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Abstract
Weaddress the quantumestimation of the diamagnetic, orA2, term in an effectivemodel of light–
matter interaction featuring two coupled oscillators. First, we calculate the quantumFisher
information of the diamagnetic parameter in the interacting ground state. Then, we find that typical
measurements on the transverse radiation field, such as homodyne detection or photon counting,
permit to estimate the diamagnetic coupling constant with near-optimal efficiency in awide range of
model parameters. Should themodel admit a critical point, we alsofind that bothmeasurements
would become asymptotically optimal in its vicinity. Finally, we discuss binary discrimination
strategies between the twomost debated hypotheses involving the diamagnetic term in circuit QED.
While we adopt a terminology appropriate to theCoulomb gauge, our results are also relevant for the
electric dipole gauge. In that case, our calculationswould describe the estimation of the so-called
transverse P2 term. The derivedmetrological benchmarks are general and relevant to any
implementation of themodel, cavity and circuit QEDbeing two relevant examples.

Introduction

The ultra-strong coupling (USC) regime of light–matter interaction has recently attractedmuch interest, thanks
to impressive advances in theory and experiments [1, 2]. A number of interesting phenomena, of fundamental
physical appeal and potential impact on future quantum technologies, arise in this regime, including the
formation of a nontrivial ground state [3], dynamical Casimir-like effects [4], and the possibility of quantum
phase transitions [5, 6].

Loosely speaking, theUSC regime is enteredwhen the light–matter coupling constant, sayλ, is a non-
negligible fraction of the bare frequencies of light andmatter. In this situation the rotating-wave approximation
breaks down, and one cannot neglect the so-called ‘counter-rotating terms’ in the interactionHamiltonian
[3, 7].While this brings about exciting newphysics, it results also in formidable computational challenges.
Effectivemodels featuring a small number of degrees-of-freedom (modes), such as theDickeHamiltonian [5],
are extremely useful in this context: they can reveal crucial features of the new regimewhile keeping
computations tractable.

However, there is disagreement in the literature regarding the specific form that these few-degrees-of-freedom
models should take, in particular concerning the presence (or otherwise)of the so-called diamagnetic orA2 term.
We recall that such a termoriginates from the general formof theCoulombgaugeminimal couplingHamiltonian
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which describes the interaction of the quantized electromagnetic fieldwith nonrelativistic charged particles. In
the above equationmj, qj, x̂j and p̂j indicate respectively themass, charge, position and canonicalmomentumof
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the jth particle, Â is the vector potential operator,V is the instantaneousCoulomb potential energy, while EM

is the freeHamiltonian of the transverse radiationfield [7]. min clearly contains a contribution proportional to
the squared vector potential Â2, i.e. the diamagnetic term.

In cavityQED (and other similar set-ups)many authors derive their effectivemodels by a direct few-mode
truncation ofHamiltonian (1), thus explicitly retaining anA2–like term affecting the radiationmodes of interest.
The importance of such term iswell recognized in preventing theDicke phase transition [8–11] and in limiting
the effectively achievable light–matter coupling [12].Within such framework, the coupling strength associated
with theA2 termobeys precise constraints (see below), whose origin can be traced back to the Thomas–Reiche–
Kuhn (TRK) sum rule [5].

In contrast, other authors hold that the few-mode approximation is better carried out in the electric dipole
gauge, that is, they apply a canonical transformation toHamiltonian(1) before the derivation of an approximate
model. This yields an effectiveHamiltonianwithout diamagnetic term, and seemingly capable of a phase
transition [13–15]. Yet, it has been argued that such derivations neglect the contribution of the so-called
transverse P2 term, which in the electric dipole gauge plays a rolemathematically analogue toA2 [10].

In the context of circuit QED, [5]maintains that the diamagnetic term can be avoided by appropriately
tuning the circuit parameters, a claimwhich has generated further debate [16–19]. In fact, in circuit QED, there
is even disagreement on themost appropriatemicroscopic description underlying theDickemodel. It is indeed
not clearwhether themost reliable starting point for the derivation of an effectivemodel should be aminimal
couplingHamiltonian [18] or a direct quantization ofmacroscopic circuit variables [19].

In this letter we take a complementary approach to theA2-termdebate: instead of trying to address the
question theoretically, by deriving aDickemodel from first principles, we propose that itmay be settled
experimentally via an appropriatemeasurement.We note that steps in this direction have been taken in recent
theoretical proposals [20, 21].Moreover, present-day experimental results seem to support the thesis ofNataf
andCiuti [5], i.e. that theA2 termmay be neglected in some circuit QED systems [22]. In this workwe contribute
to these efforts by exploiting the tools of quantummetrology.We address the estimation of theA2 coupling
constant viameasurements on the coupled ground state, thus deriving a theoretical benchmark relevant to any
experimental implementation of themodel (circuitQED and cavityQEDbeing two relevant special cases). Our
work is afirst step towards setting precisemetrological standards for any experiment probing the diamagnetic
parameter.

We consider a general Dickemodel of two coupled oscillators featuring counter-rotating terms and an
A2-like termwith unknown coupling constantD. As the establishment of a nontrivial ground state is perhaps the
simplest signature of theUSC,we find it natural to ask howmuch information aboutD is contained in this state
(i.e., how sensitive the state is to variations inD), and how efficiently such information can be extracted by
typicalmeasurements (see figure 1 for an illustration). Exploiting the tools of quantum estimation theory
[23–28], we are able to give quantitative answers to these questions.

Besides deriving the ultimate bounds on the estimation precision ofD, wefind that typicalmeasurements on
the transverse cavity field, such as homodyne detection or photon counting, allow for the precise estimation of
the diamagnetic term in awide range ofmodel parameters. Namely, homodyne detection is optimal when the
coupling constantλ is vanishing, still providing a close-to-optimal performance for M 1 20% of the baremode
frequencies. This regime of relatively small coupling (yet within theUSC) is relevant in both cavityQED [29] and
circuitQED experiments [30, 31], and is well describedwithin the two-mode approximation [32].Moreover, if
theDickemodel of interest describes a collection ofN two-level emitters, this is also a regime inwhich low-lying
excitations arewell described by a coupled oscillatormodel, even for relatively small values ofN: for example,
this is the case for a spin-2Dickemodel (N= 5) [32].

Figure 1.ParameterD, quantifying the strength the diamagnetic term in theDickeHamiltonian (2), may be estimated experimentally
by performing an appropriatemeasurement on the coupled light–matter system.Herewefind the ultimate bound on the information
aboutD that can be extractedwith such ameasurement. Our results also suggest that realisticmeasurements such as homodyne
detection or photon counting of the cavityfield a are well suited to this task in a broad range of themodel parameters.
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While we tackle the problem in its full generality, we also obtain compact analytical results for three
important limiting cases: (i) D 0;� (ii) D DTRK� , where DTRK is the value derived from the TRK sum rule
[5, 32]; (iii) D Dcrit� , where Dcrit is the threshold for theDicke phase transition. In case themodel admits a
phase transition, we furtherfind that the consideredmeasurements become approximately optimal near the
critical point. However we point out that finite-size effects, not included in ourmodel,may become increasingly
relevant as criticality is approached [33–35].

We complement our analysis by discussing the problemof binary discrimination [36, 37] between the
choicesD=0 and �D DTRK, whichmay be relevant in circuit QED [5, 16].We then discuss the experimental
feasibility of the proposedmeasurements, and conclude the letter by providing an outlook of further research
questions stemming fromourwork.

Before proceeding we note that in this letter we adopt a language appropriate to theCoulomb gauge, such
thatfield operators describe excitations of the transverse (and gauge invariant) radiationfield, while what we call
‘mattermode’ in fact describes a combination ofmatter and field properties [7]. In this form, our results can be
used to determine themost appropriate coupling constant of the diamagnetic term. In appendix Cwe show that
our results can be readily adapted to describe the estimation of the P2 term in dipole gauge [10].

Themodel

Let us start by introducing theHamiltonian of the system.We denotewith a the photonic cavitymode, of bare
frequency Xa, andwith b themattermode, with frequency Xb. After setting �� 1, theHamiltonian reads

X X M� � � � � � �( )( ) ( ) ( )† † † † † a a b b a a b b D a a , 2a b
2

whereλ is the light–matter coupling strength and the last is the diamagnetic term,with the constantD being the
object of our discussion.

Being quadratic in the field operators, is easily diagonalized and can bewritten, up to an irrelevant
constant, as X X� �† † p p p p ,U U U L L L where pU L, are bosonic operators for the upper and lower polaritonic
modes. The eigenfrequencies XU L, are reported in [32] and in appendix A.

If the diamagnetic term is absent, i.e. we setD=0 in equation (2), we recover the standardDicke
Hamiltonian, with a quantumphase transition at M M X X� w 2a bcrit . On the other hand, if the diamagnetic
term is included, itmust satisfy the inequality

M X Xw � ( ).D D 4 3b acrit
2

in order for theHamiltonian in equation (2) to be bounded frombelow. IfD assumes the ‘TRKvalue’ [32],

M X� w ( )D D , 4bTRK
2

then equation (3) is always satisfied and the phase transition is suppressed.
The ground state of theHamiltonian is the vacuum state of the polaritonicmodes, i.e.aGaussian state with

zeromean and covariancematrix T � � 20 . Expressing this state in terms of the initialmodes a and b, we obtain
a nontrivial, two-mode squeezedGaussian state with covariancematrix T T� S ST

0 , where the suitable
symplectic transformation S is reported in appendix A.

Quantumestimationmethods

Let us now address the problemof estimatingD, and in doing sowe shall review the basics of quantum
estimation theory. In order to determine the value of the unknownparameter, one collectsmeasurement
outcomes from experiments and builds an estimator D̂, i.e.a function of the data that will return our best guess
for the value ofD. Assuming that the estimator is unbiased, its precision, in the limit of a large number n of
measurements, is bounded frombelow by theCramér–Rao bound [38] �ˆ [ ( )].D nF DVar 1, where F (D) is the
Fisher information (FI) of the probability distribution ( ∣ )p x D , defined as ¨� s( ) ( ∣ )[ ( ∣ )]F D xp x D p x Dd lnD

2 .
Here ( ∣ )p x D is the conditional probability that the outcome of themeasurement is x, if the parameter value isD.
If we define the quantumFisher information (QFI)H(D) as the supremumof the FI over all possible quantum
measurements described by positive operator-valuedmeasures, we obtain the quantumCramér–Rao bound,
i.e.the ultimate lower bound on the achievable precision in the estimation ofD [28].

TheQFIwith respect toD can be evaluated analytically forGaussian states [34, 39, 40] and for the case at
hand is given by

T� 8 s 8'( ) [ ] ( )H D Tr , 5T
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where∂ denotes the derivative with respect toD, 8 � � � �( )i 1
2 0 1

1 0
is the symplecticmatrix, and thematrixΦ

satisfies the linear equation T T Ts � 8'8 � '2 .T 1

2
The expression for theQFI is quite cumbersome andwe

report it in appendix B. In the followingwe analyze its behavior in the cases of interest for our discussion.We
also note that theQFI is a homogeneous function of the parameters of theHamiltonian:

B BX BX BM( )H D, , ,a b B X X M� � ( )H D, , ,a b
2 .

TheQFI for the two-mode ground state is a relevant benchmark for the precision of anymeasurement on the
system. In realistic experiments, however, it will only be possible tomeasure a limited number of system
observables. For definiteness, we shall focus here on typicalmeasurements that can be performed on the
transverse radiationfield a. It is thus interesting to compute also theQFIHa(D) for the reduced state ofmode a,
which is a squeezed thermal state, see appendix B.

Homodyne detection corresponds to themeasurement of thequadrature operator Gˆ ( )x � �G G�( )†a ae ei i

2 , wheref is an arbitrary angle. For the reduced state Sa, the probability distribution for the outcomeof G( )x is a
normal distributionwith zeromean and covariance T G T G�cos sin ;11

2
22

2 the correspondingFI, ( )F hd is reported
in appendix B. It is further argued that the FI has amaximumat G � 0: this has the important consequence that
thebestmeasurement angle does not dependon the (yet unknown)Dparameter.On theother hand, the FI for
photon counting cannot be determined analytically as it involves an infinite sumof the terms S� � §( ) ∣ ∣p n n n ,
i.e.theprobabilities offinding a photon in theFock state §∣n [34, 41]; we evaluate it numerically in a truncated Fock
space.

Results: probing the diamagnetic term

Themain results of this paper, namely the analytical expressions for theQFI and FI for the homodyne detection
(reported in appendix B) are valid for any values of themodel parameters, provided theHamiltonian (2) admits a
ground state. Inwhat follows, we focus on the parameter regimes that aremost relevant from a theoretical and
froman experimental point of view.

Let us start by focusing on the regime of relatively small couplingwithin theUSC. TheQFI has a non
vanishing limiting value

X M� � ��( ) ( ) ( ) ( )H D D O2 4 , 6a
2 2

showing how, in this regime, smaller values ofD can be estimatedmore efficiently, yet a large number of
measurements is needed to neutralize the contribution of Xa and obtain a precise estimation. Remarkably, the FI
for the homodynemeasurement saturatesH(D)up to second order inλ, indicating that, nomatter what the true
value ofD is, we can estimate it with optimal efficiency by detecting the quadrature ofmode awhenλ is
sufficiently small. In detail, if we consider the plausible scenario 1D DTRK, the ratio between FI andH(D) is

X
X X
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Wecan now investigate the estimation properties of the diamagnetic parameterDwithout constraining the
value of the coupling constantλ and thus, when possible, also at the critical point. For the caseD=0 the phase
transition appears when the coupling reaches the critical value M X X� 2a bcrit . In this case theQFI forD
diverges as

X X M M� _ �( ) [ ( ) ] ( )H D 0 8 , 8b a crit
2

and the homodyne and the photon countingmeasurements both saturate theQFI in this limit, as shown in
figure 2 (left panel). IfD approaches the TRK value D DTRK� (see equation (4)), the phase transition is
suppressed and there is no criticality in the system. TheQFI for the two-mode state (for anyλ) reads
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( )H DTRK is clearly higher for small frequencies of the radiationmode, whereas it decreases in the case of high
frequencies.With respect toλ, ( )H DTRK has aminimumat M X X X X� �( ) 4b a b a

2 2 and the asymptotic value
X2 a

2 for large and smallλ. The ratio between the FI for the twomeasurements and theQFI is shown infigure 3
as a function ofλ and Xa. One can also verify that the expansion in equation (7) is in fact a good guideline for
remarkably large values ofλ, implying that homodynewould be an excellentmeasurement strategy inmost
experimentally relevant situations. For example, setting �D DTRK and X X M� � 2a b , we still get a ratio of
81 92 0.88� , while the approximation of equation (7)would yield 7 8 0.87� .
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In general, in the vicinity of the critical point Dcrit, the asymptotic behavior of the two-modeQFI is

_
�l

( )
( )

( )H D
D D

1

8
, 10

D D crit
2crit

that is, theQFI diverges,meaning that the amount of information that can be extracted permeasurement
increases enormously. This is another confirmation of the role of quantum criticality in the enhancement of
estimation [34, 42, 43].We point out, however, that we neglect finite-size effects whichmay become relevant
near the critical point. Nonetheless, it is reasonable to believe that these effects translate into a smoothing of the
QFI, for either the atomic ensemble or the radiationmode (see [33] for thefinite-size case without the
diamagnetic term).

TheQFI for the reduced state of onemode saturates the two-modeQFIH(D)when the system is close to the
critical point. This is remarkable: optimal estimation ofD around criticality can be achieved bymeasuring only a
part of the system.Moreover, it can effectively be achievedwith feasible experiments such as homodyne
detection or photon counting (see figure 2). The FI for the x-quadraturemeasurement indeed saturates theQFI
asD gets close to the critical value Dcrit,

M X
M X X X
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hd 2 3 2
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We furtherfindnumerically that the photon countingmeasurements can also saturate theQFI near the critical
point.

Figure 2. Left: ratioR between the FI and theQFI for the twomodes (solid) and the photonmode (dashed) forD=0 as functions ofλ.
Homodyne detection is highlighted in blue and photon counting in orange. The plot is obtained for X X� � 1a b . Homodyne
detection is optimal for smallλ and bothmeasurements saturate theQFIwhen M Mx crit. Right: plot of the same quantities whenD
gets close to the critical value Dcrit, for M � 1 and X X� � 1a b . Bothmeasurements saturate theQFI in the limit lD Dcrit and

l dD Dcrit , with homodyne detection reaching generally higher ratios in the region close to the critical value.

Figure 3.Ratios ( ) ( )( )F D H Dhd
TRK TRK (blue) and ( ) ( )( )F D H Da

hd
TRK TRK (orange) for homodyne detection (left) and photon

counting (right), at �D DTRK and X � 1b . Homodyne detection is optimal for smallλ, but allows to extract a relevant amount of
information (about 70%), alsowhen M Xa b,� . Photon counting is optimal for large Xa and smallλ.
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Results: quantumdiscrimination

Wefinally tackle the problemof discriminating between the two values ofD that aremost argued in the recent
circuit-QED literature:D=0 and DTRK. Bymaking ameasurement on a subsystem, typically the cavity field, we
want to decide which of the two hypotheses is correct. Quantummechanics poses a limit to the discriminating
ability, quantified by theHelstrombound [36, 37]: if we label S( )0 and S( )TRK , respectively, the ground state in the
two hypotheses, the lowest probability of error in the discrimination between these two states is

S S� �[ ( )]( ) ( )�P 1 ,e
1

2
0 TRK , where� denotes the trace distance. TheHelstrombound is based on the

assumption that the systemhas the same probability to be in either of the two states, reflecting the lack of any
a priori information onwhich hypothesis is the correct one. TheHelstrombound calculated on the two-mode
state can only be used as an ideal benchmark, as it is saturated by a (typically unfeasible) collectivemeasurement
on the twomodes. Amore practical benchmark is given by theHelstrombound calculated on the reduced state
ofmode a, i.e.in the discrimination between S( )

a
0 and S( )

a
TRK . Being these statesmixed, the trace distance cannot

be computed analytically, and a diagonalization of the density operators expanded on a truncated Fock basis is
required. The ensuing bound on the probability of error, ( )Pe

a , is less stringent than the two-mode bound.
We show the dependence ofPe and

( )Pe
a on M Mc infigure 4: the probability of error is close to 1/2 for smallλ

and vanisheswhen M M X Xl � 2c a b in the caseD=0. The dependence onλ in the neighborhood of Mc is
M M_ �( )Pe c

1 4. For ( )Pe
a a numerical fit shows an exponent around 1/5. Thuswe find that the discrimination

between the two hypotheses is hard in the regime of small coupling, while criticality allows for a great
improvement, should the optimal strategy be found.

To this end, we checked the performance of two feasible discrimination strategies using either the ˆ ( )x 0
quadraturemeasurement or photon counting on themode a. The former exploits the fact that the probability
distribution of the outcome of the quadraturemeasurement is a Gaussianwith variance T11. In the caseD=0,
when M Ml crit, T M M_ � �( )11 crit

1 2. On the other hand, for M X�D b
2 , T11does not departmuch from its

limit for M l 0, which is 1/2. Thus, close to the critical value, theGaussian distribution for M X�D b
2 is very

narrow compared to the distribution forD=0.
We can thus set up a readily feasible discrimination experiment as follows: if the outcome of the experiment

is6 T�∣ ∣ ( )x 2 11
TRK then the state of the system is S( )TRK , otherwise it is S( )0 . The corresponding probability of error

is

¨ ¨T T� �
T

T

d
( ) ( ) ( )( ) ( ) ( )

( )

( )
& &P x x0, d 0, d , 12e

hd

0

2

11
0

2
11
TRK11

TRK

11
TRK

where thefirst (second) term is the probability of detecting S( )0 (S( )TRK )when the actual statewas S( )TRK (S( )0 ),
and N T( )& , is the normal distributionwithmeanμ and varianceσ.

In a photon counting experiment, we can exploit the fact that, whenD=0, the average photon number
diverges near the phase transition [34], while it is close to zero if the phase transition is suppressed by the
presence of theA2 term. Thus, we can discriminate between the two hypotheses by setting a threshold photon
number nT and assigning any outcome below that threshold to the hypothesis S( )TRK and any outcome above to

Figure 4.Probabilities of error Pe, given by theHelstrombound on the two-mode system (solid blue), ( )Pe
a , for the photonmode (dot-

dashed orange), ( )Pe
hd for homodyne detection (dashed yellow) and ( )Pe

pc for photon counting (dotted green) as functions of M Mcrit,
with X X� � 1a b . In the inset, a log–log plot of the same quantities asλ approaches Mcrit. The probability of error is close to 1/2 for
smallλ, vanishingwhen M Ml crit, i.e.when, forD=0, the system is close to the quantumphase transition. TheHelstrombound on
themode a behaves differently from the two-mode bound near the critical value. The two proposed discrimination schemes, although
not saturating the single-mode bound, have the same behavior in the limit M Ml crit.

6
The choice of T( )2 11

TRK here is arbitrary. The optimal threshold depends on the parameters of the problem. Even optimizing over this
parameter we do not saturate theHelstrombound.
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S( )0 . The probability of error in this case would be

� �� � �
� �

( ) ( ) ( )( ) ⎛
⎝⎜

⎞
⎠⎟P p n p n

1

2
1 . 13e

n

n

n

n
pc

0
0

0
TRK

T T

Wefind that the optimal threshold value is nT=0, i.e.the discrimination is between no photons and any
number of photons. This is a harder question to settle in a realistic experiment.

The resulting ( )Pe
hd and ( )Pe

pc are compared to theHelstrombounds infigure 4.We see that the homodyne
scheme is slightly better than the photon counting one. Interestingly, these two feasible discrimination schemes
have the same behavior as theHelstrombound ( )Pe

a on the reduced state when approaching the critical point,
although neither of them is optimal.

Measuring the cavityfield

Before closing, wewould like to comment on the feasibility of the proposedmeasurements, which require access
to the cavitymode a (seefigure 1). One possible way to access the intra-cavity field is to suddenly switch off the
couplingλ, a drastic yet experimentally feasible procedure [1]. Allowing one of the cavitymirrors to have a small
butfinite transmissivity, onemay subsequently collect the cavity outputfield (i.e. the radiation that gradually
leaks out into the external world). In absence of light–matter coupling and other losses, the cavity outputfield
can be used to extract the full quantum statistics ofmode a just before the switch-off [44]. A crucial open
question, however, is how coherent the switching process can be, i.e., howwell it can preserve the quantum state
of light. Importantly, our results can be generalized in future work to take into account experimental
imperfections in the switching process: due tofinite transients, losses and other decoherencemechanisms, one
would end upmeasuring a deteriorated version of the original cavityfield a. It is reasonable to assume that the
whole process could bemodeled as a quantum channel acting on the reduced state of the cavitymode, just before
the latter ismeasured. Insofar as these imperfections can be described by aGaussian channel, the problem could
be attacked by a straightforward generalization of the tools employed here. Importantly, the relevant noise
parametersmust be known in advance for this approach toworkwithin the paradigmof single-parameter
estimation. As an example, we illustrate the special case of aGaussian pure-loss channel [45], described by a loss
parameter I � [ ]0, 1 quantifying the probability of single-photon loss (with I � 1meaning complete loss, i.e.
the output state is always the vacuum). The effect on the estimability ofD is shown in figure 5. TheQFI and FI
inevitably decrease with η, but the ratio does not, signifying that homodyne detectionmay be a robust
measurement to estimate the diamagnetic term in presence of decoherence.

Outlook and conclusions

We investigated the detection of the diamagnetic term in aDickemodel of light–matter interaction, formulating
the problem in terms of quantumparameter estimation or quantum state discrimination.We obtained the
ultimate quantum limits to the rate at which information can be extracted from the ground state of the coupled

Figure 5.Effect of experimental imperfections on the estimability ofD. Due to nonideal conditions in the procedure of cavityfield
extraction, we assume that the cavitymode a is affected by a pure-loss channel before themeasurement.We plot the single-modeQFI
of thefieldmode (solid blue), FI for homodyne detection (dashed orange), in units of the inverse-square frequency, and their ratio
(dotted green, right scale) as functions of the loss parameter η, for X X� � 1a b and M � 0.2, assuming that M X�D b

2 . The
estimability ofD inevitably decreases with η, but the ratio between the FI and theQFI does not decrease and tends to one (dotted black
line). This suggests that homodyne detectionmay be a robustmeasurement for the estimation ofD in realistic experimental
conditions.
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system, andwe discussed the performance of two typicalmeasurements on the cavity field, homodyne and
photon counting, that allow for efficient estimation of the parameter of interest. This efficiency becomes optimal
in experimentally relevant regimes, such as the small-coupling regime inwhich the coupling is up to 20%of the
mode frequencies.

To conclude, wewould like to indicate some possible directions for futurework. By employing
multiparameter quantum estimation theory [28], our study can be expanded to covermore realistic situations in
which other parameters of themodel, e.g. loss rates or the couplingλ, are not known exactly. The role offinite-
size effects could also be explored, in particular near criticality where a coupled-oscillatormodelmight be
inaccurate [33] (this, however, will require techniques beyond theGaussian formalism employed here). The
estimability of theA2-term from a thermal state of the coupled system could also be addressed: in this scenario
radiationwill be continuously emitted by the cavity, without the need to have a fastmodulation of the coupling
constant.

Finally, we remark that the ideas presented in this lettermay be generalized to test the validity of alternative
ormore complexmodels of light–matter interaction; for example, alternativeDickemodels for circuitQED
such as that proposed in [19], ormodels with additional terms to describe electrostatic contributions (e.g.
dipole–dipole interactions between the atoms), or effective contributions fromhigher harmonics of the cavity
field [32].
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AppendixA. Covariancematrix of the ground state

As is shown in [32], theUSCHamiltonian in equation (2) can be cast to the diagonal formof equation (2), where
the frequencies XU , XL are
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� �

o
� �

� ( )
⎛
⎝⎜

⎞
⎠⎟

D D4

2

4

2
4 . A.1U L

a a b a a b
a b,

2
2 2 2 2 2

2

The symplecticmatrix that transforms the vector ( )† †a b a b, , , of the original-mode creation and annihilation
operators into the vector of polaritonicmodes ( )† †p p p p, , ,U L U L , is given by
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. A.4

The ground state of the diagonalizedHamiltonian is the vacuum, i.e. a Gaussian state with no displacement and
a covariancematrix T � � 20 in the basis of the quadratures � (x pU L U L, , � )†p 2U L, ,

� �y iU L, �( )†p p 2U L U L, , .
To obtain the covariancematrixσ in the originalmodes a and b, transform T0 using a symplecticmatrix

Sthat can easily be obtained from S̄ . After some simplifications, we have
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Appendix B.QFI and FI for homodyne detection and photon counting

B.1.QFI for the two-mode state
Givenσ, we can calculate theQFI using equation (5). If the state is pure, the solution of equation (6) is

T' � �s . This in turn yields the following expression for theQFI:

T T T T T T� s s � s s � s s( ) ( ) ( )H D 2 2 . B.11,1 2,2 2,4 3,1 3,3 4,4

Herewe report the general expression of theQFI (after somemanipulations)
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The relevant cases are discussed in the paper.

B.2.QFI for the reduced state ofmode a
The covariancematrix Ta of the reduced state Sa of the photonicmode is simply the upper left diagonal block of
σ. The corresponding state is a squeezed thermal state
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whereN is the number of thermal photons and r is the squeezing parameter:
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TheQFI for the reduce state can be obtained easily by solving equation (6) of the paper forΦ. Being Ta diagonal,
we simply find thatΦ is diagonal with
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The correspondingQFI is
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B.3. FI for the homodyne detection
In a homodyne detection experiment one canmeasure the fieldmode quadrature at an arbitrary phase, i.e. the
expected value of the operator G � �G G�ˆ ( ) ( )†x a ae e 2i i .

The probability density for the outcome of a homodynemeasurement is easily obtained from theWigner
function of the reduced state of the photonmode S S� [ ]Tra b , which is a Gaussian distributionwith zeromean
and covariancematrix T T( )diag ,11 22 .

The probability G ( )p x of the outcoume G( )x for themeasurement is themarginal distribution of theWigner
function, obtained after a rotation of an anglef in the phase space:
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that is, a normal distributionwith variance T G T G�cos sin11
2
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2 . The FI for this distribution is easily obtained

to be
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It is easy to check that the FI G ( )F D hasmaxima for G Q� 0, 2, inwhich

T
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T

�
s

�
s
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2

,
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. B.110
11

2

11

22
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Numerical analysis indicates that Q( ) ( ).F D F D0 2
, thus G � 0 is the optimal angle to perform the homodyne

measurement.

AppendixC.Dickemodels in the dipole gauge

Our calculations can be readily adapted to the study ofDickemodels in the electric dipole gauge. In such a case,
ourHamiltonianmay bewritten as

X X M� � � � � � �¯ ¯ ¯ ( )( ) ¯ ( ) ( )† † † † † a a b b a a b b D b b , C.1a bdip
2

where X X¯ ¯,a b, M̄, D̄ are the bare frequencies and light–matter coupling constant relevant to the new gauge.Note
how the coupling parameter D̄ is now associatedwith theP2 term [10]. In the dipole gauge, the operators †b b,
describe physical degrees of freedomofmatter, thanks to the equivalence between canonical and kinetic
momentum.On the other hand, thefield operators †a a, no longer describe the transverse radiationfield, but
are ‘contaminated’ bymatter properties [7]. From equation (C.1) it is evident that the results presented in our
manuscript can be easily translated in the dipole gauge, by simply swapping the role of a and b in all calculations.
Then, the parameter to be probed becomes the P2 coupling constant D̄. Specifically, our calculations relative to
homodyne detection and photon counting indicate that efficient estimation of theP2 term is achievable through
measurements on thematter degree of freedom.
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