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The quantum Cramér-Rao theorem states that the quantum Fisher information bounds the best achievable
precision in the estimation of a quantum parameter ξ . This is true, however, under the assumption that the
measurement employed to extract information on ξ is regular, i.e., neither its sample space nor its positive-
operator valued elements depend on the (true) value of the parameter. A better performance may be achieved
by relaxing this assumption. In the case of a general Hamiltonian parameter, i.e., when the parameter enters the
system’s Hamiltonian in a nonlinear way (making the energy eigenstates and eigenvalues ξ dependent), a family
of nonregular measurements, referred to as controlled energy measurements, is naturally available. We perform
an analytic optimization of their performance, which enables us to compare the optimal controlled energy
measurement with the optimal Braunstein-Caves measurement based on the symmetric logarithmic derivative.
As the former may outperform the latter, the ultimate quantum bounds for general Hamiltonian parameters are
different than those for phase (shift) parameters. We also discuss in detail a realistic implementation of controlled
energy measurements based on the quantum phase estimation algorithm and work out a variety of examples to
illustrate our results.
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I. INTRODUCTION

Quantum parameter estimation studies the statistical
inference of an unknown parameter from the empirical data
generated by a quantum system. The possible states of the
system are described by a statistical model, i.e., a family of
density operators ρξ , parametrized by ξ . An estimate of ξ is
obtained by performing a measurement on the system and then
processing the outcomes via a point estimator ξ̂ [1–4]. The
overall task of parameter estimation is to optimize over the
choice of both the measurement and the estimator, in order to
minimize, on average, a given loss function.

The parameter to be estimated usually corresponds to a
physical quantity which is not directly measurable. Quantum
estimation is therefore particularly relevant to the field of
quantum technologies since knowledge of inaccessible pa-
rameters is often required for quantum control. Following
the pioneering works by Helstrom [5] and Holevo [6], it
was discovered that estimation strategies exploiting quantum
effects (such as squeezing [7] and entanglement [8–10]) can
outperform any classical strategy using the same resources
(at least under ideal conditions [11–13]). Quantum parameter
estimation has thus become the theoretical foundation of
quantum metrology [14–17], besides being linked to branches
of pure mathematics, from statistics to information geometry
[18–20].

An important class of estimation problems is concerned
with parameters characterizing the Hamiltonian Hξ of a
closed quantum system. These problems are referred to as
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Hamiltonian estimation problems and the corresponding pa-
rameters ξ as Hamiltonian parameters. One further distin-
guishes between phase (or shift) parameters and general pa-
rameters. In the former case, the parameter ξ appears as an
overall multiplicative constant, i.e., Hξ = ξG, with G being
the generator of the system’s dynamics. The phase estimation
problem is well studied, both in the decoherence-free and
noisy scenarios, with applications to optical interferometry,
imaging, and atomic spectroscopy [21–31]. The case of a gen-
eral Hamiltonian parameter, i.e., when both the eigenvalues
and the eigenvectors of Hξ depend on ξ , has been investigated
only more recently [32–35].

In a Hamiltonian estimation problem, the system is ini-
tialized in the state ρ0, the parameter is encoded through the
unitary channel generated by Hξ , and, finally, a measurement
M is implemented. The outcomes of N -independent repeti-
tions of the protocol are fed into an estimator ξ̂ , yielding an
estimate of the parameter. If the estimator is unbiased and the
loss function is the estimator’s variance, then the performance
of any estimation strategy is limited by the Cramér-Rao
bound

Var(ξ̂ ) ! [NFξ (ρ0, M )]−1,

where Fξ denotes the Fisher information (FI) [36–38]. The
maximum of the FI over all possible initial preparations ρ0
and measurements M is, by definition, the channel quantum
Fisher information (CQFI) [39]. The corresponding quantum
Cramér-Rao bound,

Var(ξ̂ ) !
[
NF (Q,C)

ξ

]−1
,

may be saturated by preparing the system in the optimal initial
state, implementing the optimal measurement and processing
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the outcomes via an efficient estimator [40]. The quantum
Cramér-Rao is usually regarded as the ultimate quantum limit
to precision, at least in the single-parameter scenario [41], to
which we will restrict our attention.

As argued in Ref. [34], in the estimation of a general
Hamiltonian parameter, an enhanced precision limit is achiev-
able. In a nutshell, the argument is as follows. The CQFI is
the maximum FI, optimized over all initial preparations ρ0
and over all regular measurements, i.e., measurements that are
independent of the (unknown) true value of the parameter. The
requirement that the measurement is parameter independent
is a natural assumption, analogous to the condition, for a
classical statistical model pξ , that the support supp(pξ ) is
independent of ξ , which is a fundamental prerequisite for the
Cramér-Rao bound to hold. Nonetheless, nonregular classical
models have also been considered in the literature [42–46]. In
such cases, an estimator performing better than predicted by
the Cramér-Rao bound may exist [47]. Likewise, a quantum
estimation strategy is referred to as regular if both the sam-
ple space X of possible outcomes and the positive-operator
valued measure (POVM) elements {!x}x∈X are parameter
independent. In the context of a general Hamiltonian esti-
mation problem, an energy measurement (i.e., a projective
measurement onto the eigenstates of the Hamiltonian Hξ ) is
nonregular. In fact, both the outcomes of the measurement (the
eigenvalues of Hξ ) and the detection operators (the projectors
over its eigenstates) depend on ξ . The assessment of the
best achievable precision becomes highly nontrivial in this
case. In particular, the ultimate bound is no longer given by
the CQFI.

Here, we further advance the analysis carried out in
Ref. [34], specializing it to a class of nonregular measure-
ments (referred to as controlled energy measurements) that
arise in the estimation of a general Hamiltonian parameter.
Having circumscribed the set of nonregular strategies under
consideration, one is confronted with the task of maximizing
the precision over such a set. This is analogous to the intro-
duction of the quantum Fisher information by a process of
optimization over the set of regular measurements. One of the
main results of the present manuscript is an analytic bound
(which can be saturated under suitable conditions) to the best
precision achievable via controlled energy measurements. We
also discuss their experimental feasibility and propose a real-
istic implementation based on the quantum phase estimation
algorithm. Finally, a collection of examples is employed to
illustrate our results and emphasize that an enhancement (with
respect to regular estimation strategies) can often be realized
in practice.

The rest of the manuscript is organized as follows. Sec-
tion II contains a basic review of quantum parameter estima-
tion theory. In Sec. III, we introduce the family of controlled
energy measurements, together with the information quantity
Gξ , which quantifies the maximum extractable information in
our setting. In Sec. IV, an upper bound to Gξ is derived, which
is shown in Sec. V to be tight for a large class of Hamiltonian
problems. In Sec. VI, we illustrate the relevance of our results
to quantum metrology applications, showing how to perform a
controlled energy measurement on a generic physical system.
Finally, in Sec. VII, a collection of examples is worked

out. Section VIII closes the paper with some concluding
remarks.

II. PRELIMINARIES

We restrict ourselves to the case of a finite-dimensional
quantum system with Hilbert space H = Cd . The generator
of the system’s noiseless evolution is its Hamiltonian Hξ ∈
Herd (C), where Herd (C) is the set of d × d Hermitian matri-
ces. The Hamiltonian Hξ depends generically on a parameter
ξ , taking values in a parameter space " ⊂ R. Given a matrix
M ∈ Herd (C), the following standard notation is employed:
M has d real eigenvalues spec(M ) = {λ1(M ), . . . , λd (M )},
ordered decreasingly, i.e., λ1(M ) ! · · · ! λd (M ). The spec-
tral gap σ (M ) is defined as the difference between its extremal
eigenvalues, i.e., σ (M ) := λd (M ) − λ1(M ).

The computational basis of H is denoted by |j ⟩, with
j ∈ {0, . . . , d − 1}, while the basis made up of the eigen-
states of the Hamiltonian is denoted by |Ej, ξ ⟩; the subscript
emphasizes that the energy eigenstates are ξ dependent. By
definition, Hξ |Ej, ξ ⟩ = Ej, ξ |Ej, ξ ⟩, where Ej, ξ := λd−j (H )
are the eigenvalues of Hξ . For simplicity, the spectrum of
Hξ is assumed to be nondegenerate; however, everything
that follows holds more generally also in the presence of
degeneracies, with minor adaptations. For future convenience,
we denote the projectors onto the computational basis (the
energy eigenbasis) by Pj := |j ⟩ ⟨j | (PEj, ξ

:= |Ej, ξ ⟩ ⟨Ej, ξ |).
The two bases are mapped one into the other by a suit-
able unitary similarity transformation Sξ , i.e., |j ⟩ = Sξ |Ej, ξ ⟩.
Explicitly, the matrix elements of Sξ can be computed as
⟨j |Sξ |k⟩ = ⟨Ej, ξ |k⟩. Notice that Sξ reduces Hξ to diago-
nal form, i.e., SξHξS

†
ξ = diag(E0, ξ , . . . , Ed−1, ξ ), and that

the matrix Sξ is ξ dependent for a general Hamiltonian
parameter.

A typical quantum estimation strategy consists of the fol-
lowing steps: the system is initialized in the state ρ0; then,
the unitary map generated by Hξ encodes the parameter
into the model ρξ := Utρ0U

†
t , with Ut := exp(−itHξ ) and

t the interrogation time; finally, a measurement M is per-
formed. A measurement is defined in terms of its positive-
operator valued measure (POVM) {!x}x∈X . Each !x is a pos-
itive Hermitian operator, satisfying the completeness property∑

x∈X !x = Id , where Id is the d × d identity matrix and the
sample space X ⊂ R is assumed to be a finite set. If both the
sample space X and the POVM elements !x do not depend
on ξ , then the estimation strategy as well as the measurement
M are called regular; the family of all possible regular
measurements is denoted by R. Any given outcome x ∈ X
is obtained with corresponding probability px, ξ = tr[ρξ!x].
Over N repetitions of the protocol, one obtains a sample
x ∈ X ×N , which is processed via an estimator ξ̂ : X ×N → ξ ,
yielding an estimate ξ̂ (x) of the parameter.

Consider the set of all possible estimation strategies, with
ρ0 and M fixed, M ∈ R, and ξ̂ an unbiased estimator, i.e.,

E(ξ̂ ) :=
∑

x∈X ×N

px, ξ ξ̂ (x) = ξ, ∀ξ ∈ ", (1)

where px, ξ is the joint probability distribution of the N

outcomes. Then, if the variance Var(ξ̂ ) is taken as the loss
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function, the Cramér-Rao theorem [36–38] states that the
best performing strategy, optimized over the choice of the
estimator, saturates the inequality

Var(ξ̂ ) ! 1
NFξ (ρ0, M )

. (2)

The FI Fξ (ρ0, M ) is defined as follows:

Fξ (ρ0, M ) :=
∑

x∈X

px, ξ (∂ξ ln px, ξ )2

=
∑

x∈X

tr[ρξ!x] (∂ξ ln tr[ρξ!x])2.
(3)

We refer the interested reader to [1–3] for precise conditions
under which (2) holds and can be achieved.

The next step is to optimize over the choice of the measure-
ment M . One introduces the QFI F (Q)

ξ (ρ0) as

F (Q)
ξ (ρ0) = max

M∈R
Fξ (ρ0, M ). (4)

Braunstein and Caves [39,48] have proved that the QFI
coincides with the least monotone quantum Riemannian met-
ric in the Petz classification [49], which is the one based on
the symmetric logarithmic derivative (SLD) [50], so that

F (Q)
ξ (ρ0) = tr

[
ρξ L2

ρ, ξ

]
, ∂ξρξ = 1

2 {ρξ , Lρ, ξ }, (5)

where Lρ, ξ is the SLD of ρξ . Therefore, the best performing
strategy, optimized over the set of all (regular) measurements
and unbiased estimators, for fixed initial preparation, saturates
the inequality

Var(ξ̂ ) ! 1

NF (Q)
ξ (ρ0)

. (6)

Implementing the optimal Braunstein-Caves strategy requires
performing a projective measurement over the eigenstates
of Lρ, ξ and postprocessing the outcomes via an efficient
estimator [51]. For pure models, i.e., ρ0 = |ψ0⟩ ⟨ψ0| and thus
ρξ = |ψξ ⟩ ⟨ψξ | with |ψξ ⟩ = Ut |ψ0⟩, the QFI can be computed
explicitly [17] as

F (Q)
ξ (ρ0) = 4 Var|ψξ ⟩ gU, ξ

= 4
[
⟨ψξ |g2

U, ξ |ψξ ⟩ − ⟨ψξ |gU, ξ |ψξ ⟩2 ]
, (7)

where

gU, ξ := i∂ξUtU
†
t (8)

is the local generator of Ut with respect to the parameter ξ .
The final step is to optimize over the initial preparation ρ0.

The channel quantum Fisher information (CQFI) is defined as

F (Q,C)
ξ = max

ρ0
F (Q)

ξ (ρ0). (9)

The QFI is a convex functional of the initial preparation, so
that the maximum of Eq. (9) can be looked for on the set of
pure states ρ0 = |ψ0⟩ ⟨ψ0|. Since

F (Q)
ξ (|ψ0⟩ ⟨ψ0|) = 4 Var|ψ0⟩ U

†
t gU, ξ Ut, (10)

and, moreover, by Popoviciu’s inequality [52], the variance of
a random variable X, with maximum value xM and minimum

value xm, is upper bounded by (xM − xm)2/4, it follows that

F (Q,C)
ξ " [λ1(U †

t gU, ξ Ut ) − λd (U †
t gU, ξ Ut )]2

= [λ1(gU, ξ ) − λd (gU, ξ )]2. (11)

Since a balanced superposition of the extremal eigenvectors
of gU, ξ achieves the right-hand side (RHS) of the previous
inequality, the inequality is tight and thus the CQFI is related
to the spectral gap of the local generator gU, ξ via

F (Q,C)
ξ = (σ [gU, ξ ])2. (12)

Equation (12) is the maximum information which can be
extracted on ξ via any regular quantum estimation strategy.

III. NONREGULAR ESTIMATION
OF HAMILTONIAN PARAMETERS

A nonregular measurement depends intrinsically on the
true value of the parameter, either via its sample space Xξ or
its POVM elements !x, ξ (or both). The latter circumstance is
specific to quantum parameter estimation, whereas the former
has a classical analog when the support of the statistical model
pξ is parameter dependent. In such cases, it often happens
that there exists a locally unbiased estimator with vanishing
variance [47], so that the achievable precision is formally
unbounded.

As argued before, in the estimation of a general Hamilto-
nian parameter, a projective measurement of Hξ is nonregular
since either the eigenvalues or the eigenstates of Hξ , or both,
depend on ξ . The first scenario would lead to a parameter-
dependent sample space, the same situation one encounters
in nonregular classical estimation. Assessing the performance
of different strategies becomes a difficult matter; moreover,
there is often no nontrivial lower bound to the variance of an
unbiased estimator. In the rest of the manuscript, we will thus
focus exclusively on the second case. That is, we are going
to assume that either only the eigenvectors of Hξ depend on
ξ or that a data postprocessing takes place after the energy
measurement, which maps the original, parameter-dependent
sample space to a fixed, parameter-independent one. An en-
ergy measurement is thus modified by introducing a 1-1 map
π : Xξ → Y , with Xξ consisting of the eigenvalues of Hξ , so
that the sample space of the measurement is π (Xξ ), while its
POVM elements are unchanged. The estimation strategy is
still nonregular, but the possibility of pathological estimators
with vanishing variance is excluded and the FI is again the
relevant performance metric.

We now introduce a family of nonregular measurements
MV, ξ , which is denoted by E; each measurement in E is
labeled by an arbitrary unitary control V . By definition, the
measurement MV, ξ has POVM elements V †PEj, ξ

V . It will be
called a controlled energy measurement since its implemen-
tation requires one to apply a unitary, parameter-independent
control V to the system and thereafter measure its energy.

In the absence of controls, a bare energy measurement
(V = Id ) obeys the statistics,

pEj, ξ
= tr[ρξPEj, ξ

] = ⟨Ej, ξ |ρ0|Ej, ξ ⟩ , (13)

which does not depend on the interrogation time t . As a
consequence, the corresponding FI Fξ (ρ0, MId , ξ ) is also
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FIG. 1. Comparison between an estimation strategy based on a
controlled energy measurement (upper scheme) and one based on
a regular measurement (lower scheme). In the first case, the opti-
mal performance is quantified by Gξ , which is optimized over the
preparation and control steps; in the second, it is quantified by the
CQFI F (Q,C )

ξ , which instead is optimized over all initial preparations
and (regular) measurements. The different stages of the schemes are
denoted as follows: I. → preparation, II. → encoding, III. → control,
IV. → energy measurement, and V. → regular measurement.

independent of t . In contrast, the QFI F (Q, C)
ξ (ρ0) grows

generically like t2 [33]. If, however, a control is applied
before the measurement, then the FI Fξ (ρ0, MV, ξ ) is again
allowed to grow quadratically with t . This argument shows
the metrological usefulness of controls in conjunction with an
energy measurement.

Finally, in analogy with the CQFI, we define the following
information quantity:

Gξ = max
ρ0

max
MV, ξ ∈E

Fξ (ρ0, MV, ξ ). (14)

It represents the maximum extractable information on a gen-
eral Hamiltonian parameter via controlled energy measure-
ments, optimized over the set of initial preparations ρ0 and
unitary controls.

We summarize the preceding discussion via the following
two definitions (see also Fig. 1):

Definition 1. Given a quantum system with Hamiltonian
Hξ and unknown parameter ξ ∈ ", a controlled energy mea-
surement, denoted by MV, ξ , is defined through its POVM
elements V †PEj, ξ

V , where V is a unitary control and PEj, ξ

is the projector over the j th energy eigenstate.
Definition 2. The information quantity Gξ is the maximum

Fisher information Fξ (ρ0, MV, ξ ), optimized over both the set
of initial preparations ρ0 and controlled energy measurements
MV, ξ .

Let us remark that the performance of an estimation
strategy making use of a controlled energy measurement is

not necessarily bounded by the CQFI of Eq. (12), i.e., Gξ

may exceed F (Q, C)
ξ . However, computing Gξ directly from

its definition (14) is nontrivial. In the following, a closed-
form expression for Gξ [similar to Eq. (12) for F (Q,C)

ξ ] is
derived under the hypothesis that the Hamiltonian Hξ satisfies
a rather general mathematical condition. For Hamiltonians not
satisfying such condition, it only provides an upper bound to
Gξ , which is not necessarily tight. With the help of this result,
we will be able to compare regular estimation strategies with
nonregular ones based on controlled energy measurements.

IV. BOUNDING Gξ

Consider a nonregular estimation strategy based on the
controlled energy measurement MV, ξ . The probability distri-
bution of the measurement outcomes is given by

pπ (Ej, ξ ), ξ = tr[ρξ V †PEj, ξ
V ]

= tr[(SξV Ut ) ρ0 (SξV Ut )†Pj ]

= tr[UV ρ0 U†
V Pj ], (15)

where all dependence on ξ has been collected in the uni-
tary matrix UV := SξV Ut . We define the statistical model
ρV, ξ := UV ρ0 U†

V as the model which one would obtain if the
parameter were encoded on the initial preparation ρ0 through
UV , instead of Ut ; it is referred to as the auxiliary statis-
tical model associated to the physical model ρξ . It follows
from Eq. (15) that the FI Fξ (ρ0, MV, ξ ), for the nonregular
estimation strategy we are considering, is formally equal
to the FI corresponding to a projective measurement in the
computational basis on the auxiliary model, i.e.,

Fξ (ρ0, MV, ξ ) =
d−1∑

j=0

(∂ξ tr[ρV, ξPj ])2

tr[ρV, ξPj ]
. (16)

Following Braunstein and Caves [39], the Fisher information
(16) can be majorized as follows. After expressing the deriva-
tive at the numerator as ∂ξρV, ξ = {ρV, ξ , LρV , ξ }/2, where
LρV , ξ is the SLD of the auxiliary model, one obtains

Fξ (ρ0, MV, ξ ) = 1
2

d−1∑

j=0

(tr[{ρV, ξ , LρV , ξ } Pj ])2

tr[ρV, ξ Pj ]

=
d−1∑

j=0

Re2(tr[ρV, ξ LρV , ξ Pj ])
tr[ρV, ξ Pj ]

"
d−1∑

j=0

| tr[ρV, ξ LρV , ξ Pj ]|2

tr[ρV, ξ Pj ]
,

(17)

where use was made of the triangular inequality Rez "
|z|, ∀z ∈ C.

Next, by the Cauchy-Schwarz inequality, the numerator
can be bounded as follows:

| tr[ρV, ξ LρV , ξPj ]|2 " tr[LρV , ξ ρV, ξ LρV , ξPj ] tr[ρV, ξ Pj ].

(18)
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Therefore,

Fξ (ρ0, MV, ξ ) "
d−1∑

j=0

tr[LρV , ξ ρV, ξ LρV , ξPj ]

= tr[ρV, ξ (LρV , ξ )2]. (19)

Taking the maximum over the initial preparation,

max
ρ0

Fξ (ρ0, MV, ξ ) " max
ρ0

tr[ρV, ξ (LρV , ξ )2]. (20)

By convexity, the maximum of the expression on the RHS is
achieved for a pure initial preparation, i.e., ρ0 = |ψ0⟩ ⟨ψ0|. On
the other hand, for pure initial preparation, one can rewrite
it as

tr[ρV, ξ (LρV , ξ )2]ρ0=|ψ0⟩⟨ψ0| = 4Var|ψ0⟩(U
†
V gUV , ξ UV ), (21)

where

gUV , ξ = gS, ξ + (SξV ) gU, ξ (SξV )† (22)

is the local generator of the unitary encoding UV for the
auxiliary model. By Popoviciu’s inequality, it follows that

max
ρ0

Fξ (ρ0, MV, ξ ) " {σ [gS, ξ + (SξV ) gU, ξ (SξV )†]}2. (23)

Finally, one maximizes over the choice of the unitary control
V , i.e.,

Gξ " max
V ∈U (d )

{σ [gS, ξ + (SξV ) gU, ξ (SξV )†]}2. (24)

The maximization on the RHS can be carried out explicitly
with the help of the following lemma:

Lemma 1. Given two Hermitian matrices M1, M2 ∈
Herd (C), the maximum spectral gap of the sum of any
other two Hermitian matrices M̃1, M̃2 with the same spectra
[i.e., spec(Mi ) = spec(M̃i ), i = 1, 2] is equal to the sum of
the spectral gaps σ (M1) + σ (M2):

max
M̃1, M̃2

σ (M̃1 + M̃2) = σ (M1) + σ (M2). (25)

Proof. One may write M̃i = UiMiU
†
i for suitable unitary

matrices Ui (i = 1, 2). Since the spectral gap is invariant
under unitary transformations, it follows that

σ (U1M1U
†
1 + U2M2U

†
2 ) = σ (M1 + UM2U

†), (26)

where U := U
†
1U2. Therefore, we have to prove that

max
U∈U (d )

σ (M1 + UM2U
†) = σ (M1) + σ (M2). (27)

By definition, the left-hand side (LHS) is equal to

max
U∈U (d )

[λ1(M1 + UM2U
†) − λd (M1 + UM2U

†)]. (28)

The first term may be bounded as follows:

λ1(M1 + UM2U
†) = max

|ψ⟩
⟨ψ |M1 + UM2U

†|ψ⟩

" max
|ψ⟩

⟨ψ |M1|ψ⟩ + max
|ψ⟩

⟨ψ |UM2U
†|ψ⟩

= max
|ψ⟩

⟨ψ |M1|ψ⟩ + max
|ψ⟩

⟨ψ |M2|ψ⟩

= λ1(M1) + λ1(M2). (29)

Similarly, one proves that

λd (M1 + UM2U
†) ! λd (M1) + λd (M2). (30)

The last two inequalities imply that

σ (M1 + UM2U
†) " σ (M1) + σ (M2). (31)

What is left to prove is that the bound is tight. Choose
U = R

†
1 R2, where R1 (R2) is the similarity transformation

which diagonalizes M1 (M2), with the eigenvalues ordered
decreasingly, i.e.,

R1M1R
†
1 = diag[λ1(M1), . . . , λd (M1)] := D1,

R2M2R
†
2 = diag[λ1(M2), . . . , λd (M2)] := D2.

(32)

Then, for this particular choice of U ,

λ1(M1 + UM2U
†) = λ1(R1M1R

†
1 + R2M2R

†
2)

= λ1(D1) + λ1(D2)

= λ1(M1) + λ1(M2). (33)

Similarly, one finds that

λd (M1 + UM2U
†) = λd (M1) + λd (M2). (34)

Therefore, the RHS of (31) is achievable. !
Using the lemma, it follows that the RHS of Eq. (24) is

equal to (σ [gU, ξ ] + σ [gS, ξ ])2. We have therefore established
the following proposition:

Proposition 1. Given a finite-dimensional quantum system
with Hamiltonian Hξ ∈ Herd (C) and general parameter ξ ∈
", the performance of any nonregular estimation strategy
based on a controlled energy measurement MV, ξ is bounded
as follows. The maximum extractable information Gξ obeys
the inequality

Gξ " (σ [gU, ξ ] + σ [gS, ξ ])2, (35)

where Ut = exp(−itH ) is the unitary encoding, Sξ is the
similarity transformation diagonalizing Hξ , gU, ξ (gS, ξ ) is the
generator of Ut (Sξ ), i.e.,

gU, ξ = i∂ξUtU
†
t , gS, ξ = i∂ξSξS

†
ξ , (36)

and σ (·) denotes the spectral gap.

V. SATURATING THE INEQUALITY IN Eq. (35)

If the eigenvectors of Hξ do not actually depend on ξ (so
that ∂ξSξ = 0), then the set of controlled energy measure-
ments coincides with that of (parameter-independent) projec-
tive measurements; since the CQFI is achieved for a projective
measurement, it follows that Gξ must reduce to the CQFI
F (Q, C)

ξ . On the other hand, if ∂ξSξ = 0, then σ (gS, ξ ) = 0,
so the RHS of inequality (35) is also equal to the CQFI [by
comparison with Eq. (9)]. Thus, at least in such limiting case,
the inequality Gξ " (σ [gU, ξ ] + σ [gS, ξ ])2 is saturated. In this
section, we discuss under which general conditions the bound
given in Proposition 1 can be tight. We discover that tightness
depends only on a mathematical property of the Hamiltonian
Hξ , explained below. Therefore, for all Hamiltonians belong-
ing to such special class, Gξ can be readily computed in terms
of the spectral gaps of the generators of Ut and Sξ .
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Let us summarize the steps that went into proving the
bound of Proposition 1. First, we bounded the FI from above,
in Eq. (19) (step 1). Next, we optimized over the initial prepa-
ration, which led to Eq. (23) (step 2). Finally, we optimized
over the unitary control V by means of Lemma 1 (step 3).
The last two steps were proper maximizations, so they can be
made tight by implementing the optimal control Vopt and the
optimal initial preparation |ψ0, opt⟩. The optimal control Vopt,
which achieves the maximum in step 3, is obtained from the
proof of Lemma 1:

Vopt = S
†
ξ R

†
1R2, (37)

where R1 (R2) is the similarity transformation which diag-
onalizes gS, ξ (gU, ξ ), with eigenvalues ordered decreasingly,
i.e.,

R1 gS, ξ R
†
1 = diag[λ1(gS, ξ ), . . . , λd (gS, ξ )],

R2 gU, ξ R
†
2 = diag[λ1(gU, ξ ), . . . , λd (gU, ξ )].

The optimal preparation |ψ0⟩opt, which achieves the maxi-
mum in step 2, is related to the extremal eigenvectors of
U†

opt gUopt, ξ Uopt, where Uopt := SξVoptUt and gUopt, ξ is its gen-
erator. Explicitly,

|ψ0, opt⟩ = 1√
2

U†
opt[|λ1(gUopt, ξ )⟩ + eiϕ |λd (gUopt, ξ )⟩], (38)

where ϕ ∈ R.
Tightness of inequality (35) is thus reduced to that of step

1, with the control and the initial preparation chosen according
to Eqs. (37) and (38), respectively. In turn, step 1 involves two
majorizations. The first majorization is based on the Cauchy-
Schwarz inequality of Eq. (18), which is saturated iff

√
ρopt Pj ∝ √

ρopt Lρopt, ξ Pj , ∀j ∈ {0, . . . , d − 1}, (39)

where ρopt := Uopt ρ0, opt U†
opt, Lρopt, ξ is its SLD, and the pro-

portionality constant may depend on j . Condition (39) is
always satisfied thanks to the fact that the model is pure,
i.e., |ψopt⟩ := Uopt |ψ0, opt⟩, since then it reduces to the man-
ifestly true relation

⟨ψopt|j ⟩ |ψopt⟩ ⟨j | ∝ ⟨ψopt| Lψopt, ξ |j ⟩ |ψopt⟩ ⟨j | . (40)

The second majorization is based on the triangular inequality
of Eq. (17). It is proven below that saturation occurs iff
the unitary matrix Sξ has equioriented extremal eigenvectors
(two complex vectors v1, v2 are said to be equioriented, with
respect to a given orthonormal basis |bj ⟩, if | ⟨bj |v1⟩ | =
| ⟨bj |v2⟩ |, ∀j ∈ {0, . . . , d − 1}). For all Hamiltonians such
that the matrix Sξ has the previous property, inequality (35)
becomes an equality. We collect our results in the following
two propositions.

Proposition 2. The inequality given in Proposition 1 is an
equality when the Hamiltonian Hξ is such that the extremal
eigenvectors of the generator gS, ξ of Sξ are equioriented with
respect the computational basis.

Proof. Most of the proof is contained in the discussion
preceding Eq. (2). What is left to check is that the triangular
inequality of Eq. (17) is saturated whenever gS, ξ has equiori-
ented extremal eigenvectors. For Eq. (17) to be tight, it must

be that, ∀j ∈ {0, . . . , d − 1},

Im
[

tr
(
ρopt Lρopt, ξ Pj

)]
= 0, (41)

which is also equivalent to

Im[⟨j | Lψopt, ξ |ψopt⟩ ⟨ψopt|j ⟩] = 0. (42)

The SLD Lψopt, ξ is given by

Lψopt, ξ = 2 |∂ξψopt⟩ ⟨ψopt| + 2 |ψopt⟩ ⟨∂ξψopt| , (43)

which can be rewritten as

Lψopt, ξ |ψopt⟩ = 2i(⟨ψopt|gUopt, ξ |ψopt⟩ − gUopt, ξ ) |ψopt⟩ .

(44)

Substituting this result in Eq. (42), one arrives at the condition

⟨ψopt|gUopt, ξ |ψopt⟩|⟨j |ψopt⟩|2

= Re[⟨j |gUopt, ξ |ψopt⟩⟨ψopt|j⟩] (45)

or, using the explicit form of the optimal preparation given in
Eq. (38),

0 = [|⟨j |λ1(gUopt, ξ )⟩|2 − |⟨j |λd (gUopt, ξ )⟩|2]

× [λ1(gUopt, ξ ) − λd (gUopt, ξ )]. (46)

The conclusion is that the extremal eigenvectors of gUopt, ξ

must be equioriented. To finish the proof, we have to show
that |λi (gUopt, ξ )⟩ = |λi (gS )⟩ for i = 1, d. This can be proven
as follows. Note that

gUopt, ξ = gS, ξ + R
†
1R2 gU, ξ R

†
2R1 = R

†
1 D R1, (47)

where D is the diagonal matrix,

D = diag[λ1(gS, ξ ) + λ1(gU, ξ ), . . . , λd (gS, ξ ) + λd (gU, ξ )].

Therefore, the extremal eigenvectors of gUopt, ξ are given by
R

†
1|1⟩ and R

†
1|d⟩. But, by definition of R1, these are also the

extremal eigenvectors of gS, ξ . !
Proposition 3. If the conditions of Proposition 2 are satis-

fied, the strategy which saturates the bound (35) makes use
of the optimal control Vopt = S

†
ξ R

†
1R2 and the optimal initial

preparation |ψ0, opt⟩, i.e.,

|ψ0, opt⟩ = 1√
2

(SξVoptUt )†[|λ1(gS, ξ )⟩ + eiϕ|λd (gS, ξ )⟩],

where ϕ ∈ R and R1 (R2) is the similarity transformation
which diagonalizes gS, ξ (gU, ξ ), with eigenvalues ordered
decreasingly.

Proof. Follows immediately from Eqs. (37) and (38),
together with the fact that gUopt, ξ and gS, ξ have the same
extremal eigenvectors. !

The condition that the extremal eigenvectors of gS, ξ be
equioriented might appear restrictive, but actually it is often
satisfied in practice (see also Sec. VII). In such cases, the
LHS of Eq. (35) provides a simple expression for Gξ . The
possible precision enhancement with respect to the optimal
Braunstein-Caves measurement is then quantified by

# = (σ [gU, ξ ] + σ [gS, ξ ])2 − σ [gU, ξ ]2. (48)
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|x1 = |0 H •

QFT −1

|x2 = |0 H •

|x3 = |0 H •

|x4 = |0 H •

|ψ0 = |0 U V CU CU CU CU

q1

q2

q3

q4

FIG. 2. Circuit diagram of a simplified realistic controlled en-
ergy measurement with n = 4 control qubits. A realistic controlled
energy measurement replaces each application of CUτ by m repeated
applications of $Uτ/m

, defined in Eq. (63).

VI. APPLICATION TO METROLOGY

In this section, we illustrate the relevance of our previous
results to quantum metrology applications. The main point to
address is how to perform a controlled energy measurement
on a physical system. In principle, one is required to initialize
the system in a reference state ρ0, to encode the parameter
ξ , to apply a unitary control V , and, finally, to measure the
energy. The problem is that the Hamiltonian is not fully known
and, as a result, neither is the POVM to be implemented.

When the Hamiltonian is fully known, a projective energy
measurement can be performed by a suitable modification
of the phase estimation algorithm [53–55]. However, such
an approach is not useful for parameter estimation since it
requires one to know the parameter beforehand. Let us also
emphasize that for a controlled energy measurement to be
nonregular, it is crucial that the measurement projects onto
the eigenstates of the true Hamiltonian Hξ . Otherwise, the
measurement is regular (and thus cannot outperform the opti-
mal Braunstein-Caves measurement). In conclusion, our aim
is to design a measurement such that its statistics coincides
(or at least approximates closely) that of a controlled energy
measurement for all ξ ∈ " assuming no knowledge about the
system’s Hamiltonian.

Let us now explain how to construct such a measurement,
referred to as a realistic controlled energy measurement. The
central idea is to make use of the system’s unitary evolution
as a resource, by means of a quantum subroutine, named
universal controllization and developed in [56,57]. First, we
describe a simplified version of a controlled energy measure-
ment (see Fig. 2), which is actually based on an unrealistic
assumption; then, we explain how to remove such assumption.
The assumption is that the experimenter can implement the
controlled time-evolution operator,

CUt
:= |0⟩⟨0| ⊗ Id + |1⟩⟨1| ⊗ Ut, (49)

acting on the enlarged Hilbert space C2 ⊗ H, where H = Cd

is the Hilbert space of the main system and Ut = exp(−itHξ )
is the time-evolution operator. The assumption is unrealistic
because CUt

still depends on the true value of the parameter ξ ,
which is not known.

In order to implement this simplified version, let us in-
troduce n control qubits, each with Hilbert space Hc = C2;
the total Hilbert space is now H⊗n

c ⊗ H. Each control qubit
is prepared in the ground state |0⟩. Thus, the initial state of
the system is |0 . . . 0⟩⟨0 . . . 0| ⊗ ρ0. Next, a Hadamard gate

is applied to each control qubit, i.e., |0⟩ → H |0⟩ = (|0⟩ +
|1⟩)/

√
2. Meanwhile, the parameter is encoded into ρξ =

Utρ0U
†
t and the unitary control V is applied. Therefore, the

state of the total system up to this step is

1
2n

∑

x,y∈{0,1}×n

|x1 . . . xn⟩⟨y1 . . . yn| ⊗ VρξV
†, (50)

where x stands for the generic binary n-string x1 . . . xn.
Given any unitary U acting on H, the superoperator CU is

defined as follows:

CU [ρ] := CUρ C
†
U . (51)

For l = 1, . . . , n, the n superoperators CU 2l−1
τ

are applied
between the lth control qubit and the main system (τ is a free
parameter giving the timescale of the measurement process).
Notice that when CU 2l−1

τ
is applied to ρl := |xl⟩⟨yl | ⊗ VρξV

†,
one obtains

CU 2l−1
τ

[ρl] = |xl⟩⟨yl| ⊗ Uxl2l−1

τ VρξV
†(U †

τ )yl2l−1
. (52)

Denoting by X = x1 + 2x2 + · · · + 2n−1xn the decimal rep-
resentation of the binary string x, the resulting total state is

1
2n

2n−1∑

X=0

2n−1∑

Y=0

|x⟩⟨y| ⊗ UX
τ VρξV

†(U †
τ )Y . (53)

Let us expand VρξV
† on the energy eigenbasis, i.e.,

VρξV
† =

d−1∑

j=0

d−1∑

k=0

cjk|Ej, ξ ⟩⟨Ek, ξ |. (54)

Equation (53) then becomes

1
2n

d−1∑

j,k=0

2n−1∑

X,Y=0

cjk e−iτ (XEj, ξ −YEk, ξ )|x⟩⟨y| ⊗ |Ej, ξ ⟩⟨Ek, ξ |.

(55)

The next step is to apply an inverse quantum Fourier transform
QFT −1 on the n control qubits. By definition, QFT −1 acts
as follows on the computational basis of H⊗n

c :

QFT −1|x⟩ = 1
2n/2

2n−1∑

Q=0

e− 2π iXQ
2n |q⟩. (56)

After application of QFT −1, the total state of the system is

1
22n

d−1∑

j,k=0

2n−1∑

X,Y=0

2n−1∑

Q,P=0

c̃jk |q⟩⟨p| ⊗ |Ej, ξ ⟩⟨Ek, ξ |, (57)

where

c̃jk = cjk e−iX(τEj, ξ + 2πQ
2n ) eiY (τEk, ξ + 2πP

2n ). (58)

The last step is to perform a measurement of the n control
qubits in the computational basis. The probability pq, ξ of
obtaining as outcome the binary string q is

pq, ξ = 1
22n

d−1∑

j=0

2n−1∑

X,Y=0

pEj , ξ e−i(X−Y )αj,Q , (59)
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=

|x1 • •

|ψ
SWAP

Uτ/m

SWAP
|φ

WUτ/m

FIG. 3. Circuit diagram of WUτ/m
.

where

αj,Q := τEj, ξ + 2πQ

2n
, pEj , ξ = ⟨Ej, ξ |VρξV

†|Ej, ξ ⟩.

(60)

By algebraic manipulation, Eq. (59) can also be written as

pq, ξ =
d−1∑

j=0

pEj , ξ

[
1
2n

sin(2nαj,Q/2)
sin(αj,Q/2)

]2

. (61)

In the limit n → ∞, the probability distribution pq, ξ con-
verges to the probability distribution pEj , ξ corresponding to
a controlled energy measurement MV, ξ .

We now explain how to implement the controlled time-
evolution operator without full knowledge of the Hamiltonian.
For a more detailed treatment, we refer the reader to Ref. [56].
For notational simplicity consider the case l = 1, so that the
problem is to approximate the action of CUτ

on the state
ρ1 = |x1⟩⟨y1| ⊗ VρξV

†. Since CUτ
is not actually available,

it is replaced by m applications of the superoperator $Uτ/m
,

constructed as follows. First of all, we introduce an ancilla
having the same dimension as the main system, so that the
total Hilbert space is H⊗n

c ⊗ H ⊗ Ha , with Ha = Cd . The
ancilla is prepared in the maximally mixed state. Therefore,
the state of the first control qubit, the main system, and the
ancilla before application of CUτ

is ρ ′
1 = |x1⟩⟨y1| ⊗ VρξV

† ⊗
Id/d. Let us define the following quantum operation:

WUτ
:= CSWAP(I2 ⊗ Uτ ⊗ Id ) CSWAP, (62)

where CSWAP is the controlled-SWAP gate acting as fol-
lows on Hc ⊗ H ⊗ Ha: CSWAP(|0⟩ ⊗ |ψ⟩ ⊗ |φ⟩) = |0⟩ ⊗
|φ⟩ ⊗ |ψ⟩ and CSWAP(|1⟩ ⊗ |ψ⟩ ⊗ |φ⟩) = |0⟩ ⊗ |ψ⟩ ⊗ |φ⟩.
The key remark is that implementation of WUτ

does not
require knowledge of the Hamiltonian, but makes use instead
of the uncontrolled version of the time-evolution operator Uτ

(see also Fig. 3).
We now subdivide τ into m subintervals of length τ/m.

During each subinterval, WUτ/m
is applied; then the ancilla is

discarded; finally, the ancilla is refreshed to its initial state. For
instance, after the first interval, one obtains $Uτ/m

[ρ1] ⊗ Id/d,
where

$Uτ/m
[ρ1] := trHa

(WUτ/m
ρ ′

1 W
†
Uτ/m

). (63)

A simple computation reveals that

$Uτ/m
[ρ1] = 1

d
tr

(
U

y1−x1
τ/m

)
CUτ/m

[ρ1]. (64)

For future convenience, we write

1
d

tr(Uτ/m) = aτ/m eiφτ/m , (65)

where aτ/m ∈ R+ and φτ/m ∈ R. Note that since x1 − y1 ∈
{−1, 0, 1}, one can write

$m
Uτ/m

[ρ1] = a
|x1−y1|m
τ/m ei(y1−x1 )mφτ/m CUτ

[ρ1]. (66)

Universal controllization basically replaces CUτ
with $m

Uτ/m
. In

the limit m → ∞, it can be proven that the error

ϵm := [tr(Uτ/m)/d]m − 1 (67)

tends to zero. A realistic controlled energy measurement is
thus obtained by substituting each application of CU 2l−1

τ
by

2l−1m applications of $Uτ/m
. For instance, instead of Eq. (53),

one would have

1
2n

2n−1∑

X,Y=0

πX,Y ei(Y−X)mφτ/m |x⟩⟨y| ⊗ UX
τ VρξV

†(U †
τ )Y , (68)

where we defined

πX,Y :=
n∏

l=1

a
|xl−yl |2l−1m
τ/m . (69)

After applying the inverse quantum Fourier transform and
measuring in the computational basis, the probability of ob-
taining the outcome q ∈ {0, 1}×n is

pq, ξ = 1
22n

d−1∑

j=0

pEj , ξ

2n−1∑

X,Y=0

πX,Y ei(Y−X)βj,Q , (70)

with

βj,Q := αj,Q + mφτ/m. (71)

Equation (70) can be further expanded by rewriting it as
follows:

pq, ξ = 1
22n

d−1∑

j=0

pEj , ξ

n∏

l=1

1∑

u,v=0

a
|u−v|2l−1m
τ/m ei(v−u)2l−1βj,Q

= 1
2n

d−1∑

j=0

pEj , ξ

n∏

l=1

[
1 + a2l−1m

τ/m cos(2l−1βj,Q)
]
. (72)

If m → ∞, then φτ/m → 0 and aτ/m → 1, so that Eq. (72)
converges to Eq. (61). Therefore, a realistic controlled en-
ergy measurement allows one to approximate to any desired
precision a controlled energy measurement MV, ξ , without
requiring any a priori knowledge about the parameter ξ . The
result is asymptotic, in the sense that the previous statement
holds when both the number of control qubits n and the
number of subintervals m go to infinity. In the next section,
we discuss in detail a prototypical example and find that even
for small values of n and m, a controlled energy measurement
can be well approximated, and thus a precision enhancement
is possible compared to the optimal Braunstein-Caves mea-
surement.

VII. EXAMPLES: QUANTUM MAGNETOMETRY

A. Qubit magnetometry: Estimating the direction
of a magnetic field

The problem is to estimate the polar angular direction ξ of
an external magnetic field of known magnitude B by use of
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a qubit probe, with Hilbert space H = C2 and Hamiltonian
Hξ = ω(cos ξ σz + sin ξ σx ) (the energy splitting ω is propor-
tional to B, thus it is assumed to be known). In the first part of
this section, we compare the family of regular measurements
R with the nonregular family E of controlled energy mea-
surements. Next, we analyze the problem in a more physical
setting by evaluating the performance achievable via realistic
controlled energy measurements.

The probe is initialized at time t = 0 in the state |ψ0⟩ =
|0⟩. The parameter is encoded unitarily for a time t , leading to
|ψξ ⟩ = Ut |ψ0⟩, with Ut := exp(−iHξ t ). Let us suppose first
that only regular measurements are allowed. Then, the best
achievable performance is given by the QFI,

F (Q)
ξ (|ψξ ⟩) = 4 sin2(ωt ) − sin2(2ωt ) sin2 ξ . (73)

Optimizing also over the initial preparation |ψ0⟩, one arrives
at the CQFI F (Q, C)

ξ = 4 sin2(ωt ).
Suppose instead that the measurement is taken from the

family of controlled energy measurements. Then, the best
achievable precision is given by the information quantity Gξ

of Eq. (14). Let us compute the matrix Sξ , built from the
eigenvectors of Hξ , and its generator gS, ξ :

Sξ =
(

−sgn
[
cos

(
ξ
2

)]
sin

(
ξ
2

)
sgn

[
cos

(
ξ
2

)]
cos

(
ξ
2

)

sgn
[
sin

(
ξ
2

)]
cos

(
ξ
2

)
sgn

[
sin

(
ξ
2

)]
sin

(
ξ
2

)

)

,

gS, ξ =
(

0 − i
2 sgn(sin ξ )

i
2 sgn(sin ξ ) 0

)

,

where sgn(x) = |x|/x. The extremal eigenvectors of gS, ξ are

|λ1(gS, ξ )⟩ = 1√
2

(−i, 1)t , |λ2(gS, ξ )⟩ = 1√
2

(i, 1)t .

Since they are equioriented, by Proposition 2, Gξ can be
computed as

Gξ = (σ [gU, ξ ] + σ [gS, ξ ])2. (74)

The explicit expressions for Ut and its generator are

Ut =
(

A B
B A∗

)
, gU, ξ =

(
−C D
D∗ C

)
,

where

A = cos ωt − i cos ξ sin ωt,

B = −i sin ξ sin ωt,

C = 1
2 sin ξ sin 2ω,

D = (cos ξ cos ωt − i sin ωt ) sin ωt. (75)

After diagonalizing gU, ξ and gS, ξ , one can compute Gξ via
Eq. (74), which gives

Gξ = F (Q,C)
ξ + 4| sin(ωt )| + 1. (76)

As Gξ > F (Q,C)
ξ , the optimal Braunstein-Caves measurement

is outperformed. A comparison is shown in Fig. 4.
Finally, we study numerically the case when the mea-

surement is a realistic controlled energy measurement. This
requires one to introduce n ancillary qubits and implement
the quantum algorithm described in Sec. VI. In particular,

FIG. 4. Comparison between the optimal Braunstein-Caves mea-
surement and the optimal controlled energy measurement, for the
estimation of the polar angular direction of a magnetic field via
a qubit probe. The solid line is the CQFI, while the dashed line
corresponds to Gξ , computed by Eq. (76). The circular marks denote
Gξ , computed by numerical optimization, from its definition (14),
thus confirming that the bound given in Proposition 1 is saturated.

universal controllization is needed to approximate the action
of the controlled time-evolution operator CUτ

, by subdividing
τ into m subintervals and applying the superoperator $Uτ/m

of Eq. (63) in each subinterval. In the limit n, m → ∞, one
performs the corresponding controlled energy measurement
exactly [and thus can achieve Gξ of Eq. (74)]. The two
panels of Fig. 5 show the performance of the optimal realistic
controlled energy measurement, for different values of n and
m. Reasonably small values of the two parameters (e.g., n = 6
and m = 3) are enough to come close to the ultimate bound Gξ

of Eq. (76).

B. Qubit magnetometry: Estimating one component
of a magnetic field

Here the task is to estimate one component of an external
magnetic field along a given direction (which, without loss of
generality, is taken to be parallel to the x axis) via a qubit
probe. The Hamiltonian is Hξ = −ωσz + ξσx , with eigen-
values ±%ξ , where %ξ :=

√
ω2 + ξ 2. As before, one has to

compute the relevant matrices Ut, Sξ and their corresponding
generators. Concerning Ut and gU, ξ , we have

Ut =
(

A B
B A∗

)
, gU, ξ =

(
−C D
D∗ C

)
,

where

A = cos(%ξ t ) + iω sin(%ξ t )
%ξ

,

B = − iξ sin(%ξ t )
%ξ

,

C = −ωξ [sin(2 %ξ t ) − 2 %ξ t]
2 %3

ξ

,

D = sin(2 %ξ t )ω2 − i%ξ cos(2 %ξ t )ω + %ξ (2tξ 2 + iω)
2 %3

ξ

.

(77)
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ωt

Fξ

F (Q)
ξ

ωt

Fξ

F (Q)
ξ

FIG. 5. Upper panel: FI of the best-performing realistic con-
trolled energy measurement, for different values of n and fixed m =
5. Each marker represents the maximum FI, taken over the family
of realistic controlled energy measurements for given n, m, τ , and
interrogation time t . The curves are obtained by interpolation. The
thin solid curve corresponds to the QFI of Eq. (73). Notice that the
optimal Braunstein-Caves measurement is outperformed already for
n = 6. Lower panel: FI of the best-performing realistic controlled
energy measurement, for different values of m and fixed n = 6. Both
plots are obtained for ω = 1 and τ = 0.1 (in the natural units of
the problem), while the true value of the parameter is taken to be
ξ = π/4.

Sξ and its generator gS, ξ are instead given by

Sξ = 1
√

2 %ξ

⎛

⎝
− ω+%ξ√

%ξ +ω

ξ√
%ξ +ω

ξ√
%ξ +ω

ξ√
%ξ −ω

⎞

⎠, (78)

gS, ξ =
(

0 iω
2ξ 2

− iω
2ξ 2 0

)

. (79)

The CQFI is found by diagonalizing gU, ξ , i.e.,

F (Q,C)
ξ = 2

%4
ξ

[
2 %2

ξ t2ξ 2 − ω2 cos(2 %ξ t ) + ω2]. (80)

Since the eigenvectors of gS, ξ are equioriented, Gξ can be
computed directly,

Gξ =

⎧
⎨

⎩
ω

%2
ξ

+

√
2
[
2 %2

ξ t2ξ 2 − ω2 cos(2 %ξ t ) + ω2
]

%2
ξ

⎫
⎬

⎭

2

.

(81)

FIG. 6. Comparison between the optimal Braunstein-Caves mea-
surement and the optimal controlled energy measurement, for the
estimation of one component of a magnetic field via a qubit probe.
The solid line is the CQFI, while the dashed line corresponds to Gξ .
The circular marks denote Gξ , computed by numerical optimization,
from its definition (14), thus confirming that the bound given in
Proposition 1 is saturated.

A comparison similar to that of Fig. 4 is shown in Fig. 6.

C. NV-center magnetometry

As a last example, we study the problem of estimating
a weak magnetic field via an NV center in diamond. An
NV center consists of a nitrogen atom (N) inside a diamond
crystal lattice, having a vacancy (V) in one of its neighboring
sites. Two different kinds of the defect are known: the neutral
state NV0 and the negatively charged state NV−, which is
the most interesting for metrological applications. The NV−
form provides a spin triplet state which can be initialized,
manipulated with long coherence time, and readout by purely
optical means. The reader is referred to the review [58] for
more details.

Neglecting the interactions with the surrounding nuclear
spins and setting h̄ = 1, the Hamiltonian HNV for the triplet
state of the NV center can be written in the form

HNV = µ B · S + D S2
z + E

(
S2

x − S2
y

)
, (82)

where B is the applied magnetic field and S = (Sx, Sy, Sz) is
a vector made up by the three spin-1 matrices,

Sx =
√

2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠, Sy =
√

2i

⎛

⎝
0 −1 0
1 0 −1
0 1 0

⎞

⎠,

Sz = 2

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠. (83)

Moreover, D ≈ π × 1.44 GHz, E ≈ π × 50 kHz, and µ is
the Bohr magneton. We work in the weak magnetic-field
regime, where the transversal components Bx and By can be
neglected compared to the component Bz aligned along the
NV-center defect axis.

The task is to estimate the field component Bz, which
from now on we denote conventionally by ξ . The CQFI is
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F (Q, C)
ξ

Gξ

FIG. 7. Comparison between the optimal Braunstein-Caves mea-
surement and the optimal controlled energy measurement for the
estimation of the magnitude of a weak magnetic field via a NV
center in diamond. The solid line is the CQFI, while the dashed
line corresponds to Gξ . The circular marks denote Gξ , computed by
numerical optimization, from its definition (14), thus confirming that
the bound given in Proposition 1 is saturated.

found to be

F (Q,C)
ξ = 8µ2[2ξ 2µ2t2χ2 + E2 − E2 cos(4χ t )]

χ4
, (84)

where χ :=
√

ξ 2µ2 + 4E2, while Gξ is given by

Gξ =
[

2Eµ

χ2
+ 2

√
2µ

√
2ξ 2µ2t2χ2 + E2 − E2 cos (4χ t )

χ2

]2

.

(85)

A comparison is shown in Fig. 7.

VIII. CONCLUSIONS

In this paper, the main focus has been on a class of nonreg-
ular quantum measurements, referred to as controlled energy
measurements, that are naturally available in the estimation
of a general Hamiltonian parameter. We have introduced
the information quantity Gξ , which gives the best achievable
precision over such a class, and provided an upper bound to it,
that can often be saturated in practice. We have also discussed
a realistic implementation of controlled energy measurements,
which makes use of the phase estimation algorithm and
a quantum subroutine known as universal controllization.
Finally, we have applied our results to a few prototypical
estimation problems and found a precision enhancement with
respect to the optimal Braunstein-Caves measurement.

The difficulty, as a matter of principle, of encoding the (un-
known) parameter into the measurement apparatus is solved
by making use of the time evolution generated by the sys-
tem’s Hamiltonian as a resource. In this way, the POVM
elements formally acquire an intrinsic dependence on the
parameter, which in turn makes an analysis based only on
the quantum Fisher information insufficient to capture the
ultimate precision bounds. Our results thus show that for
Hamiltonian parameters that are not just phase parameters,
it is possible to overcome the Cramér-Rao bound by feasible
detection schemes, opening avenues to the precise estimation
of physical parameters at the quantum frontier.
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