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Nearly ideal binary communication in squeezed channels
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~Received 20 March 2001; published 11 June 2001!

We analyze the effect of squeezing the channel in binary communication based on Gaussian states. We show
that for coding on pure states, squeezing increases the detection probability at fixed size of the strategy,
actually saturating the optimal bound already for moderate signal energy. Using Neyman-Pearson lemma for
fuzzy hypothesis testing we are able to analyze also the case of mixed states, and to find the optimal amount
of squeezing that can be effectively employed. It results that optimally squeezed channels are robust against
signal mixing, and largely improve the strategy power by comparison with coherent ones.
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I. INTRODUCTION

The ultimate capacity of a communication network is e
sentially quantum limited, and the main concern of quant
communication is how to discriminate among quantum sta
that encode the relevant information@1#. Quantum coding
states are generally nonorthogonal, such that they canno
unambiguously discriminated. As a consequence, the de
tion strategy should be optimized at the receiving side
order to maximize the detection probability and/or minimi
the transmission errors.

The scheme we have in mind is the following~see Fig. 1!:
a binary alphabetA5$0,1% with equala priori probability
symbols is being transmitted through a quantum commu
cation channel. The information is encoded in two arbitra
Gaussian quantum states%0 and%1. In the following we first
consider the case of pure statesuc0& and uc1&, whereas, in
the second part of this paper, the analysis will be extende
the mixed-state case. Information is amplitude-keyed
coded@2#, such that the wave functions of the two states
given by

c0~x!5^xuc0&5
1

A2ps2
expF2

x2

2s2
1 i f 0~x!G ,

c1~x!5^xuc1&5
1

A2ps2
expF2

~x2a!2

2s2
1 i f 1~x!G , ~1!

where f j (x), j 51,2 are arbitrary phases, andaPR1. Since
the two states have the samea priori probability of being
transmitted, the mean total energy traveling through
channel is given byET5a2/21(s221/2)2/s2 ~measured in
unit of ht, t being the characteristic time of the physic
channel, e.g., the period for a bounded system, or the t
length of the wave packet for a free system!. The cases2

51/2 corresponds to customary on-off coherent modulat
whereas fors2,1/2 we are dealing withsqueezedstates@3#.
Although squeezing increases the total energy introdu
into the channel, we will show that it can be effective
employed to improve the communication scheme, and to
proach the performances of an ideal channel.
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At the receiver, we consider the standard detection of
signal observableX, m̂(x)5ux&^xu, such that the output prob
ability densities are given byp0(x)5u^xuc0&u25G(x;0,s)
and p1(x;a)5u^xuc1&u25G(x;a,s), where G(x;a,s)
5(2ps2)21/2exp@2(x2a)2/2s2# is a normalized Gaussia
of meana and variances2. On the basis of each measur
ment outcome we have to discriminate between two hypo
esis: thenull hypothesisH0 corresponding to the transmis
sion of uc0& ~no signal!, and thealternative hypothesisH1,
corresponding to the transmission ofuc1&, i.e., to the pres-
ence of the signal. The process of measurement and in
ence is called adecision strategy. We denote byQ1 the
powerof the strategy, that is the probability of inferring th
alternative hypothesis when the signal is actually pres
~also called the detection probability!, and byQ0 the sizeof
the strategy, i.e., the probability of inferring the alternati
hypothesis when the null hypothesis is true~also called the
false-alarm probability!.

In the following we employ a threshold strategy, in whic
the alternative hypothesis is chosen if the outcome is gre
than a threshold valuex0. In order to determine the threshol
value we should optimize the strategy, a goal that, in tu
requires to adopt an optimization criterion. Usually, one u
the criterion of minimizing the average cost of the decisio
that is, in Bayesian terms, that of minimizing the probabil
of a wrong inference@4#. Alternatively, one may accept to
occasionally obtain an inconclusive inference in order
achieve error-free discrimination@5#. Actually, these have
been fruitful approaches in quantum-state recognition, es
cially in theM-ary decision problem@6#. However, the price
of a small error probability is usually a small detection pro
ability that too in turn, may imply the requirement of a hig
repetition rate. On the other hand, in the field of commu

FIG. 1. Block diagram of the communication scheme. In t
preparation stage the physical channel is squeezed, then the s
amplitude is either applied or not applied according to which sy
bol should be transmitted. At the end of the line, the signal obse
ableX is measured and the outcome is compared with the thres
valuex0 in order to infer which state has been transmitted.
©2001 The American Physical Society04-1
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cation there exist several protocols that are robust@7#, i.e.,
that may satisfactorily work also with a nonze
transmission-error rate. In this case, the main interest is
of maximizing the detection probabilityQ1, while maintain-
ing the sizeQ0 to a moderated tolerable level. A decisio
strategy that is optimized according to such a criteri
which we will employ throughout this paper, is said to be
Neyman-Pearson~NP! optimized strategy@8#.

II. NEARLY IDEAL PERFORMANCE
OF A SQUEEZED CHANNEL

The optimal NP threshold strategy for the presentX mea-
surement is given in terms of a densityP(x), which repre-
sents the probability of choosing the alternative hypothe
after having observed the outcomex. We have~Neyman-
Pearson Lemma!

P~x!5H 1 if L~x!>ek,

0 if L~x!,ek,
~2!

whereL(x)5p1(x;a)/p0(x) is thelikelihood ratio, andk is
the decision level. By varying the decision level we obtai
NP strategies with different sizes. The likelihood ratio
given by L(x)5exp@2(a222ax)/2s2#, and the NP strategy
of Eq. ~2! can be summarized as follows: the alternat
hypothesisH1 is chosen if the outcome is greater than t
threshold valuex05(a212s2k)/2a. The corresponding size
and power are given byQ05*Rdx P(x)p0(x) and Q1
5*Rdx P(x)p1(x;a) i.e.,

Q05E
x0

`

dx p0~x!5
1

2 F12erfS x0

sA2
D G , ~3!

Q15E
x0

`

dx p1~x;a!5
1

2 F12erfS x02a

sA2
D G , ~4!

By eliminating the decision levelk between Eqs.~3! and~4!
one obtains the characteristicsQ1(Q0)

Q15
1

2 H 12erfF inverf~122Q0!2
a

A2s
G J . ~5!

Since the error function erf(x) and its inverse inverf(x) are
monotonic, the power at fixed size increases with the te
a/A2s. As we will see, this quantity may be enhanced
squeezing, such that for any energyET-squeezed channel
always show larger power than coherent ones.

The value ofET is set by physical constraints, and a que
tion arises about the optimal fraction ofET that should be
employed in squeezing the channel. In fact, the energy c
not be entirely spent in squeezing, since in this case no si
amplitude is left to be discriminated. Let us define t
squeezing fractiong as the fraction of the total energyET
that is employed to squeeze the channel. In terms ofg and
ET the amplitude and the squeezing are given bya
5A2ET(12g) ands51/2(AgET122AgET). Using these
expressions we have
01430
at

,
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m
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a

A2s
5

2AET~12g!

AgET122AgET

. ~6!

The maximum value is (a/A2s)max5AET(ET12), which is
reached for

gOPT5
1

2

ET

11ET
. ~7!

gOPT thus represents the optimal squeezing fraction to d
criminate, according to NP criterion, amplitude-keyed s
nals byX measurement. In Fig. 2 we show the characteris
Q1(Q0) for optimally squeezed and coherent channels w
different energies. The improvement due to squeezing is
parent.

We also notice thatQ1 is a smooth function of the squeez
ing fraction, which, in turn, should not be considered as
critical parameter. In fact, in order to obtain an enhancem
of the strategy power, we do not need a fine tuning ofg. This
is illustrated in Fig. 3, where a contour plot ofQ1 is shown
as a function ofQ0 and g. For fixed sizeQ0 the power
slowly varies withg in a considerably large range of value

For a given sizeQ0 the boundQ151/2 defines the mini-
mum detectable signal. As it follows from Eq.~5!, this cor-
responds toa/A2s5 inverf(122Q0), and using Eq.~6! to

ET
min5

1

2

inverf2~122Q0!

12g1 inverf2~122Q0!A2g~12g!
. ~8!

FIG. 2. Power-size characteristicsQ1(Q0) of the
X-measurement NP strategy for different channel energiesET . Left:
optimally squeezed channels. Right: coherent channels. In
plots, from bottom to topET50.5ht, ht, 1.5ht, and 2ht.

FIG. 3. PowerQ1 of theX-measurement NP strategy as a fun
tion of the sizeQ0 and the squeezing fractiong, for two different
values of the total energyET50.5ht andET51.0ht.
4-2
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ET
min decreases withg, i.e., squeezed channels allow one

discriminate weaker signals at given size. For smallQ0 ,
ET

min increases quadratically for coherent channelsET
min

5y2/2, and only linearly for optimally squeezed oneET
min

5211A11y2, y being the principal solution of the equa
tion yApQ05exp(2y2).

In order to appreciate better the benefit of squeezing,
compare the powerQ1 of the NPX-threshold strategy~2!,
with the optimal NP quantum measurement to discrimin
between two pure statesuc0& and uc1&. Such an optimal
measurement has been found long ago@4,9#, whereas a com-
prehensive approach for mixed states is still lacking@10#. For
a pair of pure states the optimized measurement is given

m̂~xul!5uc1&^c1u2luc0&^c0u, ~9!

wherel is a Lagrange multiplier that determines the decis
level. The decision strategy consists in choosing the alte
tive hypothesisH1 for positive outcomes, and the resultin
detection probability reads as follows

Q15H @AQ0v1A~12Q0!~12v!#2, 0<Q0<v

1, v<Q0<1,
~10!

wherev5u^c0uc1&u2 is the overlap between the two state
Ideal NP strategies have been previously adopted to ach
the ultimate quantum limit to high-precision binary interfe
ometry @11#.

In Fig. 4 we show the power-size characteristics of
optimal strategy in comparison with that of theX strategy for
coherent and optimally squeezed channels. For sque
channels, the power increases and approaches the op
value achieved already for moderate energy.

In order to summarize improvements due to squeezing
consider the mutual information between input and outpuI
5( i j Pi j pj ln@Pij /((jPijpj)#, where p05p151/2 are thea
priori probabilities of the two symbols, andPi j is the prob-
ability of choosing hypothesisHi when hypothesisHj is
true. In our case,P115Q1 and P105Q0, such thatP0151
2Q1 andP00512Q0. On the left panel of Fig. 5 we show
the mutual informationI X of the X strategy as a function o
the total energyET for an optimal choice of the squeezin
fraction g. I X saturates to high value already for modera
energy, showing only a weak dependence on the size of

FIG. 4. Power-size characteristics for two different values of
energyET . The dotted line is the optimal NP strategy, the solid li
the ~optimally! squeezed channel forX strategy and the dashed lin
the coherent one.
01430
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strategy. On the right panel we show the ratio~in decibels!
betweenI X and the ideal valueI opt , corresponding to the
optimal NP strategy. It results that for a squeezed channe
mutual information is approaching the ideal value for mu
lower energy than a coherent one. Similar plots are obtai
by varying the size of the strategy.

III. FUZZY HYPOTHESIS TESTING AND MIXED SIGNAL

So far we have considered information amplitude key
on pure states. However, in practice, it is more likely to d
with mixture, either because the coding stage is imperfect
as a result of noises in the transmitter and losses in the c
nel. For the sake of simplicity, we consider a situation
which the null hypothesis still corresponds to coding onto
vacuum~no amplitude! state, that is,%05uc0&^c0u. On other
hand, the alternative hypothesis now corresponds to cod
the signal on the mixed state%15*db H1(b)ucb&^cbu,
where ucb& coincides withuc1& of Eq. ~1! and H1(b) is a
weight function, which will be taken of Gaussian form. Th
two hypotheses to be discriminated are no longer crisp,
the decision problem should be formulated in the framew
of fuzzy hypothesis testing@12,13#. The fuzzy null and alter-
native hypotheses are formulated as follows:Hj is true when
a Gaussian state of amplitudeb, distributed asH j (b), is
transmitted. In our case the two membership density fu
tions are given by H0(b)5d(b) and H1(b)
5(2pS2)21/2exp@2(b2a)2/2S2#.

In order to analyze the effect of squeezing with a mix
signal we need to find the best NPX strategy of its size.
Recently, the Neyman-Pearson Lemma has been extend
fuzzy hypothesis testing@14#, and this allows us to solve th
decision problem. The NP strategy for mixed states is a d
sity of the form~2! with the fuzzy likelihood ratiogiven by

LF~x!5

E db p1~x;b!H1~b!

E db p0~x!H0~b!

5

E db G~x;b,s!H1~b!

G~x;0,s!

5A b2

11b2
expFx212axb22a2b2

2s2~11b2!
G , ~11!

e

FIG. 5. Left: mutual informationI X as a function of the total
energy ET for g5gOPT and for some values of the sizeQ0

51%,0.5%,0.1%~lines in decreasing order of darkness!. Right:
ratio ~in decibels! between theX strategy mutual information and
the optimal one at fixed size as a function of the total energy
optimally squeezed~black line! and coherent~gray line! channels.
4-3
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where b25s2/S2. The pure-state case is obtained in t
limit b→`.

The power-size characteristics has the same functio
form ~5! as that of the pure-state case. However, for mix
signals part of the energy is degraded to noise,ET5(a2

1S2)/21(s221/2)2/s2, such that the amplitude reads
follows a5A2ET(12g)2S2. After inserting this expres-
sion into the terma/A2s, and maximizing overg one ob-
tains the optimal squeezing fraction for mixed channels

gOPT
M 5

~2ET2S2!2

8ET~11ET2S2/2!
. ~12!

As it can be easily proved from Eq.~12! gOPT
M is always

smaller thengOPT for any value of ET , i.e., a smaller
amount of squeezing can be employed in a mixed chan
against a pure channel with the same energy. Corresp
ingly, also the power at fixed size decreases. Howe
squeezing a mixed channel is still extremely convenien
improve theX strategy by comparison with a mixed cohere
channel of the same energy. In order to illustrate this beh

FIG. 6. RatioR5I X
S/I X

C between squeezed and coherent mut
information as a function of the total energyET for a weakly~left!
and a strongly~right! mixed channel. In both plots curves for di
ferent values of the strategy sizeQ0 are shown~black line, Q0

50.5%, dark gray,Q051%, light gray,Q055%).
dis
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ior, we define the ratioR5I X
S/I X

C ~at fixed energy and mixing
parameter! between the mutual information of a squeez
and a coherent channel, respectively. In Fig. 6 we showR as
a function ofET for different values of the size for a weakl
(S5A2ET/10) and a strongly (S52A2ET/3) mixed chan-
nel. Notice thatS5A2ET is the limiting value, correspond
ing to a completely mixed signal with no amplitude and
squeezing.R linearly increases for smallET and after a maxi-
mum of few decibels~the actual height depends on the si
Q0) decreases. In the~unrealistic! limit of very high ener-
gies, squeezing the channel is no longer convenient. We
tice that for a strongly mixed channel such a decreasin
much slower, thus indicating that squeezing is effective i
wide range of energies. In other words, a squeezed chann
more robust against mixing of signals than a coherent on

IV. CONCLUSIONS

In conclusion, we have shown that squeezing the chan
in amplitude-keyed binary communication increases the
tection probability at fixed size. We have found the optim
squeezing fraction and evaluated the mutual information
both pure and mixed signals. Optimally squeezed chan
are robust against signal mixing, and largely improve
strategy power by comparison with coherent ones, approa
ing the performance of the ideal receiver, achieved alre
for moderate signal energy.
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