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Abstract
We address the generalized measurement of the two-boson operator Zγ =
a1 + γ a

†
2 which, for |γ |2 �= 1, is not normal and cannot be detected by a joint

measurement of quadratures on the two bosons. We explicitly construct the
minimal Naimark extension, which involves a single additional bosonic system,
and present its decomposition in terms of two-boson linear SU(2) interactions.
The statistics of the measurement and the added noise are analysed in detail.
Results are exploited to revisit the Caves–Shapiro concept of generalized phase
observable based on heterodyne detection.

PACS numbers: 03.65.Ta, 42.50.Xa

(Some figures in this article are in colour only in the electronic version)

The two-boson operator

Zγ = a1 + γ a
†
2 (1)

is normal
[
Zγ ,Z†

γ

] = 1 − |γ |2 for |γ | = 1. In this case, the real Xγ = 1
2

(
Zγ + Z†

γ

)
and the

imaginary Yγ = i
2

(
Zγ −Z†

γ

)
parts of Zγ commute [Xγ , Yγ ] = 0 and can be jointly measured.

Actually they correspond to canonical sum- and difference-quadratures of the two modes e.g.
for γ = ±1

Xγ = 1√
2
(q1 ± q2), Yγ = 1√

2
(p1 ∓ p2), γ = ±1 (2)

where, for k = 1, 2,

qk = 1√
2

(
a
†
k + ak

)
pk = i√

2

(
a
†
k − ak

)
[qj , pk] = iδjk. (3)

On the other hand, for |γ | �= 1, we have

Xγ = 1√
2

(
q1 + |γ |x2,θγ

)
Yγ = 1√

2

(
p1 − |γ |x2,θγ +π/2

)
, (4)
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where xk,φ = 1√
2

(
a
†
k eiφ + ak e−iφ

)
is a rotated quadrature of the kth boson and θγ = arg γ .

In this case, the two operators do no commute [Xγ , Yγ ] = i
2 (1 − |γ |2) and a generalized

measurement should be devised. Indeed, the eigenstates of Zγ for γ �= 1,

|z〉〉γ = D(z) ⊗ I|γ 〉〉,
where D(z) = exp

{
za

†
1−z∗a1

}
is the displacement operator and |γ 〉〉 =

√
1 − |γ |2 ∑

n γ n|n〉⊗
|n〉, do not provide a resolution of the identity. We have∫

d2z

π
|z〉〉γ γ 〈〈z| = (1 − |γ |2)|γ |2a†a.

We first note that Zγ = R
†
θγ

Z|γ |Rθγ
, where Rφ = exp

(
iφa

†
2a2

)
and therefore, without

loss of generality, we may restrict attention to the case of real positive γ . In this case, we have

Xγ = 1√
2
(q1 + γ q2) Yγ = 1√

2
(p1 − γp2). (5)

In addition, we note that, up to a permutation of the mode labels, Zγ = γZ
†
γ −1 and

therefore, since the multiplicative constant does not influence the measurement scheme, we
may further restrict attention to the case 0 < γ < 1.

The operator Zγ is defined on the Hilbert–Fock space H12 of two harmonic oscillators. A
Naimark extension for the operator Zγ is a triplet (Ha, Tγ , σ ), where Tγ is an operator defined
on an extended Hilbert space H12 ⊗Ha and σ is a state (density operator) in Ha , such that for
any state R ∈ H12, we have

Tr12[RXγ ] = Tr12a[R ⊗ σ Re Tγ ]

Tr12[RYγ ] = Tr12a[R ⊗ σ Im Tγ ].
(6)

Equations (6) are usually summarized by saying that the operator Tγ traces the operator
Zγ . Of course, equations (6) do not hold for higher moments: the generalized measurement
of Zγ unavoidably introduces some noise of purely quantum origin. In general, we have

Tr12
[
RXn

γ

] �= Tr12a[R ⊗ σ(Re Tγ )n] n � 2

Tr12
[
RYn

γ

] �= Tr12a

[
R ⊗ σ(Im Tγ )n

]
n � 2.

(7)

In this communication, we look for a minimal Naimark extension, that is an extension
involving a single additional bosonic mode a3. In general, for an operator of the form
Tγ = Zγ + f

(
a3, a

†
3

)
the trace condition of equations (6) requires Tra

[
σf

(
a3, a

†
3

)] = 0,
whereas the constraint of normality can be written as

0 ≡ [
Tγ , T †

γ

] = [
Zγ ,Z†

γ

]
+

[
f

(
a3, a

†
3

)
, f

(
a3, a

†
3

)†]
. (8)

It is straightforwardly seen that f
(
a3, a

†
3

) = κa3 or f
(
a3, a

†
3

) = κa
†
3, where κ is a real

constant, are solutions of equations (6) and (8). In the following, we analyse in detail whether
this kind of extensions can be implemented using only bilinear interactions among the three
modes followed by measurement of quadratures at the output.

The measurement scheme is the following: the modes ak interact each other via the
unitary operator Uγ , which imposes the linear transformation

A1

A2

A3


 = U †

γ


a1

a2

a3


 Uγ = M


a1

a2

a3


 (9)

and then, at the output, the quadratures

Q1 = 1√
2

(
A1 + A

†
1

)
P2 = i√

2

(
A

†
2 − A2

)
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Figure 1. Block diagram of the decomposition of the M transformation of equation (12) into three
SU(2) transformations, each involving two of the modes, plus a π -rotation. The boxes correspond

to evolution operators of the form Bjk(θjk) = e−iθjk (aj a
†
k

+aka
†
j
) (see the text).

are measured with the aim of obtaining, upon the definition Tγ = Q1 + iP2,

Tr12[RXγ ] = Tr12a[R ⊗ σQ1] (10)

Tr12[RYγ ] = Tr12a[R ⊗ σP2] (11)

for any R, and at least one σ such that Tr[σa3] = 0. A suitable evolution operator Uγ

corresponds to the transformation

M = 1√
2


 1 γ κ

1 −γ −κ

m1 m2 m3


 . (12)

Upon imposing the constraint of unitarity, i.e.
[
Aj ,A

†
k

] = δjk , we have the solution

κ =
√

1 − γ 2, m1 = 0, (13)

m2 = −
√

2(1 − γ 2), m3 =
√

2γ, (14)

which makes M a U(3) transformation and leads to

Q1 = 1√
2

(
q1 + γ q2 +

√
1 − γ 2q3

)
, P2 = 1√

2

(
p1 − γp2 −

√
1 − γ 2p3

)
, (15)

and, in turn, to Tγ = a1 + γ a
†
2 + κa

†
3. Note that no unitary solution can be found (for |γ | < 1)

for the case f
(
a3, a

†
3

) = κa3, i.e. for linear transformation expressing the output modes

(A1, A2, A3) as a linear combination of
(
a1, a2, a

†
3

)
.1

A question arises on how the unitary Uγ can be implemented in practice, as for example in
a quantum optical setting. As is well known, any SU(3) transformation may be decomposed
into a set of SU(2) transformation [6]. In our case, the U(3) M transformation may be
decomposed using three SU(2) transformations followed by a π -rotation. In figure 1, we
report the explicit decomposition of M. The circle denotes a π -rotation on the second mode,
i.e. a unitary of the form R2 = exp

{
iπa

†
2a2

}
. The boxes correspond to SU(2) rotations, i.e.

to evolution operators of the form Bjk(θjk) = exp
{−iθjk

(
aja

†
k + aka

†
j

)}
, corresponding to the

transformations

B
†
jk(θjk)

(
aj

ak

)
Bjk(θjk) =

(
cos θij sin θij

− sin θij cos θij

) (
aj

ak

)
. (16)

By an explicit construction, we have

Uγ = [I1 ⊗ R2 ⊗ I3][B23(θ23) ⊗ I3][B13(θ13) ⊗ I2][B12(θ12) ⊗ I1],

1 Actually, a solution involving a SU(1, 1) interaction between a2 and a3 followed by an SU(2) interaction between
a1 and a2 may be found for |γ | > 1 and then extended to the whole range of |γ | by rescaling. However, this
solution unavoidably introduces a larger amount of noise compared to that of equations (28) and (29) and it will not
be considered here.
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where

cos θ23 =
√

1 + γ 2

2
, cos θ13 =

√
2γ 2

1 + γ 2
, cos θ12 =

√
γ 2

1 + γ 2
. (17)

Other decompositions may also be found, allowing for permutations of modes and
different rotations. For γ → 1, the mode a3 decouples from the other two modes and
the scheme reduces to the joint measurement of quadratures for the normal operator Z1 [7].

Each outcome from the joint measurement of the quadratures Q1 and P2 corresponds
to a complex number τ = Q1 + iP2 that represents a realization of the observable Tγ . The
probability density of the outcomes Kγ (τ) for a given initial preparation R ⊗ σ is obtained as
the Fourier transform of the moment generating function 	(λ):

Kγ (τ) =
∫

d2λ

π2
eλ∗τ−λτ ∗

	(λ), (18)

where

	(λ) = Tr
[
R ⊗ σ eλT †

γ −λ∗Tγ
]
. (19)

Using equations (15) we have exp
{
λT †

γ − λ∗Tγ

} = D1(λ) ⊗ D2(−λγ ) ⊗ D3(−λκ),

where Dj(z) is the displacement operator for the mode aj . Therefore, the moment generating
function can be rewritten as

	γ (λ) = χ12(λ)χ3(−λκ), (20)

where χ12(λ) = tr [RD1(λ) ⊗ D2(−λγ )] and χ3(z) = Tr[σD3(z)] is the characteristic
function of the mode a3. Using (20) it is easy to see that the probability density of the
outcomes is given by the convolution

Kγ (τ) = 1

κ2
Hγ (τ) � W3(−τ/κ), (21)

with W3(z) being the Wigner function of the mode a3, � the convolution product and Hγ (z)

the density obtained by the Fourier transform of χ12(λ). In turn, for factorized preparations
R = 
1 ⊗ 
2, the moment generating function χ12(λ) = χ1(λ)χ2(−λγ ) factorizes into the
product of the characteristic functions of 
1 and 
2, respectively, and the density Hγ (τ) reduces
to the convolution of the Wigner functions of the two input signals

Hγ (τ) = 1

γ 2
W1(τ ) � W2(−τ/γ ). (22)

Using (15) it is straightforward to see how the variances of the measured quantities Q1 and P2

are related to the variances of the quadratures of interest. We have

�Q2
1 = �X2

γ + 1
2 (1 − γ 2)�q2

3 �P 2
2 = �Y 2

γ + 1
2 (1 − γ 2)�p2

3, (23)

where �q2
3 = Tr

[
σq2

3

]
and analogously �p2

3 = Tr
[
σp2

3

]
(remind that equation (6) implies

Tr[σq3] = Tr[σp3] = 0). Note that the added noise in equation (23) is the minimum
noise according to generalized uncertainty relations for joint measurement of non-commuting
observables [1–5]. On the other hand, the covariance between the measured quadratures, i.e.
the quantity

�Q1P2 = 1
2 Tr12a[R ⊗ σ(Q1P2 + P2Q1)] − Tr12a[R ⊗ σQ1]Tr12a[R ⊗ σP2] (24)

may be written as

�Q1P2 = �Xγ Yγ
− 1

2 (1 − γ 2)Tra
[

1
2σ(p3q3 + q3p3)

]
, (25)

where �Xγ Yγ
= 1

2 Tr12[R(Xγ Yγ + Yγ Xγ )] − Tr12[RXγ ] Tr12[RYγ ] is the covariance of the
desired quadratures.
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Note that the added noise to the covariance, equation (25), may vanish for some preparation
of the state σ whereas the added noise to the variances, equation (23), cannot vanish for any
physical preparation σ . This raises the question of the consequences of different field states
on the statistics of the measurement and, in turn, of the role played by preparations of states
in concrete experiments. On the other hand, within experimental frameworks, one may take
full advantage of possible freedom in preparing some of the modes. This is definitively the
case of the Naimark mode a3, even though its preparation needs to be compatible with the
prescription (6) for the expectation values of position and momentum operators. In particular,
a valid Naimark extension can be obtained by preparing the mode a3 in the vacuum
state σ = |0〉〈0| to let its contribution to the noise in formula (25) to vanish, since
Tra[σ(q3p3 + p3q3)] = 0, and to minimize �q2

3 and �p2
3 in (23), since both the terms

would be equal to 1/2. Each of the other two fields may be, for instance, in one among the
most meaningful types of states, such as number states, coherent states, thermal states or phase
states (i.e. eigenstates of the operator C + iS, where C and S are ‘cosine’ and ‘sine’ operators,
respectively) or prepared in an entangled states. If we consider the fully separable state
described by the density operator 
 = R ⊗σ = 
1 ⊗
2 ⊗σ , where 
k , with k = 1, 2, denotes
the preparation for the kth bosonic field in the arbitrarily mixed state 
k = ∑∞

m=0 p(k)
m |m〉〈m|

on the Hilbert space Hk , then the system moment generating function is easily obtained by
resorting to

Trk[
kDk(αk)] = e− |αk |2
2

∞∑
m=0

p(k)
m Lm(|αk|2), (26)

where the Ln’s are Laguerre polynomials. For instance, for coherent and phase states
equation (26) should be used with

p(k)
m = e−|α|2 |α|2m

m!
and p(k)

m = (1 − |z|2)|z|2m, (27)

respectively (phase state formulae can be used even when dealing with thermal states upon
the identification z = exp

[− 1
2βh̄ω

]
, β being the inverse of temperature). Suppose no specific

conditions do constraint, in principle, the preparation for the mode a2. Once again a vacuum
choice may be advantageous in some respects. Let us therefore focus on the specific case of
the measurement of Zγ on the class of factorized signals described by R = 
1 ⊗|0〉〈0|, where

1 is a generic preparation of the mode a1 while |0〉 is the ground state of the mode a2. In
this case, 
 = 
1 ⊗ |0〉〈0| ⊗ |0〉〈0|, equation (21) becomes a Gaussian convolution and the
moment generating function becomes independent of the parameter γ :

	(λ) = χ1(λ) exp
(− 1

2 |λ|2). (28)

The measured variances are thus given by

�Q2
1 = 1

2

(
�q2

1 + 1
)

�P 2
2 = 1

2

(
�p2

1 + 1
)
. (29)

Equations (28) and (29) contain a remarkable result that may be expressed as follows. The
measurement of Zγ on the class of states R = 
1 ⊗ |0〉〈0| does not lead to added noise with
respect to the measurement of the normal operator Z1.

This result finds a natural application in the context of heterodyne detection, where
currents of the form (1) show up. As is known, in heterodyne detection a single-mode signal
field E1 of nominal frequency ω1 is mixed through a beam splitter with a local oscillator
field EL whose frequency ωL is slightly offset by an amount ωI � ω1 from that of the
input signal, i.e. ω1 = ωL + ωI . A photodetector is placed right after the beam splitter
(see figure 2). The output photocurrent, which generally depends on fields parameters
and on specific assumptions on the apparatus, is filtered at the intermediate frequency ωI .
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Figure 2. The scheme for heterodyne detection.

In standard optical heterodyne detection (see e.g. [8]), measuring the filtered photocurrent
corresponds to realize the quantum measurement of the normal operator y = a1 + a

†
2 [8],

where a1 (resp. a
†
2) denotes the photon annihilator (resp. creation) operator for the input

(resp. image) signal. Measuring the real and imaginary parts of the (actually rescaled) output
photocurrent thus provides the simultaneous measurement of both input field quadratures.
Nevertheless, it has been also argued that whenever one is not restricted to an input field
frequency in the optical regime, but, rather, one is concerned with microwave (or radio)
heterodyning, then the interaction of the input signal field with the apparatus of figure 2
(approximatively) results in the measurement operator

yC =
√(

1 +
ωI

ω1

)
a1 +

√(
1 − ωI

ω1

)
a
†
2

(see [9] and discussion in [8]).
Since

[
yC, y

†
C

] = 2ωI

ω1
�= 0, the Caves measurement operator yC is not compatible

with simultaneous measurements of signal quadratures. In other words, standard heterodyne
detection cannot achieve the measurement of the Caves operator and a question arises on
whether simultaneous phase and amplitude measurements may be accomplished in this case.
The answer may be found in the results reported above. In fact, the measurement of the Caves
operator corresponds to the generalized measurement of the non-normal operator

ZγC
= a1 + γCa

†
2, γC =

√
ω1 − ωI

ω1 + ωI

< 1 . (30)

In the light of our previous results, we thus learn that the simultaneous measurement of the
field quadratures for a quasi-monochromatic signal can be realized even in the case when the
heterodyne apparatus yields a measurement operator of the Caves-type, equation (30). To this
aim, it suffices to generalize the heterodyne detection scheme by introducing a single-boson
Naimark mode and letting it interact with the other modes through the linear transformation (9).
Moreover, a suitable preparation enables one to avoid additional noise with respect to that
resulting in the measurement of signal field quadratures within the framework of the standard
optical heterodyne detection.

It is worth also discussing the matter from the point of view of phase operators since our
results can be used to proceed in defining a feasible phase within the Caves description of
heterodyning. Since the operator T is normal, then its associated self-adjoint phase operator

θT = 1

2i
ln

T

T † (31)

can be defined unambiguously indeed so that cosine and sine quadrature operators

C = 1

2
(eiθT + e−iθT ), S = 1

2i
(eiθT − e−iθT )
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obey the correct relation C2 +S2 = 1. It is now in order to recalling that the two-modes relative
number state representation discussed by Ban (see [11] and references therein) fits fairly with
the feasible phase concept of Shapiro and Wagner (namely, the shift-phase operator associated
with the Shapiro–Wagner measurement operator y = a1 + a

†
2). Upon defining the three-mode

relative number operator N = N1 − N2 − N3, where Nk = a
†
kak (k = 1, 2, 3), one gets

[eiθT , N ] = eiθT , [N, θT ] = i. (32)

These relations are what one expects for genuine phase operators. In other words, a feasible
phase can be naturally defined even in the Caves description of heterodyning at the cost of
introducing of a Naimark mode and generalizing the two-modes relative state representation
to a three-modes one. The commutator [N, θT ] can then be interpreted as the canonical
conjugation of the feasible phase for Caves heterodyne measurement operator with respect to
the operator mode number difference N.

As final comments, note that tracing out the Naimark mode a3, and introducing symmetric
ordering when needed in equations (31)–(32), formulae given in [10] are recovered. Further,
it would be of interest to move towards the direction of generalizing the relative number
state representation for the description of the phase operator of the generalized heterodyne
measurement we have introduced in this communication, and more generally for operators
describing linear amplifiers involving more than three modes. This is also concerned with
the investigation of the possibility of extracting basic algebraic structures underlying these
systems to generalize algebras given in [10]. These issues are currently under investigation
and results will be reported elsewhere.
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