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The quantum back°ow e®ect is a counterintuitive behavior of the probability current of a free
particle, which may be negative even for states with vanishing negative momentum component.
Here, we address the notion of nonclassicality arising from the back°ow e®ect, i.e. from the
negativity of the probability current, and analyze its relationships with the notion of non-
classicality based on the negativity of the Wigner function. Our results show that back°ow is
linked to a di®erent, and in fact more restrictive, notion of nonclassicality, the negativity of the
Wigner function being only a necessary prerequisite for its occurrence. This hierarchical struc-
ture may be con¯rmed by looking at the addition of thermal noise, which more easily destroys
the negativity of the probability current than the negativity of the Wigner function itself.
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1. Introduction

The so-called quantum back°ow e®ect consists of a counterintuitive behavior of the
probability current of a quantum free particle in one dimension: the current may
assume negative values even for wave-packets without negative momentum com-
ponents. This means that for states with a wave-function with only positive mo-
menta, the probability of remaining in a certain region, e.g. x < x0, may increase with
time. This e®ect was earlier discovered in connection with the discussion of the
arrival-time problem in quantum mechanics,1 but, it was studied in detail only few
years later.2 In particular, a bound for the maximal fraction of the probability that
can °ow backwards during a ¯nite time interval was found. This bound, given by the
adimensional constant cbm ! 0:04, is independent from the mass of the particle and
from the time interval in which the e®ect itself takes place. Remarkably, this limiting
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value is also independent on the Planck constant }, thus suggesting back°ow as an
independent quantum e®ect.

More recently, the back°ow e®ect has attracted some more attention: improve-
ments in the numerical estimation of cbm have been addressed3,4 and additional
bounds, analytical examples, and connections with realistic measurements have been
provided.5–7 Finally, an explicit scheme to detect back°ow in a Bose–Einstein con-
densate has been proposed.8 The e®ect was found also for a particle in a linear
potential 9 and for a Dirac particle.10 An analog e®ect for angular momentum has
been studied as well.11

The back°ow e®ect is an intrinsically quantum phenomenon, for which there is no
classical analog.12 It is intimately connected with the fact that quantum mechanical
distributions in the phase space, e.g. the Wigner function,13,14 are not always positive
functions and thus to the idea of negative probability in quantum mechanics.15,16 On
the other hand, the back°ow e®ect appears in connection with propagation of a
quantum particle and thus it cannot be entirely traced back to noncommutativity of
the quantum phase space, i.e. to static nonclassicality revealed by negativity of the
Wigner function. At the same time, despite being a dynamical e®ect, the occurrence
of back°ow is entirely determined by the properties of the initial quantum state since,
as we will see, it occurs for systems where the dynamics in the phase space is
essentially classical.

In the quantum statistical description of physical systems, the fact that quasi-
probability distributions in the phase space may assume negative values is strongly
linked to the notion of nonclassical states, as well as to the quanti¯cation of such
nonclassicality17–30. In turn, the main goal of this paper is to investigate whether and
how the back°ow of probability, i.e. negativity of the probability current, is con-
nected, either quantitatively or qualitatively, to the notion of nonclassicality stem-
ming from negativity of the Wigner function, i.e. from phase space analysis. Our
results indicate that quantum back°ow pinpoints a di®erent, more restrictive, notion
of nonclassicality, with the negativity of the Wigner function being only a necessary
prerequisite for the occurrence of back°ow. This picture is con¯rmed by looking
at the e®ect of noise, which more easily destroys the negativity of the probability
current than the negativity of the Wigner function itself.

The paper is structured as follows. In Sec. 2, we review the phase space description
of dynamics in quantum mechanics and introduce the back°ow e®ect from this point
of view. We also review the volume of the negative part of the Wigner function as a
quanti¯er of nonclassicality, and brie°y explore the general relationship between the
two concepts. In Sec. 3, we explicitly explore the connection between negativity of
probability current and negativity of the Wigner function for states expressed as a
superposition of two Gaussian wave-packets. In Sec. 4, we analyze the behavior of the
back°ow in the presence of noise, i.e. under the operation of Gaussian smoothing of
the Wigner function, and prove explicitly that the negativity of the Wigner function
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is more robust against noise than the negativity of the probability current. Section 5
closes the paper with some concluding remarks.

2. Phase Space Dynamics and Quantum Back°ow E®ect

2.1. Phase space dynamics

A pure quantum state of a particle moving along a line (coordinate denoted by x)
may be described by its wave-function in the position representation  tðxÞ ¼ hxj ti.
A fully equivalent representation may be also given in terms of a phase space dis-
tribution function. In fact, the so-called Wigner function13 contains the full infor-
mation about the state of the system. For a pure state, the Wigner function is
given by

Wðx; p; tÞ ¼ 1

2!

Z
dy %

t xþ 1

2
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! "
 t x' 1
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where the ¯rst line is the expression in terms of the position wave-function  tðxÞ and
the second one is the equivalent momentum representation, "tðpÞ ¼ ð2!Þ'1=2

R
dx

e'ipx  tðxÞ ( hpj ti being the momentum representation of the wave-function. The

Wigner function is a real valued function, bounded by jWðx; p; tÞj ) 2
! and normal-

ized. On the other hand, it may take negative values and thus it cannot be inter-
preted as a probability distribution in the phase space.

For systems subject to a potential depending only on the coordinates, i.e. gov-
erned by the Hamiltonian

H ¼ p2

2m
þ UðxÞ ð3Þ

the Wigner function obeys the continuity equation

@

@t
Wðx; p; tÞ þ divJ ¼ 0; ð4Þ

where

J ¼
Jx
Jp

! "
ð5Þ

is the Wigner function °ow of the system in the phase space.12,31–33 This Wigner °ow
can be decomposed as the product J ¼ Wv, where v ¼ J=W may be interpreted as
the velocity of the phase space °ow. Remarkably, for potentials at most quadratic in
x, the velocity ¯eld v coincides with its classical analog

v ¼
_x

_p

! "
¼

@pH

'@xH

! "
: ð6Þ
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For this class of potentials, the °ow is thus Liouvillian, i.e. divv ¼ 0, and the Wigner
function °ows in the phase space as an incompressible °uid.

Some typical quantum e®ects arise as a consequence of the fact that the Wigner
function can take negative values, e.g. it can be easily seen that in the regions where
W is negative the Wigner °ow J ¼ Wv takes place in the direction opposite to the
velocity v, which, as we have seen, gives the direction of the classical phase space
°ow.

2.2. The quantum back°ow e®ect

The properties illustrated in the previous section may give rise to somewhat sur-
prising results, such as the so-called quantum probability back°ow e®ect. Let us
consider a one-dimensional free particle, whose initial state is a wave packet con-
taining only components of positive momentum. Its wave-function at time t ¼ 0 is
given by

 ðx; 0Þ ¼ 1ffiffiffiffiffiffi
2!

p
}

Z þ1

'1
dp e

ipx
} "ðpÞ; ð7Þ

where "ðpÞ is a function which vanishes for negative values of p. In this situation, the
Wigner function of the particle is entirely localized in the positive momentum half-
plane of the phase space.

As we have seen, the Wigner °ow for a free particle coincides with the classical
phase space °ow, that is, the one given by the velocity

v ¼
p

m

0

0

@

1

A: ð8Þ

In the positive momentum region, where our particle is localized, the velocity is
therefore always in the positive x direction. However, in points where the Wigner
function takes negative values, the Wigner °ow points in the negative x direction. Let
us, in particular, consider the total Wigner volume found in the x * 0 half-plane in
phase space. This is given by

Z þ1

'1
dp

Z þ1

0
dxWðx; p; tÞ ð9Þ

and it coincides with the probability of ¯nding the particle in the positive position
semi-axis at a given time, that is,

PðtÞ ¼
Z þ1

0
dx j tðxÞj2: ð10Þ
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By the continuity equation (4), the time derivative of this volume is given by the
Wigner °ow through the x ¼ 0 line in phase space:

jðtÞ :¼ d

dt
PðtÞ ¼

Z þ1

'1
dp

p

m
Wð0; p; tÞ: ð11Þ

The expression in Eq. (11) coincides with the quantum mechanical probability cur-
rent in the origin, i.e.

jðtÞ ¼ i}
2m

 tð0Þ
@ %

t

@x
ð0Þ '  %

t ð0Þ
@ t

@x
ð0Þ

! "
: ð12Þ

According to classical intuition, one would expect the wave packet described above to
move in the positive spatial direction with a constant average velocity and hence the
probability P ðtÞ to increase monotonically with time, as the particle moves into the
positive position semi-axis. However, this is the case only for states which mimic
classical behavior su±ciently well, i.e. states whose Wigner function is always posi-
tive. Conversely, if the Wigner function takes negative values, its phase space °ow
can be in the negative direction even in the positive momentum region and therefore,
if this negative °ow occurs in a su±ciently large section of the x ¼ 0 line, the de-
rivative (11) can indeed take negative values.

As a consequence, for a generic quantum state, even if in the limit t ! þ1, the
probability P ðtÞ globally and monotonically increases, approaching the limiting
value PðtÞ ¼ 1, there may exist time intervals in which it is a locally decreasing
function of time. The particle thus appears to return towards the negative semi-axis.
In order to quantify the back°ow e®ect, one may consider the maximum amplitude of
such temporary decrease of the probability density, i.e.

#½ , :¼ inf
t1<t2

½P ðt2Þ ' Pðt1Þ,
$$$$

$$$$: ð13Þ

The increase in probability over a time interval ðt1; t2Þ (the most negative values of
which we must ¯nd to compute back°ow) can be expressed in terms of the phase
space °ow in Eq. (11) as follows

F ðt1; t2Þ :¼ Pðt2Þ ' P ðt1Þ ¼
Z t2

t1

dtjðtÞ: ð14Þ

Upon considering the incompressible °uid nature of the Wigner °ow, one may de¯ne
a natural motion of phase space points so that this motion has velocity given by the
¯eld v: a point initially in ðx; pÞ, after a time interval t is mapped to

’tðx; pÞ ¼ xþ p

m
t

p

! "
: ð15Þ

Because of the incompressible nature of the °ow, the Wigner density remains con-
stant along this motion, that is,

Wðx; p; tÞ ¼ Wð’'tðx; pÞ; 0Þ: ð16Þ
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Using this result, we can express function (14) as

Fðt1; t2Þ ¼
Z

R
dx dpWðx; p; t2Þ '

Z

R
dx dpWðx; p; t1Þ ð17Þ

¼
Z

’'t2
ðRÞ

dx dpWðx; p; 0Þ '
Z

’'t1
ðRÞ

dx dpWðx; p; 0Þ ð18Þ

¼
Z

"
dx dpWðx; p; 0Þ; ð19Þ

where R is the x * 0 half-plane and the region " ¼ ''t1ðRÞn''t2ðRÞ is an angular

sector in the phase space. In polar coordinates, " is de¯ned by

!

2
þ arctan

t1
m

! "
) " ) !

2
þ arctan

t2
m

! "
ð20Þ

and no constraint on the radial coordinate. The increase in probability over the time
interval ðt1; t2Þ may be thus seen as the °ow of the Wigner volume initially (at t ¼ 0)
in the region " into the x * 0 half-plane. If there exists at time t ¼ 0, a sector " in
which the Wigner function has negative integral, then there is also a time interval in
which this probability increase is actually negative and the state shows the back°ow
e®ect. See Ref. 34 for a detailed analysis of integrals of the Wigner function on
angular sectors in phase spaces.

2.3. Quantum back°ow and nonclassicality

The back°ow e®ect cannot be observed for a particle moving according to the clas-
sical laws of motion. In this sense, its occurrence is a manifestation of the genuine
quantum nature of the state under investigation. In the previous section, we have
seen how negativity of the Wigner function is a prerequisite to observe negativity of
the probability current, and a question arises about the general connection between
the two notions of nonclassicality.

A common approach to the notion of nonclassicality involves the noncommuting
nature of quantum canonical variables, which implies the existence of an entire family
of s-ordered quasidistributions in the phase space.17 Singularity, or negativity, of one
or more quasidistributions implies that the methods of classical statistics fail to
describe the properties and the phenomenology of a given state, and is thus taken as a
signature of nonclassicality.18 The most fundamental de¯nition of nonclassicality is
based on the Glauber–Sudarshan P function, whereas negativity of the Wigner
function, besides being measurable experimentally,35–39 captures the nonclassical
features involved in quantum interference 40 and has been recognized as a resource for
quantum computation.41–43 More generally, the presence of negative values in the
Wigner function of a quantum state has been recognized as a su±cient condition for
nonclassicality. In particular, the volume of the negative part has been introduced as
a nonclassicality measure.44
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We will use the actual volume of the negative part (not its double or its nor-
malized versions, sometimes used in the literature), which for a generic state is de-
¯ned as

#½ , ¼ 1

2

Z Z
dx dp jWðx; pÞj'Wðx; pÞ½ ,: ð21Þ

In particular, we will compute this ¯gure of merit for the initial state  0.
If we choose t1 and t2 as the time interval corresponding to the minimum in

Eq. (13), then 'F ðt1; t2Þ is equal to the back°ow measure of the state #½ ,. In this
way, we may identify the Wigner negativity volume # of the initial state as an upper

bound to the back°ow: if we denote by V þ
" (V '

" ) the volume of the positive (negative)

part of the initial Wigner function on the sector " then, recalling Eq. (17), we may
write the following inequality

#½ , ¼ 'ðV þ
" ' V '

" Þ ) V '
" ) #: ð22Þ

This con¯rms that nonclassicality as de¯ned by Eq. (21) is a necessary condition for
back°ow. Moreover, a question arises on whether a more precise quantitative relation
exists between # and #. In order to check whether this is the case, we consider an
explicit example and analyze in some detail, the two quantities for superpositions of
Gaussian wave-packets.

3. Superpositions of Gaussian States

3.1. Quantum back°ow for superpositions of Gaussian states

The quantum back°ow e®ect is not observed in states with a su±ciently classical
behavior, such as those with a Gaussian wave-function. However, it may easily arise
by taking quantum superpositions of such semi-classical states, which provide a
natural case study. In particular, we are going to consider the superposition of two
Gaussian momentum wave-packets of width $ centered on di®erent positive mo-
menta. An overview of quantum back°ow for such states may be found in Ref. 6. For
$ ! 1, one recovers a superposition of two plane waves with di®erent momenta,
which is the simplest example of a state presenting back°ow,2,45 though it does not
correspond to a physical state. In the following, we analyze the back°ow for a general
normalized superposition with complex coe±cients of two Gaussian wave-packets.
These states are an example of the Gaussian cat states,46 introduced as a generali-
zation of the so-called cat states often studied in quantum optics.47,48

Our focus is not on a systematical analysis of the e®ect in the whole range of
physical parameters. Rather, our main goal is to compare back°ow and non-
classicality in some relevant settings. To this aim, we are interested in ¯nding a state
which gives a local (in the parameter space) maximum of the back°ow and to study
the states in the neighboring region of the parameter space.

Quantum back°ow e®ect and nonclassicality

1650032-7



Upon switching to natural units (i.e. } ¼ 1) and choosing a particle with unit
mass, m ¼ 1, we consider states with the following initial momentum representation

"0ðpÞ ¼ N e'ðp'p0'%Þ2$ 2 þ &ei'e'ðp'p0Þ2$ 2% &
; ð23Þ

where all the parameters are real numbers. The normalization condition ¯xes the
value of N in terms of the other parameters as follows

Nð$; %;&; 'Þ ¼ 2$2

!

! " 1
4

ð1þ &2 þ 2e'
1
2%

2$2
& cos 'Þ'1

2 : ð24Þ

The time evolved wave-function, its expression in position representation and the
time-dependent probability current in the origin can be calculated analytically, but
their expressions are somewhat cumbersome and not particularly instructive, we are
not reporting their explicit expressions here. One can see, however, that these
quantities can be more conveniently expressed in terms of the following rescaled
adimensional parameters:

~p0 ¼ $p0; ~t ¼ t

$2
; ~% ¼ $%: ð25Þ

With this choice, the current jð~tÞ can be expressed as the product of a dimensional

factor 1
$ 2 with an adimensional oscillating function of the remaining parameters

~jð~t; ~p0;~%;&; 'Þ. Upon applying a change of variables to the integral in Eq. (14),
we obtain:

F ðt1; t2Þ ¼
Z ~t2

~t1

d~t ~jð~tÞ ð26Þ

with ~tk ¼ $2tk, k ¼ 1; 2, from which it is apparent that the width $ only changes the
size of the time interval in which back°ow is observed, while the value of the back°ow

itself only depends on the adimensional parameters ~p0, ~%, & and '. This is in agree-
ment with Ref. 2, where it is emphasized that the duration of the back°ow e®ect can
be changed arbitrarily. However, this extra degree of freedom may be useful if we
want to consider states at ¯xed energy. Indeed, if we want to maximize the back°ow

at ¯xed energy E, we can minimize the °ux (26) as a function of ~p0, ~%, & and ',
and then choose the appropriate value of $ to obtain a state with a given value of
energy E.

Of course, these states do not strictly ful¯l the requirement of not containing
negative momenta. On the other hand, the total volume of the wave-function lo-
calized on the negative semi-axis in momentum representation can be arbitrarily
reduced by taking a Gaussian centered on a positive momentum su±ciently larger
than its width. Indeed, by taking in only values of ~p0 larger than three, the negative

volume is of the order of 10'9, a value corresponding to irrelevant e®ect on the
back°ow (an explicit numerical check has been performed).
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Figure 1 shows the probability P ð~tÞ and current ~jð~tÞ for a given superposition of
two Gaussian wave-packets. As it is apparent from the plot, the time intervals, where
probability decreases coincide with the negative regions of the current. According to

Eq. (14) and since the probability Pð~tÞ is known analytically, the back°ow may be
easily computed if we know the time interval which contains the most negative peak
of the current. However, this involves ¯nding the zeros of the current and this should
be performed numerically. Otherwise, the back°ow may be also computed through a

numerical integration of the negative part of the current 1
2 ðj ~jð~tÞj' ~jð~tÞÞ over an

interval containing the most negative peak. This method does not require the exact
knowledge of the zeros, though it requires to check that only the right peak is con-
tained within the integration interval.

We now proceed to analyze the behavior of the back°ow as a function of the
di®erent parameters. At ¯rst, we note that the #½ , is a decreasing function of ~p0, at
any ¯xed set of values of the other parameters, see the left panel of Fig. 2. Maximum
back°ow is therefore attained by ¯xing ~p0 to its lowest allowed value; as mentioned
above, we choose ~p0 ¼ 3 to ensure a vanishing negative momentum component. The

4 5 6 7 8 9 10
p̃0

0.001
0.002
0.003
0.004
0.005
0.006

β(p̃0)

2.5 3.0 3.5 4.0
θ0.0

0.5

1.0

1.5

2.0

β(π)- β(θ )

Fig. 2. (Color online) Back°ow # as a function of ' and ~p0, the di®erent curves represent a di®erent choice

of the couple of parameters & and ~% : & ¼ 2, ~% ¼ 11 (solid blue); & ¼ 3, ~% ¼ 15 (dashed orange); & ¼ 1:8,
~% ¼ 5 (dotted green); & ¼ 2:5, ~% ¼ 8 (dot-dashed red). Left panel: # as a function of ~p0, with ' ¼ !. Right
panel: the di®erence between # as a function of ' and # obtained for ' ¼ !, with ~p0 ¼ 3; the values on the
ordinate axis are in units of 10'4.

P( t̃ )

j( t̃ )

−0.3 −0.2 −0.1 0.1 0.2 0.3
t̃

0.2

0.4

0.6

0.8

Fig. 1. (Color online) The probability Pð~tÞ (solid blue curve) and the current jð~tÞ (dashed red curve) for a

superposition of Gaussian wave-packets with & ¼ 2, ~% ¼ 11, ~p0 ¼ 3, ' ¼ !
4 and $ ¼ 10. See Eq. (23) for

details. The value of the current jð~tÞ is multiplied by 10 in the ¯gure in order to appreciate its behavior.
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e®ect of the parameter ' is that of shifting the position of negative peaks of the
current along the time axis, as it may be seen in Fig. 3. Intuition suggests that

maximum back°ow is obtained for a current with a minimum located in ~t ¼ 0, i.e.
' ¼ !. Actually, the central peak is not always the one corresponding to the greatest
back°ow; nonetheless, in order to simplify our analysis, we focus on a parameter
range for which the central peak is the most negative one.

Unless otherwise speci¯ed, from now on, we ¯x the values ~p0 ¼ 3 and ' ¼ ! and

investigate the dependence of back°ow on the parameters & and ~%. In particular, we

explore the ¯rst-quadrant region of the ð&;~%Þ plane bounded by the lines & ¼ 1 and

& ¼ 1þ ~%=~p0 (which is obtained by imposing ~jð0Þ ) 0). For di®erent values of '
other regions may be found where back°ow is present, but no analytic expression can

be found. The back°ow #½ , as a function of & and ~% is shown in Fig. 4. We can see
that #½ , shows a maximum, from which it decreases going towards the boundaries of

π /2 π 3π /2 2π

�0.05 0.05
t̃

0.01

0.02

0.03

0.04

0.05

j( t̃ )

Fig. 3. (Color online) The probability current jð~tÞ as a function of ~t for di®erent values of ' at ¯xed values

of the other parameters (& ¼ 2, ~% ¼ 11 and ~p0 ¼ 3). The horizontal line highlights that the global mini-
mum corresponds to the central negative peak.

Fig. 4. (Color online) The back°ow # computed numerically as a function of parameters & and ~% in the

range & 2 ½1:5; 3,, ~% 2 ½5; 25,.

F. Albarelli, T. Guaita & M. G. A. Paris

1650032-10



the region. The maximum is obtained for & ’ 1:9, ~% ’ 11, corresponding to
#½ , ’ 0:0063 (a value slightly larger than the one found in Ref. 6). The region
closer to the value & ¼ 1 is not shown in the plot as the back°ow is not given by the
central peak.

3.2. Quantum back°ow and Wigner nonclassicality for Gaussian
superpositions

The Wigner function of the superposition state in Eq. (23) is given by

W0ð ~x; ~pÞ ¼
1

!ð1þ &2 þ 2&e'
~% 2
2 cos 'Þ

- e' ~x 2=2

&2e'2ð~p'~p0Þ 2 þ e'2ð~p'~p0'~%Þ 2 þ 2& cosð ~x~% ' 'Þe'2ð~p'~p0'
~%
2Þ 2

h i
;

ð27Þ

where, consistently with Eq. (25), we used the rescaled variables

~x ¼ x

$
; ~p ¼ $p: ð28Þ

Note that the rescaling is not altering the volume element and thatW0ð ~x; ~pÞ does not
explicitly depend on $. This means that also the Wigner negativity #, as it happens
for the back°ow #, does not depend on $.

The Wigner function in Eq. (27) is characterized by two Gaussian peaks corre-
sponding to the two momenta p0 and p0 þ % and by an interference region located
halfway between the two peaks. In Fig. 5, we show a contour plot of the Wigner
function, which provides an intuitive explanation to the behavior of the back°ow. On
the one hand, the interference e®ects (and thus the negative regions of the Wigner
function) are more pronounced if the amplitude of the two Gaussians is the same

−0.2

−0.1

0

0.1

0.2

Fig. 5. (Color online) Density plot of the Wigner function of the superposition of Gaussian states with the
maximum back°ow, the integration region " is the shadowed region between the two dashed lines cor-
responding to p ¼ ' m

t1
x and p ¼ ' m

t2
x.
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(i.e. for & ¼ 1). However, this is not leading to maximum back°ow, since the
Gaussian peaked at p0 þ % prevails in the integration region. These considerations
also suggest that no monotonic relation between Wigner nonclassicality and quan-
tum back°ow may be found. As a matter of fact, since the positive parts of the
Wigner function in the region " may compensate for the negative ones, it is possible
to ¯nd states not showing back°ow despite having negative Wigner function.
Moreover, we may also ¯nd pairs of states with increasing back°ow but decreasing
negativity. This nonmonotonic behavior of the back°ow is illustrated in Fig. 6, where
parametric plots of the back°ow as a function of the Wigner negativity are shown for

varying & or ~%.
Finally, we point out that quantum back°ow exhibits sudden death for some

values of the parameters. As for example, if & is bigger than the threshold value

& ¼ 1þ ~%=~p0 there is no back°ow. Analog threshold values for ~% at ¯xed & may be
found. On the contrary, Wigner negativity due to the interference fringes dies only
asymptotically, i.e. when a single Gaussian state is recovered. This remarkable dif-
ference may be observed in both panels of Fig. 6, where we have regions with no
back°ow but nonzero Wigner negativity. In the next Sec. 3.3, we present the con-
struction of a current-like quantity, for which the corresponding °ux monotonically
increases with the Wigner negativity. However, this quantity does depend on the
state and therefore, it cannot strictly represent an observable.

3.3. A rede¯ned current

Having concluded in Sec. 3 that back°ow is not monotonically linked to the negative
Wigner function volumes, one may try to understand if these negative volumes can
actually be linked to some current-like quantity. To this aim, one would have to
restrict integral (11) from the whole x ¼ 0 axis, to the sole parts where it is crossed by
the negative volumes in their phase space motion. This restriction gives the following
expression:
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'(α)0

1
2
3
4
5
6

β(α)

(a)

0.15 0.2 0.25
'(δ̃ )0
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3
4
5
6

β(δ̃ )

(b)

Fig. 6. (Color online) (a) Parametric plot of the back°ow # as a function of the nonclassicality # for
~% ¼ 11 and varying & 2 ½1:5; 10,. (b) parametric plot of the back°ow # as a function of the nonclassicality#

for & ¼ 2 and varying ~% 2 ½1; 20,.
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A closer examination of this expression induces us to consider a new quantity de¯ned
as

(p1;p2ðtÞ :¼
Z þ1

'1
dx %p1;p2ðxÞ Jðx; tÞ; ð30Þ

where

Jðx; tÞ ¼ i

2m
 ðx; tÞ @

@x
 %ðx; tÞ '  %ðx; tÞ @

@x
 ðx; tÞ

! "

and

%p1;p2ðxÞ :¼
1

!x
sinðp1xÞ '

1

!x
sinðp2xÞ: ð31Þ

This quantity (de¯ned by parameters p1 and p2 which have the dimensions of mo-
mentum) has a similar structure to (29), but takes real values for all times t. Ac-
cordingly, we expect its negative °ux over time to behave in a similar way to the
negative volume of the Wigner function.

In order to give a physical interpretation of this newly de¯ned (p1;p2 , it is inter-

esting to observe that it is the di®erence of two objects, each one expressed as the
convolution of the ordinary current Jðx; tÞ with a smooth approximation of the Dirac
delta. Such objects can be thought to represent a probability current arising from a
realistic position measurement. These measurements have a ¯nite spatial resolution

given by the widths 1
p1
and 1

p2
of the approximations of the delta used. This leads us to

interpret (p1;p2 as the di®erence between two realistic current measurements with

di®erent spatial resolutions given by the inverses of p1 and p2.
Of course, the construction of these currents depends strongly on the values of

parameters p1 and p2, which have to be chosen in such a way as to ensure that the
negative volume of the state considered passes through the interval ðp1; p2Þ in its
motion through phase space. As this choice is state dependent, the °ux of (p1;p2
cannot be considered a true observable. However, for the superpositions of Gaussians

previously used, with a ¯xed value of ~% and for consequently chosen values of p1 and
p2, the negative °ux of (p1;p2ðtÞ shows a dependence on parameter & which is re-

markably similar to that of the total negative volume of the Wigner function #. This
is well illustrated by Fig. 7, which shows the parametric dependence of the negative
°ux of (p1;p2 on nonclassicality # for varying values of the parameter & and at ¯xed

values of ~%. Equivalent results are found for di®erent values of ~%.
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4. Back°ow and Phase Space Smoothing

We now study how robust the back°ow e®ect is against the addition of thermal noise,
corresponding to Gaussian smoothing in the phase space. We start by recalling some
notions about s-ordered quasiprobabilities, in order to emphasize the similarity of our
analysis to the notion of nonclassical depth.

4.1. s-ordered quasiprobability distributions

The Wigner function can be generalized to the family of s-ordered quasiprobability
distributions,17,49 which are routinely used in quantum statistical optics to obtain
expectation values by averaging over the phase space. A quasiprobability distribu-
tion Wðx; p; sÞ is labeled by the index '1 ) s ) 1, which re°ects a particular choice
of the ordering of the canonical operators in the expectation value to be computed.
For the speci¯c values s ¼ 1; 0;'1, we have the Glauber P function (normal order-
ing), the Wigner function (symmetrical ordering) and the Husimi Q function (anti-
normal ordering), respectively. For s < s 0, two quasiprobabilities of di®erent
ordering are connected through a Gaussian convolution

Wðx; p; sÞ ¼ Wðx; p; s 0ÞHGðx; p; s 0 ' sÞ

¼
Z

dx 0dp 0Wðx 0; p 0; s 0ÞGðx' x 0; p' p 0; s 0 ' sÞ; ð32Þ

where H denotes convolution and the function G is a Gaussian de¯ned as

Gðx; p;)Þ ¼ 1

!)
exp ' x2 þ p2

)

) *
: ð33Þ

From Eq. (32), one sees that going from s ¼ 1 to s ¼ '1 the distributions gradually
become well-behaved and positive de¯nite functions, thanks to the Gaussian
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Fig. 7. (Color online) Parametric plot of the negative °ow of (p1 ;p2 versus the nonclassicality# for ~% ¼ 9:5

(dot-dashed green), ~% ¼ 10 (solid blue) and ~% ¼ 10:5 (dashed orange). The parameter & varies in the range
& 2 ½0:01; 5,, while the two de¯ning parameters of the new current are kept ¯xed at the values p1 ¼ 7 and
p2 ¼ 9.
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smoothing. This is the idea leading to the de¯nition of the nonclassical depth,18 which
is a widely used method to quantify the amount of nonclassicality of a quantum state.
Basically, this quantity is the value of s closer to s ¼ 1 corresponding to a positive
and nonsingular distribution for a given state. In other words, the nonclassical depth
represents the minimum amount of convolution needed in order to obtain a well-
de¯ned probability distribution from the P function of a given state. For any given
state, all the negativities in Wðx; p; sÞ must vanish for s ¼ '1, as the Q function is
always non-negative by de¯nition. In particular, for a pure state which is not
Gaussian, we have that for all the values '1 < s ) 0 the quasiprobability distribu-
tions assume negative values; i.e. for such states the Q function is the only distri-
bution which is not negative.50 This means that all non-Gaussian pure states (as the
superpositions of Gaussian states we have considered so far) saturate the nonclassical
depth, being all maximally and equally nonclassical according to this criterion.

4.2. s-dependent current

Here, in order to assess the robustness of back°ow against noise, we are going to
consider a generalized de¯nition of the probability current based on the s-ordered
quasiprobability distributions. Note that, in principle, only the Wigner function may
be used to compute the current via Eq. (11) since the Wigner function is the only
s-ordered quasiprobability distribution that has position and momentum probability
distributions as marginals.a On the other hand, introducing generalized s-dependent
currents is meaningful if we note that the convolution of a Wigner function with a
Gaussian represents the Wigner function of the quantum state after the interaction
with a thermal environment. Let us consider the master equation of a system
interacting with a bosonic bath, expressed in terms of the canonical operators53

*
: ¼ ' i+

2
ð2$n þ 1Þð½x; fx; *g, ' ½p; fx; *g,Þ

' +

2
ð2$n þ 1Þð½x; ½x; *,, þ ½ p; ½p; *,,Þ; ð34Þ

where + is a (small) damping coe±cient and $n is the average photon number of the
thermal environment. In terms of the Wigner function, the solution of the above
equation may be written as

e'2,Wtðe',x; e',pÞ ¼ W0ðx; pÞHGðx; p;'s, Þ; ð35Þ

where , ¼ +t and s, ¼ '2ð2$n þ 1Þðe2, ' 1Þ, see e.g. Ref. 49 for details. Wðx; p; sÞ is
thus the Wigner function of the state obtained from the initial one after the inter-
action with a noisy environment. Note that the rescaling due to dissipation, i.e. the
exponentials of , appearing on the left-hand-side of (35), plays no role in determining
the negativity of the Wigner function and the back°ow.

aOther generalized distributions in phase space that satisfy this property exist,51,52 but they are not
relevant for the topic discussed here.
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If the initial state has the Wigner function W0ðx; pÞ, the state after the noisy
interaction has a Wigner function given by

W0ðx; p; sÞ ¼ W0ðx; pÞHGðx; p;'sÞ; ð36Þ

where s will in general be a function of the temperature, of the damping coe±cient
and of the interaction time. At this point, we consider W0ðx; p; sÞ as the initial
Wigner function of a mixed state evolving according to the free particle Hamiltonian,
and we get an s-dependent and time-dependent Wigner function

Wtðx; p; sÞ ¼ W0 x' p

m
t; p; s

' (
ð37Þ

which can in turn be used to compute the s-dependent current

jðt; sÞ ¼
Z þ1

'1
dp

p

m
Wtð0; p; sÞ: ð38Þ

We only consider '1 ) s ) 0, in order to have a smoothing of the initial Wigner
function; in terms of ordering this means going from the Wigner towards the Q
function.

One may wonder what happens if we exchange the order of the evolution in time
and the convolution. This means convolving the time-dependent Wigner function
Wtðx; pÞ, instead of convolving the initial one and then applying the free evolution.
This way of proceeding is conceptually di®erent and indeed yields slightly di®erent
numerical results, but the qualitative behavior is unchanged. Before proceeding, we
also note that our scheme is di®erent from considering the back°ow of an open
quantum system, where the expression for the probability current may be di®erent.54

4.3. s-dependent back°ow and negative current depth

Having de¯ned an s-dependent current, we can straightforwardly apply the de¯ni-
tion of back°ow (14) and obtain an s-dependent back°ow. As we can see in Fig. 8, the
back°ow vanishes for a certain s > '1, i.e. it exhibits sudden death, in contrast with
the negativity of the Wigner function. Having more back°ow initially (for s ¼ 0)
usually means that the back°ow of the state survives longer (i.e. it disappears for a
value of s closer to '1). However, as it may be seen from Fig. 8, this is not necessarily
the case for any choice of the parameters.

In order to better analyze this behavior we introduce, in analogy with the non-
classical depth, the negative current depth, which is de¯ned as follows. Upon denoting
by C the subinterval of s 2 ½'1; 0, leading to a positive s-dependent current in (38),
then the negative current depth sm is de¯ned as

sm ( inf
s2C

ð'sÞ ð39Þ
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which is a positive quantity bounded between 0 and 1. This quantity provides an
alternative quanti¯cation of back°ow; instead of quantifying how much probability is
°owing backwards, we quantify the amount of Gaussian convolution, i.e. noise,
needed to destroy the back°ow e®ect of a given initial state.

Figure 9 shows that the negative current depth and the back°ow of a quantum
state have similar behavior, but regions where they are not monotonic exist, as it
can be seen in the right panel. Upon looking at the values of sm in Fig. 9, and since
for all these states the negativities of the Wigner function completely disappear only
for s ¼ '1, we conclude that the back°ow is a very fragile form of nonclassicality.
Note that other criteria for nonclassicality exist and their behavior for super-
positions of Gaussian states in the presence of a thermal environment has been
studied.55 Results have shown that almost all these indicators vanish for a ¯nite
Gaussian smoothing, except the visibility of the interference fringes which vanish
only asymptotically.
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Fig. 9. (Color online) The negative current depth (solid blue) and the back°ow (dashed orange). (a) The

quantities are shown as a function of & for ~% ¼ 11. (b) As a function of ~% for & ¼ 2.
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Fig. 8. (Color online) Plots of the s-dependent back°ow as a function of the Gaussian smoothing pa-

rameter s. From top to bottom in the region s ! 0, we have the states with & ¼ 2 and ~% ¼ 7 (solid blue),

& ¼ 2 and ~% ¼ 6 (dashed orange), & ¼ 3 and ~% ¼ 10 (dot-dashed green).
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5. Conclusions

The quantum back°ow e®ect is a counterintuitive behavior observed in the proba-
bility current of a free particle, which may be negative even for states with vanishing
negative momentum component. Quantum back°ow may be described in the phase
space, showing that its occurrence is connected to the classical phase space dynamics
of a nonclassical initial state. In the case of the free particle, such °ow in phase space
is directly connected to the probability of observing the particle in a certain region,
thus it is relevant in physical problems such as determining the time of arrival. The
reason for this counterintuitive behavior lies in the fact that a state with only positive
momenta does not need to have a positive probability current. Since the back°ow
e®ect, despite being dynamical, is completely due to the nonclassical character of the
initial state, we investigated how this kind of nonclassicality compares to the nega-
tivity of the Wigner function. In order to carry out this investigation, we have focused
attention to the paradigmatic example of superpositions of two Gaussian states.

We have found that the two notions of nonclassicality are inequivalent and the
respective quanti¯ers do not show a monotonic behavior. We have then further
characterized the back°ow e®ect, by studying its resilience to the operation of
Gaussian smoothing in phase space, which describes the interaction of the initial
state with a thermal environment.

Overall, our results suggest that back°ow is connected to a more restrictive notion
of nonclassicality, the negativity of the Wigner function being just a necessary con-
dition for its occurrence. Back°ow has a di®erent behavior in terms of the de¯ning
parameters of the state, in particular, it vanishes for some threshold values. More-
over, the negativity of the probability current is a feature which is more easily
destroyed by a thermal environment than the negativity of theWigner function itself,
con¯rming the idea that back°ow is a nonclassical e®ect of a higher order and thus
more fragile.
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