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Abstract
We address the evolution of cat-like states in general Gaussian noisy
channels, by considering superpositions of coherent and squeezed coherent
states coupled to an arbitrarily squeezed bath. The phase space dynamics is
solved and decoherence is studied, keeping track of the purity of the
evolving state. The influence of the choice of the state and channel
parameters on purity is discussed and optimal working regimes that
minimize the decoherence rate are determined. In particular, we show that
squeezing the bath to protect a non-squeezed cat state against decoherence is
equivalent to orthogonally squeezing the initial cat state while letting the
bath be phase insensitive.
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1. Introduction

In Schrödinger’s original paper [1], a bipartite entangled state
of the form

|ψ〉 ∝ |A〉|−〉 + |B〉|+〉,

where |A〉 and |B〉 denote the ‘alive’ and ‘dead’ states of a
cat and |±〉 two orthogonal states of a microscopic system,
was suggested to illustrate the counterintuitive consequences of
quantum mechanics in a macroscopic setting. More generally,
in the literature, any single-system coherent superposition
|ψ〉 ∝ |ψ−〉 + |ψ+〉 of two pure quantum states |ψ±〉 that
are mesoscopically distinguishable is often referred to as a
Schrödinger cat or a cat-like state. The interest in the study of
such superpositions, possibly involving states of a microscopic
system as well, stems from both theoretical and experimental
considerations. Actually, a cat state is one of the simplest
and most fundamental configurations allowing one to probe
the archetypal aspects of quantum theory: the superposition
principle and quantum entanglement.

As far as quantum optical systems are concerned, the
possibility of realizing superposition states of the radiation
field, first envisioned by Yurke and Stoler [2], has been
extensively investigated in more recent years [3]. However,
pure state superpositions are in general corrupted by the

interaction with the environment. Therefore, cat-like states
that are available for experiments are usually mixed states
that have suffered a partial decoherence, and it is crucial
to know whether and to what extent superpositions can
survive the environmental noise. The theme of decoherence
of cat-like states spurred relevant theoretical works [4–
8], especially aimed to select schemes of quantum control
and feedback stabilizing coherent superpositions against
decoherence [7]. Recent promising experimental results and
perspectives continue to maintain a widespread interest in this
subject [9].

In the present paper, we study the non-unitary evolution
of coherent and squeezed coherent single-mode Schrödinger
cat-like states in generic Gaussian noisy channels, namely,
either thermal or squeezed thermal baths of harmonic
oscillators [10, 11]. In particular, we will focus our attention
on the evolution of the purity (or linear entropy) of the states,
showing how the quantum superposition is corrupted by the
interaction with a noisy environment and how to optimize the
state and channel parameters to minimize the decoherence rate.

The paper is structured as follows. In section 2 we
introduce notations and evaluate the Wigner function of
generalized cat-like states. In section 3 the time evolution
in Gaussian noisy channels is studied, whereas in section 4 the
dependence of decoherence and purity on the parameters of the
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initial state and of the channel is discussed in detail. In section 5
optimized regimes to minimize decoherence are discussed and,
finally, section 6 provides some concluding remarks.

2. Cat-like states

The simplest example of a Schrödinger cat state of a single-
mode radiation field is the following normalized superposition
of coherent states:

|α0, θ〉 ≡ |α0〉 + eiθ |−α0〉√
2 + 2 cos(θ)e−2|α0|2

. (1)

Such a cat-like state is referred to as ‘even’ for θ = 0 and ‘odd’
for θ = π [12]. We denote by �α0,θ the corresponding density
matrix, whose symmetrically ordered characteristic function
is given by

χα0,θ (η) ≡ Tr[�α0,θ D(η)]

= 1

π

∫
〈α|�α0,θ |η + α〉e(ηα∗−η∗α)/2 d2α

= (
2 + 2 cos(θ)e−2|α0|2)−1

e−|η|2/2[2 cosh(α∗
0η − α0η

∗)

+ e−2|α0|22 cosh(α∗
0η + α0η

∗ + iθ)], (2)

where D(η) = exp(ηa† − η∗a) denotes the displacement
operator. The corresponding Wigner function is defined as

Wα0,θ (α) ≡ 1

π2

∫
eη

∗α−ηα∗
χα0,θ (η) d2η. (3)

From now on, let us move to quadrature variables x and p,
defined through α = (x + ip)/

√
2. By defining

σ̃ ≡
( 1

2 0
0 1

2

)
, X ≡

(
x

p

)
, (4)

one can write the Wigner function Wα0,θ (x, p) as follows:

Wα0,θ (x, p) =
(

2π
(
1 + cos(θ)e−(x2

0 +p2
0 )
)√

det σ̃
)−1

×
[
e− 1

2

(
X T −(x0,p0)

)
σ̃−1

(
X−(x0

p0
)
)

+ e− 1
2

(
X T +(x0,p0)

)
σ̃−1

(
X+(x0

p0
)
)

+ e−(x2
0 +p2

0 )
(

e− 1
2

(
X T −i(−p0,x0)

)
σ̃−1

(
X−i(−p0

x0
)
)

+iθ + c.c.
)]
. (5)

The first two Gaussian terms are related to the projectors
|α0〉〈α0| and |−α0〉〈−α0|: they are the Wigner functions of the
two coherent states |α0〉 and |−α0〉. The remaining two terms
correspond to non-diagonal operators and are responsible
for the interference effects which characterize a coherent
superposition.

We now move to the study of a ‘squeezed cat’, defined
as the superposition of two squeezed coherent states. Let
us introduce the operator b by means of a Bogolubov
transformation

b ≡ µa + νa†, with |µ|2 − |ν|2 = 1 (6)

and the states |β〉 as its eigenvectors: b|β〉 = β|β〉. Such states
are known in the literature as ‘two-photon coherent states’ and
are indeed squeezed coherent states, according to the following
well known relation [13]:

|β〉 = D(α)S(r0, ϕ0)|0〉, (7)

with the requirements

α = µβ − νβ∗, cosh r0 = µ, ei2ϕ0 sinh r0 = ν,

(8)
and the squeezing operator defined as S(r, ϕ) = exp

(
1
2re−i2ϕa2

− 1
2rei2ϕa†2

)
.

We consider the following superposition:

|β0, θ〉 ≡ |β0〉 + eiθ |−β0〉√
2 + 2 cos(θ)e−2|β0|2

, (9)

where the states |∓β0〉 are eigenstates of b: such a state will
be referred to as to a ‘squeezed cat’ state.
The Wigner representation of the state |∓β0〉 can be easily
found by recalling that a two-photon coherent state |β0〉 may
also be written as

|β0〉 = S(r0, ϕ0)D(β0)|0〉,

with the squeezing parameters r0 and ϕ0 determined by
equation (8). This means that one can promptly derive the
Wigner function Wβ0,θ of a squeezed cat state by simply
replacing α0 with β0 in equation (3) and then applying a
squeezing transformation. In the following we will set ϕ0 = 0,
without loss of generality, as a reference choice for phase space
rotation.
The squeezing transformation implemented by S(r0, 0)
corresponds, in terms of the phase-space variables X = (x

p

)
,

to the map

X → R−1 X, with R = diag(er0 , e−r0 ). (10)

Applying such a transformation to the coherent cat Wigner
function eventually yields

Wβ0,θ (x, p) = 1

2π(1 + cos(θ)e−(x2
0 +p2

0))
√

det σ0

×
[
e− 1

2

(
X T −(x0,p0)R

)
σ−1

0

(
X−R(x0

p0
)
)

+ e− 1
2

(
X T +(x0,p0)R

)
σ−1

0

(
X+R(x0

p0
)
)

+ e−(x2
0 +p2

0)
(

e− 1
2

(
X T −i(−p0,x0)R

)
σ−1

0

(
X−iR(−p0

x0
)
)

+iθ + c.c.
)]
,

(11)

with
σ0 ≡ Rσ̃R. (12)

Of course, for r0 = 0 and β0 = α0, one recovers equation (3)
for a coherent cat.

3. Time evolution in noisy channels

We now consider the evolution in time of an initial squeezed cat
state put in a noisy channel, in the presence of damping and/or
pumping toward an asymptotic squeezed thermal state. The
system is governed, in the interaction picture, by the following
master equation [13]:

�̇ = �

2
N L[a†]� +

�

2
(N + 1)L[a]� − �

2
(M∗ D[a]�

+ M D[a†]�), (13)

where the dot stands for the time derivative, the Lindblad
superoperators are defined by L[O]� ≡ 2O�O† − O† O� −
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�O† O and D[O]� ≡ 2O�O − O O� − �O O , and M is the
correlation function of the bath (which is usually referred to as
the squeezing of the bath). It is in general a complex number
M ≡ M1 + iM2, while N is a phenomenological parameter
related to the purity of the asymptotic state. Positivity of the
density matrix imposes the constraint |M|2 � N(N + 1). At
thermal equilibrium, i.e. for M = 0, N coincides with the
average number of thermal photons in the bath.

As is well known, equation (13) can be transformed
into a linear Fokker–Planck equation for the Wigner function
of the system [13]. Moreover, the Gaussian solutions of
such an equation have been thoroughly analysed in previous
works [5, 14]. The initial condition we consider here is
described by the Wigner function Wβ0,θ of equation (12),
which is just a linear combination of Gaussian terms.
Therefore, its evolution in the noisy channel can be followed
straightforwardly by exploiting the general results derived
in [14]: each Gaussian term evolves independently and it
suffices to follow the time dependence of its first and second
statistical moments.

Let σi j ≡ 1
2 〈x̂i x̂ j + x̂ j x̂i〉 − 〈x̂i 〉〈x̂ j 〉 and X0i ≡ 〈x̂i〉

be, respectively, the covariance matrix and the vector of the
first moments of a Gaussian state (x̂1, x̂2 = x̂ , p̂ being the
quadrature phase operators). Then, the time-evolution of σ(t)
and X0(t) in the squeezed thermal channel is described by the
following equation [14]:

X0(t) = e− �
2 t X0(0), (14)

σ(t) = σ∞(1 − e−�t ) + σ(0)e−�t , (15)

with σ∞ =
( (2N+1)+2M1

2 M2

M2
(2N+1)−2M1

2

)
. (16)

The time-dependent solution for the Wigner function Wβ0,θ (t)
of an initial squeezed cat is thus readily found and reads

Wβ0,θ (x, p) =
(

2π
(
1 + cos(θ)e−(x2

0 +p2
0 )
)√

det σ(t)
)−1

×
[
e− 1

2 (X
T −e− �

2 t
(x0,p0)R)σ(t)−1

(
X−e− �

2 t R(x0
p0
)
)

+ e−(x2
0 +p2

0 )

×
(

e− 1
2

(
X T −ie− �

2 t
(−p0,x0)R

)
σ(t)−1

(
X−ie− �

2 t R(−p0
x0
)
)

+iθ + c.c.
)

+ e− 1
2

(
X T +e− �

2 t
(x0,p0)R

)
σ(t)−1

(
X+e− �

2 t R(x0
p0
)
)]
, (17)

with σ(t) given by equations (15) and (16). The first moments
of each Gaussian term are exponentially damped in the
channel. Any initial cat state is attracted toward an asymptotic
centred squeezed thermal state with Wigner function

W∞(x, p) = e− 1
2 X T σ−1∞ X

π
√

det σ∞
. (18)

This state, like all asymptotic quantities, is a property of the
channel and does not depend on the initial state.

4. Decoherence of an initial cat state

In order to quantify decoherence of the state caused by
environmental noise, we consider the loss of purity. The degree
of purity of a continuous variable quantum state � can be

effectively characterized either by its Von Neumann entropy
SV ≡ −Tr(� ln �) or by its linear entropy Sl

Sl ≡ 1 − Tr(�2) ≡ 1 − µ = 1 − π

2

∫
R2

W 2 dx d p. (19)

In the following we will adopt linear entropy, which can be
conveniently evaluated. The quantity µ = Tr�2, conjugate to
Sl, will be referred to as the ‘purity’ from now on.

For an initial pure cat state (µ = 1) at time t = 0, the
asymptotic value µ∞ can be obtained from equation (18) by
straightforward integration [14]

µ∞ = 1

2
√

det σ∞
= 1√

(2N + 1)2 − 4|M|2 . (20)

At finite times the purity of a decohering cat can be determined
by integrating the function Wβ0,θ (x, p) given by equation (17),
according to equation (19). The integration can be promptly
performed with the help of the following thumb rule:

if X1 ≡
(

x − x1

p − p1

)
, X2 ≡

(
x − x2

p − p2

)

and X̄ ≡
(

x1 − x2

p1 − p2

)
,

then
∫

e− 1
2 X T

1 σ−1 X1 e− 1
2 X T

2 σ−1 X2 dx d p

= π
√

det σe− 1
4 X̄ T σ−1 X̄ . (21)

Exploiting the above rule one eventually has

µβ0,θ (t) =
(

8
(
1 + cos(θ)e−(x2

0 +p2
0 )
)2√

det σ(t)
)−1

×
[
2
(
1 + e−e−�t X T

0 S(t)X0
)

+ 2e−2(x2
0 +p2

0)

× (
cos(2θ) + ee−�t X T

0 T(t)X0
)

+ 4e−(x2
0 +p2

0) cos(θ)

× (
e−e−�t(x0+ip0)

2 A(t) + c.c.
)]
, (22)

with

A(t) ≡ Sxx(t) − Spp(t)− 2iSxp(t)

4
(23)

and

S(t) ≡ Rσ(t)−1R, T(t) ≡ (det σ)−1S(t)−1. (24)

Equation (22) shows that µβ0,θ is a decreasing function of
the initial parameters x0 and p0. This should be expected:
the ‘bigger’ the cat is, the faster it decoheres. For β0 = 0
the superposition disappears and the cat state reduces to a
centred squeezed state; the latter, whose evolution in noisy
channels has been studied in [14], decoheres more slowly than
the corresponding cat state. The numerical analysis shows
that the phase θ has little effect on the behaviour of purity at
large times: in fact, as is evident from equation (22), all the
terms involving θ are suppressed by Gaussian terms of the form
exp(−x2

0 − p2
0). In figure 1 the behaviour of the purity over

the full temporal range up to the asymptotic regime is shown
for various choices of the parameters of the channel and of the
initial state.

One feature which is most evident in all instances is the
fast initial fall of the purity. Although the minimum value
of the purity attained in such a steep descent can vary, the
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Figure 1. Evolution of the purity for different initial cat states and
channels. In all cases the asymptotic purity of the bath is µ∞ = 0.5.
The dotted curve shows the behaviour of an initial cat with
x0 = p0 = 1 and r0 = 0 in a non-squeezed channel. The dashed and
the continuous curves refer to an initial cat with x0 = p0 = 100 and
r0 = 0 evolving, respectively, in a non-squeezed channel and in a
squeezed channel with M = 2 + 2i. The dot–dashed curve refers to
an initial cat state with x0 = p0 = 10 and r0 = 2, evolving in a
non-squeezed channel.

temporal scale in which the minimum is reached is always of
the order of �−1, which is indeed the only time characterizing
the losses in the channel. Besides, it can be seen that the general
behaviour of purity in squeezed baths is almost the same as in
non-squeezed ones. One can also see that the value of the first
minimum of the purity depends drastically on the squeezing
parameter r0, decreasing with greater r0, while, for a given
squeezing parameter, an increase in the parameters x0 and p0

delays the reaching of the asymptotic purity (see figure 1).

5. Optimal regimes

Optimal regimes with minimized decoherence can be
determined by maximizing the purity at any given time for fixed
values of the parameters of the channel and of the initial state.
Notice that, as we have shown in the previous section, a cat-
like state decoheres on a timescale of the order of the photon
lifetime �−1, regardless of the choice of the parameters of
both the Gaussian reservoir and the initial pure cat state. This
fact is a manifestation of a fundamental feature of quantum
mechanics: once a single photon is added or lost, all the
information contained in a coherent superposition ‘leaks out to
the environment’ and is therefore lost as well, together with the
possibility of detecting such a coherent behaviour by means
of interferometry [15, 16]. A simple, meaningful example
in this respect is just a coherent even cat |α0, 0〉 subjected
to damping. Under the loss of a photon, such a state jumps
into a|α0, 0〉 ∝ |α0, π〉, which is an odd cat and has opposite
interference terms. Therefore, as soon as the probability of
losing a photon reaches 0.5, the original superposition turns
into an incoherent mixture of an even and an odd cat, whose
interference terms cancel out each other exactly [16].

Actually, a more detailed analysis would reveal that
decoherence times are even shorter than �−1: for a coherent
cat |α0, θ〉 evolving in a thermal environment, coherence is
lost at tdec = �−1/2|α0|2 [4]. In view of these considerations,
we are interested in maximizing the purity in the time region
�t � 1/2|β0|2.

A relevant question in such a context is the following:
given an initial bath and an initial squeezing of the cat-like
state, which is the optimal phase space direction ofβ0 ≡ |β0|eiξ

at fixed |β0|? Note that the last condition can be seen as a

constraint on the energy of the cat-like state. Obviously, for
a non-squeezed cat in a thermal channel, the symmetry of the
problem forbids the existence of a privileged direction.

Interesting issues come instead from the consideration
of a squeezed cat in a thermal channel and a non-squeezed
cat in a squeezed bath. For the moment, let us consider the
instance of an even cat, i.e. of a cat with coherent phase θ = 0.
The dependence of the purity on β0 is essentially contained
in exponentials of quadratic forms, see equation (22). The
algebraic analysis of such terms in the case of a squeezed cat
in thermal baths and of a coherent cat in squeezed baths is
quite easy (see appendix). If the squeezing is performed on the
initial cat state, the coherence is better preserved if β0 is chosen
in the same phase space direction as the variance which is
suppressed by squeezing. With our notation, this corresponds
to ξ = ϕ0 +π/2 (where ϕ0 is the squeezing angle). In contrast,
if the squeezing is performed on the bath in the direction ϕ∞,
the choice ξ = ϕ∞ turns out to be the best one to slow down the
rate of decoherence. This somewhat counterintuitive situation
is due to the existence of complex fringe patterns of a cat
state in phase space, especially in the presence of squeezing.
Actually, preserving quantum coherence is crucially related to
the persistence of the interference fringes: reducing quantum
fluctuations in a phase space direction protects the fringes
from degradation and the cat state from decoherence. With
the above expedient choices of the phase ξ , squeezing does
actually improve the coherence of the superposition at small
times with respect to dissipation in a phase insensitive setting.
This result, obtained by the exact computation of the purity
during the evolution, complies with the results of [5], in which
the coherence of the evolving state was evaluated by analysing
the interference patterns of homodyne detections.

Now, let us suppose that for an even cat state the phase ξ is
optimally chosen and let us consider a channel with asymptotic
purity µ∞. It can be easily shown (see the appendix) that
the purity of an initially squeezed cat (with squeezing r ) in
such a thermal channel equals, at any given time, that of a
non-squeezed cat evolving in a squeezed channel with the
same squeezing r . The same protection against decoherence
provided by the squeezing of the bath can be obtained, in a
thermal phase insensitive channel, by squeezing the initial even
cat state of the same amount in an orthogonal direction.

We finally remark that, with an optimal phase setting, an
optimal finite value of the squeezing parameter r does indeed
exist (see figure 2). This fact can be best appreciated from
equation (22): even if the exponential terms increase with
increasing r , the factor det σ−1/2 decreases with r . The value
of r allowing the maximum slowing down of decoherence
increases with increasing |β0|.

We now briefly consider the instance θ = π/2 [2, 17]: in
such a case, the last term in equation (22) vanishes, so that the
optimal choice for ξ can be easily found for any choice of r0 , r∞
andϕ∞. To this end, it is sufficient to determine the eigenvector
corresponding to the smallest eigenvalue of the matrix S(t)−1,
which coincides with the analogous eigenvector of R−1σ∞R−1

and does not depend on time. However, we once again stress
that, as soon as one deals with mesoscopic cat states (so that
exp(−|β0|2) 
 1), the dependence on the coherent phase θ is
severely suppressed and all the considerations made for even
cat states still hold, regardless of the choice of θ . Results for the
evolution of purity at small times are summarized in figure 2.
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Figure 2. Comparison between the evolution of purity of an initial
non-squeezed cat in a non-squeezed bath (continuous curve) and of
initial cats in squeezed configurations with optimal phase choices.
The dashed curve refers to an initial squeezed cat with r0 = 1,
whereas the dotted curve refers to an initial squeezed cat with
r0 = 1.5. In all instancesµ∞ = 0.5, |β0|2 = 16, and θ = 0. The
decoherence time for the non-squeezed cat is tdec � 0.03�, in good
agreement with the initial decrease of purity. The choice r0 � 1
appears to be optimal for such a value of |β0|.

6. Conclusions

The study of the decoherence of initial coherent and squeezed
coherent cat states in arbitrary Gaussian reservoirs has been
carefully carried out by determining the exact time evolution
of the purity of the state. Optimal settings that minimize
the rate of decoherence in relevant configurations have been
determined.

In particular, we have shown that the same protection
against decoherence granted by a squeezed bath can be
achieved by squeezing the initial cat-like state. In view
of the well known difficulties involved in the experimental
realization of squeezed baths, even as effective descriptions
of feedback schemes [7], this equivalence could provide a
relevant alternative option for experimental purposes.
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Appendix

In this appendix we analytically single out the optimal phase
space orientations of the cat state for the configurations
discussed in section 5. The orientation of the cat state is
determined by the angle ξ = arg(β0). In the following
we will set θ = 0 and define, for ease of notation, u ≡
(1 − exp(−�t))/2µ∞ and v ≡ exp(−�t)/2. The squeezing
parameter r∞ of the bath is determined by cosh(2r∞) =√

1 + 4µ2∞|M|2 [14].
We first consider a squeezed cat in a thermal channel, with

r0 �= 0 = r∞. In this instance, one has

S(t) = diag{e2r0 (u + e2r0v)−1, e−2r0 (u + e−2r0v)−1},

and
A(t) = (2 det σ(t))−1u sinh(2r0).

Substituting these expressions in equation (22), it is easy to
see that, for fixed 2|β0|2 = x2

0 + p2
0 , all the exponential terms

are maximized by the choice x0 = 0, p0 = √
2|β0|. This

corresponds to ξ = π/2 = ϕ0 + π/2.
Analogously, for a non-squeezed cat in a squeezed channel

(with r0 = 0 �= r∞), one gets4

S(t) = diag{e−2r∞(u + e−2r∞v)−1, e2r∞ (u + e2r∞v)−1},

and
A(t) = −(2 det σ(t))−1u sinh(2r∞).

Equation (22) shows that the choice x0 = √
2|β0|, p0 = 0

(corresponding to ξ = 0 = ϕ∞) is optimal in this case.
Finally, it is easy to verify that, adopting such optimal

choices and putting r0 = r∞, all the exponential terms entering
equation (22) take the same values for a squeezed cat in a
thermal channel and a non-squeezed cat in a squeezed channel.
Since det σ depends only on the difference |r0 − r∞| [14], this
implies that the time evolutions of purity are identical in these
two instances.
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