g., the laser beam also is used as a local FEEDBACK
oscillator for the homodyne detecjdn the beam splitter of trans-

mittivity 7 close to unity, with the requirement thatyl—r uti f the | ; L
=XgSin¢tang. Finally, the conditional output is squeezed by a evolution operator of the interferometer is given by ¢)

* = i f i i
degenerate parametric amplifier by an amo@&(t*) with e exflid(aataxay)], such that the input statg¥y))

= cos¢. By varying the degree of squeezing of the probe mode, the~ | #s) ®|#p) evolves as
resulting measurement ranges from a projective to a fully nonde-

Let us now describe the interaction scheme in detail. The

structive detection of the field quadrature. |‘I'OUT>> — U(¢)| ) ® | p)

are linearly mixed in a Mach-Zehnder interferometer with an

internal phase shift given bys. There are also two/4 = f dxlf dXo1rs(X1) ¥p(X2)| X1 COSP+ X, SiN )4
plates, each imposing#/2 phase shift. Overall, the interfer-

ometer equipped with the plates is equivalent to a beam split- ®|— X, sing+x,Ccose),

ter of transmittivity 7= cos’ ¢. However, the interferometric
setup is preferable to a single beam splitter since it permits a
fine tuning of the transmittivity. After the interferometer, one
of the two output modes is revealed by homodyne detection, .
whereas the second mode is first displaced by an amount that +Y25ind)ly1)18ly2)2. (2)
depends on the outcome of the measuremésedback-
assisted amplitude modulatiprand then squeezed according After the interferometer, the quadrature of one of the modes
to the transmittivity of the interferometésee details below  (say mode 2is revealed by homodyne detection. The distri-
As we will see, either by tuning the phase shift of the inter-pution of the outcomes is given by
ferometer, or by exciting the probe stdtg.) in a squeezed
vacuum, and by varying the degree of squeezing, the action
of the setup ranges from a projective to a nondestructivep(x):Tr[|‘I'OUT>><<\POUT|H1®H2(X)]’ II(X) = |X)(X,
measurement of the field quadrature as follows:
(1) The statistics of the homodyne detector ranges from a 3)
distribution arbitrarily close to the intrinsic quadrature prob-
ability density of the signal statie/s(x)|? to an almost uni-
form distribution. I1(x) being the POVM of the homodyne detector. Since the
(2) The conditional output state, after registering a valuereflectivity of the interferometer is given by gtnfrom an
X, for the quadrature of the signal mode, ranges from a stateutcome X by the homodyne, we infer a valugy=
arbitrarily close to the corresponding quadrature eigenstate X/sin¢ for the quadrature of the input signal. The corre-
[Xo) to a state that approaches the input sigia). sponding probability density is given by
The two features may be summarized by saying that the
present scheme realizes the whole set of QND measurements .
of a field quadrature. In addition, the interferometer may be P(Xo) = =sinép(X)
tuned in order to minimize the information gain versus state
disturbance trade off, i.e., to achieve an optimal QND mea- :tamﬁf dylgs(y) [ el tane(y—xo)11%,  (4)
surement of quadrature. Such a kind of measurement pro-
vides the maximum information about the quadrature distri-
bution of the signal, while keeping the conditional outputand the conditional output state for mode 1,

:f d)ﬁf dy,i5(y1 COShp—Y, Sing) p(yq COS
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A . i . 2 H
|¢XO>: Jsing( — X singp| ¥ 1)) wherex* denotes_ convozlutlon an@(x;Xq,o )_ a _Gau_35|an of
meanx, and variancer®. The quadrature distribution of the

sing _ ] corresponding output state is given by
B p(xo)f dyyrs(y Cos+Xo Sir’ ) yrp(y sin s
1

1
—Xp COS¢ S|n¢)|y> (5) |¢X0(X)|2: p(XO) |¢S(X)|ZG( X1X014 tal’?(ﬁ) . (10)

The amplitude of this conditional state is then modulated bYEquations(Q) and (10) account for the noise introduced by

a feedback mechanism, which consists in the application of gacyum fluctuations. This noise may be manipulated by suit-
displacementD (x, singtang), with D(z)=expa —za). ably squeezing the probe, thus realizing the whole set of
Such displacing action may be obtained by mixing the mod&QND measurement.

with a strong coherent state of amplitudege.g., the laser Squeezed or antisqueezed vacuum probes are described
beam is also used as a local oscillator for the homodynéy the wave functions

detector, see Fig.)lin a beam splitter of transmittivityr

close to the unit, with the requirement that/l— 7 1 x2

=Xg Singtane [12]. An experimental implementation using PsgX)= (2772—2)1/4‘3)( 42|’

a feed-forward electro-optic modulator has been presented in
[13]. The resulting state is given by

22 1/4 22X2
| stie| Z) o 2
D(xo sin¢ tane)| oy ) 2m 4
where the information about squeezing stays in the require-
__[sing : ment 0<32=<1/4. Notice that squeezing the probe intro-
- p(xo)f dyys(y cose) e(y sing—xotand)|y). duces additional energy in the system. The mean photon

(6)  number of the states in E¢l1) is given byN=(32+1/32
—2)/4. Using a squeezed vacuum probe, H§s.and (10)
Finally, this state is subjected to a single-mode squeezingewrite as
transformationS(r)=exd1/2r(a’?—a?] by a degenerate
parametric amplifie(DOPA). By tuning the squeezing pa- P(Xo) = | s(X)| 2% G(x,X Ezltar?¢)2:>0|z// (Xo)|2
rameter to a value*=cos¢ and using the relatios(r)|y) 0 S o sl
=e'?|e"y), we arrive at the final state

1 30
|thy,) =S(r*)D(Xosin d tand)| oy ) | ¢xO(X)|2:m| Ps(X)[*G(X, X, 22/ tarf ¢) — S(X—Xo).
(13

tang
=1\ —p(xo)f dyys(y) ¥el(y—Xo)tang]ly). (7)  Equation(12) says that by squeezing the probe, the statistics
of the homodyne detectors can be made arbitrarily close to
The wave function of this conditional output state is thusth€ intrinsic quadrature distributioyrs(xo)|*, whereas Eq.
given by (13) shows that for any value of the outcomg the condi-
tional output| 1,//X0> approaches the corresponding quadrature

X X—x)tan eigenstatgxy). For X —0, the mean energy of the condi-
v gl otand] (8)  tional output stat¢¢//X0> increases, since it is approaching a

Ui ()= :
2 2 guadrature eigenstatan exact eigenstate would have infi-
\/f dylys(y)|*gpltand(y—xo) ]| nite energy. Notice that this amount of energy is mostly
provided by the probe state itself, rather than by the displace-
Equations(4), (7), and(8) summarize the filtering effects of ment and squeezing stages of the setup. The improvement in
the probe wave function on the output statistics and the corthe precision due to squeezing, compared to that of a vacuum

ditional state, respectively. probe, may be quantified by the ratio of variances in the
filtering Gaussian of Eq$10) and(13). Calling this ratioA,
Ill. MEASUREMENTS USING SQUEEZED OR we haveA =32 and thus, for squeezing not too low=N.
ANTISQUEEZED PROBES _For an antisqueezed vacuum probe, E§s.and (10) re-
write as
For the probe mode in the vacuum state, we hépéx)
= (2/m) " Y4 exp(—x?) such that the homodyne distribution of P(Xo) = |hs(X)|** G (X, X0, (X2 tarf ) 1)
Eq. (4) results in
X2
exp, — —
_ 2G| x.x L ) (9) 2:0 pl 202} ol= (14
P(xo)=[urs() O gtarke)’ 2702 S2tarfe’
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aé being the variance of the probe wave function, i,
=3 for squeezed probe, andp=3 "1 for antisqueezed
S0 probesF take values from zero to unit, and it is a decreasing
— |ygs(¥)|? ¥ Xo. (15  function of the probe squeezing.

If also the initial signal is Gaussian the fidelity results

1
50 2= gy 1950126 (k.00 (32 tarP ) )

Equations(14) and(15) say that by antisqueezing the probe,

the statistics of the homodyne detectors are approaching a J2x op
flat distribution over the real axis, and correspondingly, that F=— X=———, 20
pontingl: 122 = ostang (29

the conditional output may be made arbitrarily close to the

incoming signal, independently of the actual valuexgf . . . , . .
Noticg th%t in priné)iple bot¥1 projective and nongestruc-gg being the variance of the signal’s wave function. Equation

tive measurements could be obtained with a vacuum probézo) interpolates between the two extreme cases of the pre-

simply by varying the internal phase shift of the interferom—\gouszgefcuont' In order to_check tht|§ behay|or, \\;vve ﬁvaluate
eter according to Eq$9) and(10). However, this would also 9.(20) for strong squeezing or antisqueezing. We have
affect therate of the events at the outpusince ¢ governs -
the transmittivity of the interferometgrand therefore may F:( V20, x<1 squeezed probe,
not be convenient from a practical point of view. On the 1-(4x%)~'—1, x>1 antisqueezed probe.
other hand, when a fine tuning of the variances in Et@)— (22)
(15) is neededas, for example, in the optimization of the
scheme, see the next sectidncan be conveniently obtained
by varying ¢, without the need of varying the degree of
squeezing of the probe.

In order to quantify how close the quadrature probability
of the input signal is to the homodyne distribution at the
output, we employ th@verage distribution fidelity

2
IV. OPTIMIZED QND MEASUREMENT G=devp(x)l¢s(x)l : (22)

So far, we have considered the two extreme cases of in- hich al ¢ ; diti . .
finitely squeezed or antisqueezed probes. Now we proceed}'& ICh aiSo ranges from zero fo one and It 1S an increasing

quantify the trade off between the state disturbance and thémCtion of the probe squeezing. For both Gaussian signal

gain of information for the whole set of intermediate cases.and probe, we obtain

There are two relevant parametefig:how close the output N

signal is to the input state, arii) how close the homodyne G=2 x= L, (23)

distribution is to the intrinsic quadrature probability. Accord- 2+x2 ostane

ing to Eq.(7), after the outcomex is being registered, the

conditional output state is given By, ). Since the outcome and therefore

x occurs with the probabilityp(x) of Eq. (4), the density

matrix describing t_he output ensemble after a large number 1 Ex“al, x<1 squeezed probe,

of measurements is given by G= 8 (24)
2x 1-0, x>1 antisqueezed probe.

Qout= f dxp(x) Wy - (16)
el PO Notice thatF and G are global figures of fidelity[14], i.e.,

Indeed, this is the state that may be subsequently manip gompare the input and th_e output on the basis of the Who_le
lated o'r used to gain further information on the system Th'ﬁuantum state or probablhty d|str|but|9ns .rather than by their
reserﬁblance between input and output may be quantifi.ed §|rst moments, as it happens by considering customary QND
the average state fidelity Harameters{see, for example,16], for a more general ap-
proach in the case of two-dimensional Hilbert space see
[17).
F= (g ooutl¥s)= f dxp(x) (gl )| . (17 As a matter of fact, the quantify+ G is not constant, and
this means that by varying the squeezing of the probe we
obtain a different trade off between information gain and
state disturbance. An optimal choice of the probe, corre-
sponding to maximum information and minimum distur-
F:f fdy,dY"|¢s(Y')|2|¢P(Y")|2T¢(Y’,Y"), (18  bance, maximize§ +G. The maximum is achieved for
=xuy=1.2, corresponding to fidelitie$[x,,]=86% and
where, for the squeezed vacuum probes we are taking intg[Xw]=91%. Notice that for a chosen signal, the optimiza-
account, the transfer function is given by tion of the QND measurement may be achieved by tuning
the internal phase shift of the interferometer, without the
(y' —y")? need of varying the squeezing of the probe. For a nearly
T¢(y’,y”)=exp{ —tar?d)—z] , (199  balanced interferometer, we have th# 1: in this case, the
80p optimal choice for the probe is a state slightly antisqueezed

Inserting Eq.(7) into Eq.(17), we obtain
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with respect to the signal, i.erp=1.205. Finally, the fideli-  of the interferometer, or by varying the squeezing of the
ties are equal forx=xg=1.3, corresponding toF[Xxg] probe.
=G[xg]=88% The present setup permits, in principle, to achieve both a

For non-Gaussian signals the behavior is similar, thougtProjective and a fully nondestructive quantum measurement
no simple analytical form may be obtained for the fidelities.Of @ field quadrature. In practice, however, the physical con-

In this case, in order to find the optimal QND measurementStraints on the maximum amount of energy that can be im-
one should resort to numerical medasl. pinged into the optical channels pose limitations to the pre-

cision of the measurements. This agrees with the fact that

both an exact repeatable measurement and a perfect state

preparation cannot be realized for observables with continu-
V. CONCLUSIONS ous spectruni18]. Of course, other limitations are imposed
. _ . by the imperfect photodetection and by the finite resolution
In conclu_5|on, we have_ suggesfted an mterferometrl_cof detectors [19]. Compared to a vacuum probe, the
schemg assisted by squeezing and Ilqear feedback to rea"§aueezed/antisqueezed meters suggested in this paper pro-
an arbitrary QND measurement of a field quadrature. Comgige a consistent noise reduction in the desired fidelity figure
pared to previous proposals, the main features of our setUfiready for moderate input probe energy. In addition, by
may be summarized as followsi) it involves only linear  varying the squeezing of the probe, an optimal QND mea-
coupling between signal and probgi) only single-mode sure may be achieved, which provides the maximum infor-
transformations on the conditional output are needed, anfhation about the quadrature distribution of the signal, while
(iii) the whole class of QND measurements may be obtaineleeping the conditional output state as close as possible to
with the same setup either by tuning the internal phase shithe incoming signal.
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