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Effect of losses on the visibility of mesoscopic entanglement
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The effect of losses on the visibility of mesoscopic entanglement states is analyzed on the basis of a recently
proposed generation scheme which amplifies aquantum seedthrough stimulated down-conversion. The vis-
ibility of the entanglement is shown with the amplifier working above threshold, for short interaction times.

PACS number~s!: 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

The recent developments in quantum optics and light m
nipulation of atoms and ions have renewed interest in
basic laws of quantum mechanics, with the main focus on
superposition principle and the existence of nonlocal co
lations among separate systems, the so-called ‘‘entan
ment.’’ The superposition principle and the entanglemen
the two inherent quantum features that are the basis of
quantum information technology@1#—have been extensivel
studied both theoretically and experimentally@2#, leading to
the new concept of ‘‘quantum teleportation’’ that has be
recently demonstrated in several experiments@3#. These re-
search lines motivated the search for methods of prepara
and measurement of quantum states@4#. While quantum to-
mography@5# certainly represents a solution to the measu
ment problem, the state-preparation issue is still under w
For entangled ‘‘twin beams’’ of radiation, parametric dow
conversion represents the ideal state-preparation tool@6#, and
these states have been used in a series of quantum mec
cal tests, including Bell’s inequalities@7# and secure key dis
tribution @8#. However, both problems of generation a
measurement become very difficult when the superposit
entanglement involves ‘‘mesoscopic’’ states—the issue
the Schro¨dinger-cat states—because such superpositions
very fragile to any kind of noise. In Ref.@9# a scheme has
been proposed for generating mesoscopic entangled sup
sitions, based on quantum injection into a non-degene
parametric amplifier operating in an entangled configurati
This scheme has been analyzed in the case of param
oscillations, with nonlinear crystals placed in optical cavit
@10#. The scheme has been improved in Refs.@11,12#, where
the dynamics of the amplifier is restricted to two mod
only—the signal and the idler—that share the entanglem
on their wave vectors, with theseedphoton injected in a way
that makes signal and idler paths indistinguishable. Since
improved scheme is very promising, in principle, for the ge
eration of mesoscopic entanglement, the crucial effect
noise in the measurement stage needs to be analyzed.
in this paper, we study the effect of losses on the visibility
such mesoscopic entanglement, and show that a realistic
plification process preserves the path indistinguishab
while enhancing to mesoscopic scale the number of pho
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at the output. This leads to the generation of a mesosc
superposition that is quite robust against decoherence.

In Sec. II we briefly review the generation scheme in t
absence of losses. There, we also suggest a feasible mea
ment to reveal the output mesoscopic superposition. The
alistic amplification process is analyzed in Sec. III, taki
into account the effects of losses. The whole state genera
is numerically studied by means of Monte Carlo simulatio
The appearance of mesoscopically entangled superposi
at the output, and their robustness against decoherence
demonstrated. Section IV closes the paper with some c
cluding remarks.

II. THE IDEAL DYNAMICS

In this section we briefly review the scheme of Re
@11,12# for generating mesoscopic entanglement throu
stimulated down-conversion of a quantum seed. The see
obtained as a result of state reduction on a down-conve
pair of photons by a triggering photodetector. In addition,
effective measurement scheme is suggested to reveal the
soscopic quantum superposition at the output.

A. Generation of the seed state

A nondegenerate optical parametric amplifier~NOPA!
consists of ax (2) nonlinear optical crystal cut for type-
phase matching. The crystal couples two modes with
same polarization according to the effective Hamiltonian

Ĥk5 ik~a†b†2ab!, ~1!

wherek represents the effective nonlinear coupling, anda
andb denote modes with wave vectors satisfying the pha
matching conditionkWa1kWb5kW p , kW p being the wave vector o
the pump. For weak pumping and short interaction timet,
the state exiting the NOPA by spontaneous down-convers
~SPDC! is approximated by

uC&5
1

A11~kt!2
@ u0&1ktu1&au1&b], ~2!
©2000 The American Physical Society13-1
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FIG. 1. Schematic diagram of the setup for the generation of mesoscopically entangled quantum superpositions by parametr
cation of a single photon state prepared in a way that makes signal and idler paths indistinguishable. In the first part a single-phot
prepared by a conditional measurement on a spontaneously down-converted~SPDC! beam. The input state for the second crystal is th
given by uF&5(1/A2)$u1&bu0&c1eidu0&bu1&c%. This quantum injection triggers a stimulated down-conversion process~STDC! which leads
to the desired mesoscopic quantum superposition. Both spontaneous and stimulated down-conversion take place in nondegene
amplifiers~NOPA! consisting of nonlinearx (2) crystals cut for type-I phase matching. In the last stage of the setup the output beam
the second crystal are mixed in a beam splitter~BS! and then detected. The mean value of the difference photocurrent gives the second
correlation functionC(2) defined in Eq.~11! of the text.
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whereu0& denotes the vacuum state andun& i the state withn
photons in thei th mode. Let us now consider the condition
measurement scheme depicted in the left part of Fig. 1.
of the down-converted beams is probed by the photodete
D, and after reduction~on successful photodetection!, the
modeb enters a 50/50 beam splitter~BS!, so that the result-
ing state can be written as~see Fig. 1!

uF&5
1

A2
$u1&bu0&c1eidu0&bu1&c%, ~3!

whered is a tunable phase shift which results from the d
ference in the optical paths of modesb andc. Notice that the
BS scatters the impinging photon into two directions w
equal probability amplitude, thus making the two possi
paths of the photon indistinguishable. As shown in the f
lowing, such path indistinguishability plays the role of
quantum seed, which makes the parametric amplification
the state~3! a source of mesoscopically entangled quant
superpositions.

B. From path indistinguishability to mesoscopic entanglement

In the following we analyze the parametric amplificatio
which takes place in the second crystal of the scheme in
1. For this crystal the input signal is not the e.m. vacuum,
the single-photon state of Eq.~3!. Therefore, we are dealin
with a kind ofstimulateddown-conversion process. After th
beam splitter, the two modes of Eq.~3! can be directed to the
second crystal with the proper wave vectors in order to
isfy phase-matching conditions. In such a way, the relev
dynamics in the second crystal involves modesb andc, ac-
cording to the NOPA interaction HamiltonianĤk5 ik(b†c†

2bc)
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The use of the balanced beam splitter before the sec
crystal is a relevant point of the method. On one hand
allows us to restrict the relevant NOPA dynamics to tw
modes only; on the other hand, it is the key ingredient
make the two paths for the photon indistinguishable, th
leading to the initial quantum seed described in Eq.~3!. No-
tice that in the schemes of Refs.@9,10# four modes are in-
volved in the amplification stage. The presence of ma
modes makes the effect of losses more detrimental, t
leading to a more stringent decoherence. For this reason
schemes of Refs.@11,12# and the present one should be mo
effective in generating mesoscopic quantum superpositio

The amplifier described by HamiltonianĤk is character-
ized by the gainG, which is given byG5cosh2(kt), t being
the interaction time. In the case of ideal amplification~no
losses!, the state at the output writes

uFOUT&5
1

A2G (
n50

` S G21

G D n/2

A11n$un11&bun&c

1eidun&bun11&c%. ~4!

The state in Eq.~4! describes two highly correlated and sp
tially separated beams. For large enough gain it represen
kind of mesoscopically entangled quantum superpositi
whose mean photon number is given by

^FOUTub†b1c†cuFOUT&54G23. ~5!

We now evaluate the two-mode Wigner function, which
defined as follows:
3-2



a
ta

ue

m
t
n
k

d
e
te

th

s
b
io
m

f the
n

ce
ed
rent
eme

nd
the
rth
-

c-

EFFECT OF LOSSES ON THE VISIBILITY OF . . . PHYSICAL REVIEW A 61 063813
W~x1 ,y1 ;x2 ,y2!

5Edm1Edn1Edm2Edn2e2i (n1x12m1y11n2x22m2y2)

3Tr$%̂D̂c~m11 in1!D̂b~m21 in2!%. ~6!

In Eq. ~6! the variables (x1 ,y1) and (x2 ,y2) pertain to modes
c and b, respectively, andD̂a(z)5exp@za†2z̄a# denotes the
displacement operator for modea. For %̂5uFOUT&^FOUTu
one obtains

Wt~x1 ,y1 ;x2 ,y2!

5
8

p2
exp@2~4G22!~x1

21x2
21y1

21y2
2!28AG~G21!

3~X1x21Y1y2!#@e22kt~X12x2!2

1e22kt~Y12y2!22 1
2 #, ~7!

where

X15x1 cosd1y1 sind,
~8!

Y152x1 sind1y1 cosd.

As can be easily checked, the Wigner function in Eq.~7!
shows negative values in a sizable region of the phase sp
thus revealing the genuine nonclassical nature of the s
resulting from stimulated down-conversion@9,12#. The high
degree of entanglement ofuFOUT& is revealed also by the
two-mode photon number distribution, which, for any val
of the phase shiftd, reads as follows:

P~n,m!5 zc^nub^muFOUT& z25
1

2G 2 S G21

G D n21

3Fndm,n211~n11!
G21

G dm,n11G , ~9!

wheredkl denotes the Kronecker delta. The two-mode nu
ber probabilityP(n,m) is reported in Fig. 2 for two differen
values of the gainG. The high degree of correlations i
P(n,m) is apparent. Notice that the location of the pea
linearly increases with the gainG. It should be emphasize
that the distributions in Fig. 2 are very different from th
corresponding distribution of the so-called twin-beam sta

uFTWB&5
1

AG (
n50

` S G21

G D n/2

un&bun&c , ~10!

which results from spontaneous down-conversion. In
case of the twin beam state the number distributionP(n,m)
is just a two-mode thermal distributionP(n,m)
5dm,nG 212n(G21)n, and the quantum correlation involve
only the photon number fluctuations, which are amplified
the down-conversion process. Actually, the Wigner funct
of the twin beam~i.e., the output state without the quantu
injection! is positive over the whole phase space.
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As a measurement scheme to check the generation o
mesoscopic superpositionuFOUT&, we suggest the detectio
of the second-order correlation function

C(2)5Tr$%̂~b†c1bc†!%, ~11!

which can be accomplished by the following interferen
experiment. The output beams from the amplifier are mix
in a 50/50 balanced BS, and then the difference photocur
is detected, as in a customary homodyne detection sch
~see Fig. 1!. Using Eq.~4! it results

C(2)5^FOUTub†c1bc†uFOUT&5
1

2
~8G25!cosd,

~12!

that is, one has interference fringes with amplitude a
modulation that depend on the amplification gain and on
optical paths of the input beams, respectively. It is wo
noticing that without quantum injection, i.e., for the twin
beam state, there is no interference effect, and one has

C(2)5^FTWBub†c1bc†uFTWB&50. ~13!

The effect of nonunit quantum efficiency of the photodete
tors is simply a rescaling of the output photocurrentCh

(2)

5hC(2).

FIG. 2. The two-mode photon distributionP(n,m) for two dif-
ferent values of the gainG, G52 on the left andG55 on the right.
3-3
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III. DYNAMICS OF THE STIMULATED DOWN-
CONVERSION PROCESS

In the previous section we analyzed the stimulated do
conversion process in the ideal case of perfect amplificat
namely without taking into account the effects of loss
Here, we consider a more realistic situation and stu
whether the stateuFOUT& of Eq. ~4! can be actually ap-
proached when losses unavoidably introduce decoherenc
fects. The realistic amplification process is described
terms of the two-mode Master equation

d%̂ t

dt
[L%̂ t52 i @Ĥk ,%̂ t#1G~L@c#%̂ t1L@b#%̂ t!, ~14!

where%̂ t[%̂(t), Ĥk is the NOPA interaction Hamiltonian
G denotes the damping rate, andL@Ô# is the Lindblad su-
peroperator

L@Ô#%̂ t5Ô%̂ tÔ
†2

1

2
Ô†Ô%̂ t2

1

2
%̂ tÔ

†Ô,

which describes the effect of losses.
The HamiltonianĤk in the Master equation~14! strongly

correlates the two modes. However, the unitary transfor
tion

V̂5expH p

4
~c†b2cb†!J ~15!

‘‘disentangles’’ the HamiltonianĤk into two single-mode
squeezing Hamiltonians, namely,

V̂ĤkV̂†5
ik

2
~c†22c2!2

ik

2
~b†22b2!. ~16!

At the same time, the sum of the Lindblad terms is left u
changed@13# by the transformation~15!, namely,

V̂$L@c#1L@b#%V̂†5LFc2b

A2
G1LFb1c

A2
G

5L@c#1L@b#. ~17!

Therefore, the solution%̂ t of Eq. ~14! can be written as

%̂ t5V̂†%̂8V̂, ~18!

%̂ t8 being the solution of the ‘‘disentangled’’ Master equati

d%̂ t8

dt
5~Lc1Lb!%̂ t85

k

2
@c†22c2,%̂ t8#

1GL@c#%̂ t82
k

2
@b†22b2,%̂ t8#1GL@b#%̂ t8 . ~19!

The master equation~19! can be transformed into a Fokke
Planck equation for the two-mode Wigner functio
Wt8(x1 ,y1 ;x2 ,y2). Using the differential representation o
06381
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the superoperators in Eq.~19! the corresponding Fokker
Planck equation reads as follows:

]tWt8~x1 ,y1 ;x2 ,y2!

5@ 1
8 ~]x1x1

2 1]y1y1

2 1]x2x2

2 1]y2y2

2 !1g1~]x1
x11]y2

y2!

1g2~]x2
x21]y1

y1!#Wt8~x1 ,y1 ;x2 ,y2!, ~20!

wheret denotes the rescaled timet5Gt, and the drift terms
g1 andg2 are given by

g65
1

2 S 16
2k

G D . ~21!

Notice the asymmetric drift terms in Eq.~20!, which account
for the squeezing terms in the Master equation~19!.

The solution of Eq.~20! can be written as

Wt8~x1 ,y1 ;x2 ,y2!

5E dx18E dx28E dy18E dy28

3W08~x18 ,y18 ;x28 ,y28!Gt~x1ux18!Gt~x2ux28!Gt~y1uy18!

3Gt~y2uy28!, ~22!

whereW08(x1 ,y1 ;x2 ,y2) is the Wigner function att50, and
the Green functionsGt(xj uxj8) are given by

Gt~xj uxj8!5
1

A2ps j
2

expF2
~xj2xj8e

21/2g jt!2

2s j
2 G ,

~23!

s j
25

1

4g j
~12e2g jt!.

Remarkably, the diffusion coefficientss j
2 remains positive

for all times, both below (2k,G) and above (2k.G)
threshold. However, from the physical point of view, E
~20! provides a good description of the amplifier abo
threshold only for short times, namely when saturation
fects can be neglected. Of course, Eq.~20! admits a station-
ary solution only below threshold: such a solution can
easily derived from Eqs.~21! and~22! and, independently on
the initial state, it has the Gaussian form

Wstat8 ~x1 ,y1 ;x2 ,y2!5
16g1g2

p
exp@24g1~x1

21y2
2!

24g2~x2
21y1

2!#, ~24!

corresponding to the~factorized! squeezed thermal densit
matrix given by

%̂stat8 5@Sc~r !n̂cN̄Sc
†~r !# ^ @Sb~2r !n̂bN̄Sb

†~2r !#. ~25!

In Eq. ~25! Ŝa(r )5exp@(r/2)(a†22a2)# denotes the squeez
ing operator for modea, whereasn̂aN̄ is the density matrix of
a thermal state withN̄ thermal photons
3-4
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EFFECT OF LOSSES ON THE VISIBILITY OF . . . PHYSICAL REVIEW A 61 063813
n̂aN̄5
1

11N̄
S N̄

11N̄
D a†a

. ~26!

Both the squeezing parameterr and the thermal photon num
ber N̄ in Eq. ~25! only depend on the ratio between 2k and
G, in formula

r 5
1

4
ln

g1

g2
, 2N̄115

1

2

1

Ag1g2

. ~27!

The stationary solution%̂stat for the original Master equation
~14! can be obtained through Eq.~16!, and it is given by

%̂stat5exp@2r ~c†b†2cb!#@ n̂cN̄^ n̂bN̄#

3exp@22r ~c†b†2cb!#. ~28!

Let us now consider the more interesting case of amplifi
tion above threshold. The Wigner functionWt(x1 ,y1 ;x2 ,y2)
corresponding to the evolved density matrix%̂t can be ob-
tained fromWt8(x1 ,y1 ;x2 ,y2) by noticing that the unitary

transformationV̂ in Eq. ~15! just corresponds, at all times, t
a rotation in the four-dimensional space for the Wigner fu
tion. More explicitly

Wt~x1 ,y1 ;x2 ,y2!5Wt8S x11x2

A2
,
y11y2

A2
;
x22x1

A2
,
y22y1

A2
D .

~29!

The recipe to solve the dynamics of the amplifier is thus
following: starting from the Wigner function of the initia
stateW0(x1 ,y1 ;x2 ,y2) one evaluatesW08(x1 ,y1 ;x2 ,y2) by
the inverse rotation of that of Eq.~29!, namely,

W08~x1 ,y1 ;x2 ,y2!5W0S x12x2

A2
,
y12y2

A2
;
x21x1

A2
,
y21y1

A2
D .

~30!

Then, one makesW08(x1 ,y1 ;x2 ,y2) evolve according to Eq
~22!, and finally recoversWt(x1 ,y1 ;x2 ,y2) by means of Eq.
~29!. Following this recipe we have numerically simulate
the whole evolution, starting from the Wigner function of th
state~3!, namely,

W0~x1 ,y1 ;x2 ,y2!5
8

p2
exp@22~x1

21x2
21y1

21y2
2!#

3@~x1cosd1y1sind2x2!2

1~y1cosd2x1sind2y2!22 1
2 #.

~31!

The input state is nonclassical and exhibits negative value
the Wigner function. The Green evolution can be perform
by standard Monte Carlo techniques, by evolving separa
the positive and negative parts of the Wigner function, wh
are not mixed by the Fokker-Planck equation~20!. In Fig. 3
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we report the two-mode number probabilityP(n,m) which,
in terms of the Wigner function, reads

P~n,m!5
4

p2
~21!n1mE

R
E

R
E

R
E

R
dx1dy1dx2dy2

3W~x1 ,y1 ;x2 ,y2!e22(x1
2
1y1

2
1x2

2
1y2

2)

3Ln@4~x1
21y1

2!#Lm@4~x1
21y1

2!#, ~32!

Ln@x# being thenth Laguerre polynomial. The plot is ob
tained for a threshold ratio 2k/G530, and ford50. The
effectiveness of the amplification process above threshol
apparent. We have chosen a short interaction time in orde
have saturation effects negligible. Notice that the main eff
of losses is the appearance of additional subdiagonal te
however, as compared to Fig. 2, without affecting the h
correlation between the two modes. On the other hand,
amplification below threshold cannot stem the detrimen
effect of losses, and the field state rapidly approaches
thermal-squeezed state of Eq.~25!. By varying the optical
paths of the input beams, namely the value ofd, we have
also evaluated the correlation functionC(2) defined in Eq.
~11!. In Fig. 4 we reportC(2) for different values of the

FIG. 3. The two-mode photon distributionP(n,m) for d50 and
for 2k/G530. The corresponding interaction time is given byt
50.1. We report two views of the distribution. In comparison wi
the ideal case of Fig. 2 the main effect of losses is the appearan
subdiagonal terms, however, without affecting the high correlat
between the modes.
3-5
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effective gain 2kG/t. By inspecting the dependence ofC(2)

on the phase shiftd in Fig. 4 one immediately argues that
a wide range of working regimes the effects of losses d
not wash out the interference fringe.

IV. CONCLUSIONS

In this paper we analyzed the effect of losses on the
ibility of mesoscopically entangled superpositions genera
by stimulated down-conversion according to the schem

FIG. 4. The correlation functionC(2) as a function of the ratio
2kt/G and the phase shiftd. Compare Eq.~12! for the lossless
case.
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proposed in Ref.@11#. The setup relies on feeding a nond
generate parametric amplifier by a quantum seed, which
single-photon state with indistinguishable signal and id
paths. At the output of the amplifier we have an entang
state, with the entanglement shared by a couple of spat
separated field modes. In the experiment currently runnin
the Quantum Optics Laboratory of the University of Rom
~adopting a 0.5 W Ti: sapphire MIRA coherent laser! the
value of the gain ranges from 0.01 to 0.1 depending on
state of focalization of the uv pump beam. After the adopt
~in the near future! of an additional regenerative parametr
amplifier, the value of the gain will be further multiplied b
a factor of about 20. We analyzed the full amplification pr
cess taking into account the effects of losses. We have sh
that the preparation of mesoscopic entanglement works
fectively with the amplifier above threshold, for short inte
action times. The resulting superposition is robust aga
decoherence and can be revealed by a simple interfer
measurement.
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