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Nearly ideal binary communication in squeezed channels
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We analyze the effect of squeezing the channel in binary communication based on Gaussian states. We show
that for coding on pure states, squeezing increases the detection probability at fixed size of the strategy,
actually saturating the optimal bound already for moderate signal energy. Using Neyman-Pearson lemma for
fuzzy hypothesis testing we are able to analyze also the case of mixed states, and to find the optimal amount
of squeezing that can be effectively employed. It results that optimally squeezed channels are robust against
signal mixing, and largely improve the strategy power by comparison with coherent ones.
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I. INTRODUCTION At the receiver, we consider the standard detection of the

signal observablX, (x) =|x)(x|, such that the output prob-
The ultimate capacity of a communication network is es-abjlity densities are given bpo(x)=|(x|¢o)|?>=G(x;0,0)
sentially quantum limited, and the main concern of quantumand p,(x;a) = (x| 4)|?=G(x;a,0), where G(x;a,o)
communication is how to discriminate among quantum states- (2mwo?) " Y2exd —(x—a)¥24?] is a normalized Gaussian
that encode the relevant informatigfi]. Quantum coding of meana and variancer2. On the basis of each measure-
states are generally nonorthogonal, such that they cannot bent outcome we have to discriminate between two hypoth-
unambiguously discriminated. As a consequence, the detegsis: thenull hypothesisi, corresponding to the transmis-
tion strategy should be optimized at the receiving side ingjgn of | o) (no signal, and thealternative hypothesist;,
order to maximize the detection probability and/or minimizecorresponding to the transmission |af,), i.e., to the pres-
the transmission errors. . _ ence of the signal. The process of measurement and infer-
The scheme we have in mind is the followifgee Fig. I ence s called alecision strategyWe denote byQ, the
a binary alphabet={0,1} with equala priori probability  powerof the strategy, that is the probability of inferring the
symbols is being transmitted through a quantum communizjternative hypothesis when the signal is actually present
cation channel. The information is encoded in two arbltrary(a|so called the detection probabilityand byQ, the sizeof
Gaussian quantum statgg andg . In the following we first  the strategy, i.e., the probability of inferring the alternative
consider the case of pure stafefs) and|y1), whereas, in hypothesis when the null hypothesis is triaso called the
the second part of this paper, the analysis will be extended tgyse-alarm probability
the mixed-state case. Informanon is amplitude-keyed en- | the following we employ a threshold strategy, in which
coded(2], such that the wave functions of the two states argne alternative hypothesis is chosen if the outcome is greater
given by than a threshold value,. In order to determine the threshold
value we should optimize the strategy, a goal that, in turn,
requires to adopt an optimization criterion. Usually, one uses
) the criterion of minimizing the average cost of the decision,
that is, in Bayesian terms, that of minimizing the probability
of a wrong inferencg4]. Alternatively, one may accept to
occasionally obtain an inconclusive inference in order to
, (D achieve error-free discriminatiofb]. Actually, these have
been fruitful approaches in quantum-state recognition, espe-
) ) ) cially in the M-ary decision problemi6]. However, the price
wheref;(x),j=1,2 are arbitrary phases, amd= R". Since  of a small error probability is usually a small detection prob-
the two states have the saraepriori probability of being  apility that too in turn, may imply the requirement of a high

transmitted, the mean total energy traveling through thgepetition rate. On the other hand, in the field of communi-
channel is given bfr=a?%/2+ (6®—1/2)?/ 0®> (measured in

unit of h7, 7 being the characteristic time of the physical Channel Transmission 0 Binary

channel, e.g., the period for a bounded system, or the time preparation @ —® ; Sgnal

length of the wave packet for a free systeffihe cases? Coding Measurement

= 1/2 corresponds to customary on-off coherent modulation, g 1. Block diagram of the communication scheme. In the
whereas for®<1/2 we are dealing witqueezedtateq3]. preparation stage the physical channel is squeezed, then the signal
Although squeezing increases the total energy introducegmplitude is either applied or not applied according to which sym-
into the channel, we will show that it can be effectively pol should be transmitted. At the end of the line, the signal observ-
employed to improve the communication scheme, and to apableX is measured and the outcome is compared with the threshold
proach the performances of an ideal channel. valuex, in order to infer which state has been transmitted.
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cation there exist several protocols that are rolpdsti.e., Q  Squeezed Channels Q, Coherent Channels
that may satisfactorily work also with a nonzero

transmission-error rate. In this case, the main interest is thaos 08

of maximizing the detection probabilit®,, while maintain- ¢ 06

ing the sizeQ, to a moderated tolerable level. A decision ,,

. - ; o 04

strategy that is optimized according to such a crlterlon,02 0w

which we will employ throughout this paper, is said to be a ™ '
Neyman-PearsofNP) optimized strategy8]. T 0w o Y T
Il. NEARLY IDEAL PERFORMANCE FIG. 2. Power-size characteristicsQ.(Qq) of the
OF A SQUEEZED CHANNEL X-measurement NP strategy for different channel enefgjed eft:

optimally squeezed channels. Right: coherent channels. In both
The optimal NP threshold strategy for the presémhea-  plots, from bottom to tofEr=0.57, hr, 1.5h7, and tr.
surement is given in terms of a denslil(x), which repre-

sents the probability of choosing the alternative hypothesis a 2 JE-(1=)
after having observed the outcorme We have(Neyman- = r1=) , (6)
Pearson Lemma \/fa VYET+2—+yET

_ 10 A)=es, The maximum value isa/ v2¢) ya= VET(E7+2), which is

I(x)= . p 2
0 if A(x)<e’, reached for

whereA (x) =pq(x;a)/po(x) is thelikelihood ratio, and« is 1 E
the decision level By varying the decision level we obtain YopT=5 — (7
NP strategies with different sizes. The likelihood ratio is 21+Es

given by A (x) =ex{ —(a®—2axX)/20%], and the NP strategy

of Eq. (2) can be summarized as follows: the alternativeyopr thus represents the optimal squeezing fraction to dis-
hypothesisH; is chosen if the outcome is greater than theCriminate, according to NP criterion, amplitude-keyed sig-
threshold valuex,= (a®+20%«)/2a. The corresponding size Nnals byX measurement. In Fig. 2 we show the characteristics
and power are given byQy=SrdxII(X)po(x) and Q,  Qi1(Qo) for optimally squeezed and coherent channels with

= [rdxII(X)py(x;a) i.e., different energies. The improvement due to squeezing is ap-
parent.
o 1 Xo We also notice tha®, is a smooth function of the squeez-
Qo=f dx pp(x) = | 1—erf o2 | (3 ing fraction, which, in turn, should not be considered as a
X0 o critical parameter. In fact, in order to obtain an enhancement

1 of the strategy power, we do not need a fine tuning.of his
_[” ) is illustrated in Fig. 3, where a contour plot @f; is shown
Q1 Lodx Pu(x;a)=7| 1~ erf( g\/—” @ as a function ofQ, and y. For fixed sizeQ, the power
slowly varies withy in a considerably large range of values.
By eliminating the decision levet between Eqs(3) and(4) For a given size), the boundQ;=1/2 defines the mini-
one obtains the characteristi€g (Qy) mum detectable signal. As it follows from E€p), this cor-

responds t@/ 2o =inverf(1—2Q,), and using Eq(6) to

1 a
Q =—[1—erf inverf(1—2Q )——”. (5)
b2 ¥ V2o emin_L inverf2(1-2Qy) ©
T 75 : .
Since the error function ert) and its inverse inverk) are 21— y+inverf¥(1-2Qg)yV2y(1- y)

monotonic, the power at fixed size increases with the term
a/\20. As we will see, this quantity may be enhanced by Q; for Er=0.5ht
squeezing, such that for any energy-squeezed channels
always show larger power than coherent ones. 08
The value ofE is set by physical constraints, and a ques-
tion arises about the optimal fraction &f that should be
employed in squeezing the channel. In fact, the energy canos
not be entirely spent in squeezing, since in this case no signe
amplitude is left to be discriminated. Let us define the *
squeezing fractiony as the fraction of the total enerdy; 0

7 Q, for E{=1.0ht

. . G 5
that is employed to squeeze the channel. In termg ahd 002 004006 008 0l 002004006 008 0l

Er the amplitude and the squeezing are given &y FIG. 3. PowelQ; of the X-measurement NP strategy as a func-
=V2E1(1—vy) ando=1/2(\JyEt++2— {JyE7). Using these tion of the sizeQ, and the squeezing fractiop, for two different
expressions we have values of the total energf+=0.5h7 andE+=1.0hr.
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FIG. 5. Left: mutual informationiy as a function of the total
energy E; for y=vyopt and for some values of the siz®,

FIG. 4. Power-size characteristics for two different values of the= 1%0,0.5%,0.1%(lines in decreasing order of darkngsRight:

energyE. The dotted line is the optimal NP strategy, the solid line
the (optimally) squeezed channel fot strategy and the dashed line
the coherent one.

ratio (in decibel$ between theX strategy mutual information and
the optimal one at fixed size as a function of the total energy for
optimally squeezedblack ling and coherentgray line channels.

E?”‘ decreases withy, i.e., squeezed channels allow one tostrategy. On the right panel we show the rdio decibel3

discriminate weaker signals at given size. For sni@j,
ET'" increases quadratically for coherent channefg™
=y2/2, and only linearly for optimally squeezed o&d""
—1++/1+y?, y being the principal solution of the equa-
tion y\mQo=exp(-y?).

betweenly and the ideal valué,;, corresponding to the
optimal NP strategy. It results that for a squeezed channel the
mutual information is approaching the ideal value for much
lower energy than a coherent one. Similar plots are obtained
by varying the size of the strategy.

In order to appreciate better the benefit of squeezing, we

compare the powe®; of the NP X-threshold strategy?),

with the optimal NP quantum measurement to discriminatd!!- FUZZY HYPOTHESIS TESTING AND MIXED SIGNAL

between two pure stategy,) and |¢;). Such an optimal
measurement has been found long 48], whereas a com-
prehensive approach for mixed states is still lackib@|. For

So far we have considered information amplitude keyed
on pure states. However, in practice, it is more likely to deal
with mixture, either because the coding stage is imperfect, or

a pair of pure states the optimized measurement is given byg 5 result of noises in the transmitter and losses in the chan-

(XN =[] = N o) ol 9)

where\ is a Lagrange multiplier that determines the decisio
level. The decision strategy consists in choosing the altern
tive hypothesisH, for positive outcomes, and the resulting
detection probability reads as follows

[VQow+(1-Qo)(1-w)]?,

Q1= 1,

0=sQp=<w

10
w<Qy=1, (10

nel. For the sake of simplicity, we consider a situation in
which the null hypothesis still corresponds to coding onto the
vacuum(no amplitude state, that isg o= | o){ #o|. On other

"hand, the alternative hypothesis now corresponds to coding
3he signal on the mixed state;=/db H(b)|yp){ sy,

where |¢) coincides with|y,) of Eqg. (1) andH,(b) is a
weight function, which will be taken of Gaussian form. The
two hypotheses to be discriminated are no longer crisp, and
the decision problem should be formulated in the framework
of fuzzy hypothesis testing2,13. The fuzzy null and alter-
native hypotheses are formulated as follo?:is true when

wherew=|(4o|y)|? is the overlap between the two states. 5 Gaussian state of amplitude distributed asH;(b), is
Ideal NP strategies have been previously adopted to achiegansmitted. In our case the two membership density func-
the ultimate quantum limit to high-precision binary interfer- tions  are given by Hy(b)=5(b) and H(b)
ometry[11]. =(2mw3%)  Yexg—(b—a)%23?].

In Fig. 4 we show the power-size characteristics of the

optimal strategy in comparison with that of tKestrategy for
coherent and optimally squeezed channels. For squeez

In order to analyze the effect of squeezing with a mixed
signal we need to find the best NP strategy of its size.
cently, the Neyman-Pearson Lemma has been extended to

channels, the power increases and approaches the optinighkzy hypothesis testingl4], and this allows us to solve the

value achieved already for moderate energy.

decision problem. The NP strategy for mixed states is a den-

In order to summarize improvements due to squeezing Wity of the form(2) with the fuzzy likelihood raticgiven by

consider the mutual information between input and output
=3 Pijp; In[P; /(Z;P;;p;)], where po=p,;=1/2 are thea
priori probabilities of the two symbols, arfé; is the prob-
ability of choosing hypothesigt; when hypothesisH; is
true. In our caseP,;=Q; and P;;=Q, such thatPy,=1
—Q andPgyy=1—Qq. On the left panel of Fig. 5 we show
the mutual information x of the X strategy as a function of
the total energye; for an optimal choice of the squeezing

fraction y. |y saturates to high value already for moderate
energy, showing only a weak dependence on the size of the

jdb pi(x;b)H(b) jdb G(x;b,0)H(b)

AT = G(x;0,0)

[ @b p0orob)
| B x*+2axp®—a’p’
= ex
1+p2 20%(1+ %)

: (11)
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R[dB] E=\/2_ET/10 R[dB] z=2\/2_ET/3 ior, we define the ratiR=1 §/I§ (at fixed energy and mixing

5 53 " 53 parameter between the mutual information of a squeezed
) ) and a coherent channel, respectively. In Fig. 6 we sR®ag

= = a function ofE for different values of the size for a weakly
05 05 (X =J2E+/10) and a strongly ¥ =2/2E4/3) mixed chan-

Er[ht] T2 5 7 35 6 ™ nel. Notice thats = \2E; is the limiting value, correspond-

ing to a completely mixed signal with no amplitude and no
squeezingR linearly increases for small; and after a maxi-
and a strongly(right) mixed channel. In both plots curves for dif- mum of few decibeldthe actual height depends on the size

ferent values of the strategy sif@, are shown(black line, Q, ~ Q0) decreases. In thaunrealistig limit of very high ener-
=0.5%, dark grayQo= 1%, light gray,Qo="5%). gies, squeezing the channel is no longer convenient. We no-

tice that for a strongly mixed channel such a decreasing is

where 82=g%/32. The pure-state case is obtained in theMuch slower, thus indicating that squeezing is effective in a
limit g—co. wide range of env_argies._ In other yvords, a squeezed channel is

The power-size characteristics has the same functiondl'©re robust against mixing of signals than a coherent one.
form (5) as that of the pure-state case. However, for mixed
signals part of the energy is degraded to noEes=(a? IV. CONCLUSIONS
+22)/2+(02% 1/2)%l5*, such that t.he a'f”p"t“‘?'e reads as In conclusion, we have shown that squeezing the channel
fqllovys a=y2Er(1-v)—X% After. msgrtmg this expres- in amplitude-keyed binary communication increases the de-
sion into the terma/ 20, and maximizing overy one ob-  tection probability at fixed size. We have found the optimal
tains the optimal squeezing fraction for mixed channels g ee7ing fraction and evaluated the mutual information for

1 2 3 4 5 6

FIG. 6. RatioR=13/I§ between squeezed and coherent mutual
information as a function of the total energy for a weakly(left)

(2E;—32)2 both pure and mixed signals. Optimally squeezed channels
y'c\)"PT: T . (12 are robust against signal mixing, and largely improve the
8E7(1+Er—2%/2) strategy power by comparison with coherent ones, approach-

. ) v ing the performance of the ideal receiver, achieved already
As it can be easily proved from Eq12) yopr is always  for moderate signal energy.

smaller thenygpt for any value ofEy, i.e., a smaller

amqunt of squeezing can.be employed in a mixed channel ACKNOWLEDGMENTS
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