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Abstract. We discuss the implications of quantum-classical Yule-Simpson effect for quantum hypothesis
testing in the presence of noise, and provide an experimental demonstration of its occurrence in the problem
of discriminating which polarization quantum measurement has been actually performed by a detector box
designed to measure linear polarization of single-photon states along a fixed but unknown direction.

1 Introduction

The Yule-Simpson effect [1–4] in statistics occurs when the
correlations observed within different samples are reversed
when the sampled are combined together. Although no ac-
tual mathematical paradox is involved, the Yule-Simpson
effect has an impact on statistical inference, since the ag-
gregated data and the partitioned ones may suggest oppo-
site conclusions. Two forms of the Yule-Simpson effect in
quantum measurements has been recently introduced in
reference [5] and their occurrence in qubit systems have
been experimental verified [6]. The possible connections of
the effect with high order Bell-Tsirelson inequalities have
been also explored [7].

In this paper we discuss the implications of quantum-
classical Yule-Simpson effect for quantum hypothesis test-
ing in the presence of noise. In particular, we demonstrate
its occurrence in the problem of discriminating which po-
larization quantum measurements has been actually per-
formed by a given detector box, designed to measure lin-
ear polarization of single-photon states along one of two
possible directions.

Suppose that you are given a box, which may imple-
ment two possible dichotomic measurements A = {ΠA, −
ΠA} and B = {ΠB, − ΠB} on a given system, and you
have to infer which measurement has been performed on
the basis of the results of the measurement. To this aim,
you may probe the measuring box M times by suitably
prepared states of the system. In our scheme the box
is performing (linear) polarization measurements along a
given direction, or along a slightly tilted one. Let us denote
by θ the possible tilting angle. The two measurements are
thus described by the operator measures ΠA = |0⟩⟨0|, |0⟩
describing vertical polarization in the given direction, or
ΠB = |0⟩θθ⟨0|, where |0⟩θ = cos θ|0⟩ + sin θ|1⟩ [8].
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In order to discriminate which measurement has been
actually performed, one sends some probe signal and take
a decision on the basis of the measurement results. As for
example, we may send photons with a definite polariza-
tion state, e.g. ϱ0 = |0⟩⟨0|, corresponding to linear ver-
tical polarization along the given direction. In this case
the detector always returns the “0” outcome if the box is
performing A measurement, while some fraction of “1” is
expected in case of the B measurement. More precisely,
the probabilities of obtaining the outcome “0” with the
two measurements are given by:

p1 = ⟨0|ΠA|0⟩ = 1

q1 = ⟨0|ΠB|0⟩ = |⟨0|0⟩θ|2 =
1
2
(1 + cos 2θ). (1)

Let us now admit that some external perturbation may in-
troduce some noise in the preparation stage of the probe
signal. In particular, we assume that if the noise is present
then the probe is prepared in a mixture of states hav-
ing linear vertical polarization along a random direction,
tilted by small angle α from the given axis. In order to
make minimal assumptions on the nature of the pertur-
bation, we take the angles α distributed according to a
Gaussian with zero mean. In this case the polarization
state of the probing photons is described by the density
operator

ϱ∆ ≡ D∆(ϱ0) =
∫

dα
e−

α2

2∆2

√
2π∆2

|0⟩αα⟨0|, (2)

where ∆ ≪ 2π, such that the integral may be safely eval-
uated over the entire real axis. The probabilities of get-
ting the “0” outcome for the two measurements are now
given by:

p2 = ⟨0|ϱ∆|0⟩ =
1
2
(1 + δ)

q2 = θ⟨0|ϱ∆|0⟩θ =
1
2
(1 + δ cos 2θ), (3)
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where δ = exp(−2∆2) represents the smearing effects of
the preparation noise.

At first sight, the presence of preparation noise is not
changing the picture. Indeed, we have that p2 is larger
that q2, such that one still expects a larger number of “0”
outcomes when the box is performing the A measurement.

On the other hand, and this is the data aggregation
problem that we mention in the title of the paper, if we do
not know how many times the perturbation in the prepa-
ration state occurred, it could happen that the overall
probability of the event “0” is larger for the B measure-
ment than for the A measurement, i.e. we may expect
more “0” by measuring polarization along the tilted di-
rection than with the original one. In order to understand
how this may happen, let us denote by γ = M0/M the
fraction of runs where the box is probed by the state ϱ0.
The overall density operator describing the polarization
state of the probing photon is given by:

ϱγ ≡ Φγ∆(ϱ0) = γ ϱ0 + (1 − γ) ϱ∆ (4)

which may be seen as the output state from an overall
two-parameter noisy channel described by the map

Φγ∆ = γI + (1 − γ)D∆, (5)

being I the identity channel and D∆ the phase-diffusion
one, introduced in equation (2).

The probabilities of the “0” outcome for the two
measurements is given by:

p = ⟨0|ϱγ |0⟩ = γ p1 + (1 − γ) p2

q = θ⟨0|ϱγ |0⟩θ = γ q1 + (1 − γ) q2. (6)

The data aggregation problem consists in the fact that
there exist frequencies γ1 and γ2 such that γ2q1 + (1 −
γ2)q2 > γ1p1 + (1 − γ1)p2 despite the fact that p1 > q1

and p2 > q2. This happens if

γ2 >
p1 − p2

q1 − q2
γ1 +

p2 − q2

q1 − q2
,

i.e.

γ2 >
γ1

cos 2θ
+

δ

1 − δ

1 − cos 2θ

cos 2θ
.

Remarkably, the above relation may be satisfied by some
pairs of frequencies γ1 and γ2 whenever δ < 2 cos 2θ. For
fixed frequencies the effect takes place if the preparation
noise is larger than a threshold, corresponding to:

δ <
γ1 − γ2 cos 2θ

γ1 − 1 − (γ2 − 1) cos 2θ

θ≪1≃ 1 − 2θ2

γ2 − γ1
.

Summarizing, we probe the detector box by a pair of pos-
sible preparations, described by the density operators ϱ0

and ϱ∆, corresponding to negligible noise acting on the
probe (ϱ0) or to the presence of non-negligible noise de-
scribed by Gaussian mixing (ϱ∆). After the measurement,
we aim to infer which polarization has been actually mea-
sured on the basis of the number of, say, “0” outcomes

Fig. 1. (Left): basic blocks of the experiment. A light beam
which may be subject to Gaussian polarization diffusion (∆ is
the standard deviation) enters in a detector box which contains
a linear polarization analyzer set at an angle 0 or θ with re-
spect to a reference axis. (Right): Schematic diagram of the ex-
perimental apparatus. A β-barium borate crystal (NC, length
3 mm), pumped by a linearly polarized cw 405 nm diode laser,
is the source of horizontally polarized photon pairs via para-
metric down-conversion. Then the polarization is set at 45◦

by an half-wave-plate (HWP). The ideal scheme is simulated
introducing a proper phase shift by a phase modulator (PM)
and a polarizer (P) set a 45◦. (F) is a long-pass filter (cut-on
wavelength = 780 nm) and (Det) is a single photon detector.

recorded after M = M0 + M∆ repeated measurements,
where Mj is the number of runs where the system was
prepared in the state ϱj , j = 0, ∆. If we know which prepa-
ration ϱj has been used in each run, i.e. we know when
the noise is present, then we are able to make a definite
inference, say A measurement if pj > qj , independently
on the number of runs. On the other hand, if we ignore
the information about which preparation has been sent to
the box in each run, i.e. we aggregate data because we do
not know whether the noise was present or not, then we
may reach the opposite conclusion, depending on the rel-
ative weight M0/M∆ of the samples. This is a manifesta-
tion of the quantum-classical Yule-Simpson effect, which
may easily occur when discriminating measurement ap-
paratuses in the presence of noisy channels described by
maps of the form (5). Overall, there is no mathematical
paradox: still the aggregated data and the partitioned ones
may, in fact, suggest opposite conclusions. The effect is
referred to as quantum-classical YS effect since it occurs
in quantum measurements due to classical uncertainty in
the preparation of the probe signals, i.e. to the presence
of mixed probes. An analogue quantum-quantum YS effect
may indeed occur with superpositions [5].

In the next sections we describe and discuss an
experimental scheme where the above effect takes place.

2 Experimental apparatus

The logical scheme of the experiment, corresponding to
the situation described in Section 1, is shown in the left
panel of Figure 1, whereas the experimental setup is shown
in the right panel of the same figure. We work with photon
polarization since this is a degree of freedom which may
be reliably controlled. In turn, it has been already shown
that the noise model introduced in the previous section
may be reliably implemented [9,10].
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A linearly polarized cw 405 nm diode laser (New-
port LQC405-40P) pumps a β-barium borate crystal (NC,
length 3 mm) cut for type-I down conversion with the op-
tical axes aligned in the horizontal plane. The non-linear
crystal is used as a source of horizontally polarized pho-
ton pairs via parametric down conversion. We use an half-
wave-plate (HWP) to set the polarization at 45◦. Then,
in order to obtain a scheme equivalent to that of the left
panel of Figure 1, we use a phase modulator and a polar-
izer set at 45◦ (see below). Finally, we have a long-pass
filter (cut-on wavelength = 780 nm) to reduce the back-
ground and an home-made single photon detector (Det).
With the phase modulator it is possible to introduce an
arbitrary phase shift φ between the horizontal (H) and
the vertical (V) polarization. After the polarizer set a 45◦
the probability to see a photon is thus 1

2 (1 + cosφ). The
acquisition consist of 200 iterations. For each iteration we
acquire 4 counts, each within a temporal window of 1 sec-
ond: N1p are the counts obtained for φ = 0, N1q are for
the setting φ = 2θ, N2p corresponds to φ = −2α, and
N2q to φ = 2(θ−α), where α is randomly sampled from a
Gaussian distribution of zero mean and variance ∆. Since,
according to equation (1), for φ = 0 we have p1 = 1,
then N1p is used as a normalization to estimate the other
probabilities as follows:

q1 = N1q/N1p p2 = N2p/N1p q2 = N2q/N1p.

After the acquisition of the four counts, we emulate the
lack of knowledge about the preparation of the probe by
mixing the Np and the Nq data according to a pair of
dichotomic distributions (γ1, 1 − γ1) and (γ2, 1 − γ2). We
thus obtain online the ratios q1/p1 and q2/p2, as well as
q/p, together with their corresponding uncertainties.

3 Results

Experimental results are summarized in Figure 2. In the
left panel we show the ratios q2/p2 (blues circles) and q/p
(red squares) as a function of the preparation noise pa-
rameter ∆ for fixed values of the frequencies γ1 = 0.1,
γ2 = 0.8 and for the alternative measurement taken at
θ = 25◦ = 5

36π rad (the ratio q1/p1 is smaller than unit
by construction). Data are in excellent agreement with
the theoretical predictions of equations (3) and (6) (solid
lines) and confirm the occurrence of the YS effect in quan-
tum hypothesis testing in the presence of noise. For our
choice of γ1, γ2 and θ the noise threshold for the YS effect
was ∆ > ∆th ≃ 0.558 rad.

In the right panel we show the ratios q2/p2 (blue cir-
cles) and q/p (red squares for γ1 = 0.05 and black trian-
gles for γ1 = 0.4) as a function of probability γ2 for a fixed
value of the preparation noise ∆ = 2

9π rad and for the al-
ternative measurement taken at θ = 5

36π rad. Data are
in excellent agreement with the theoretical predictions of
equations (3) and (6) (solid lines), confirming that q2/p2

is independent on the choice of the probabilities γ1 and γ2,
and showing that YS effect may occur for increasing γ2.
The vertical line denotes the threshold for the occurrence
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Fig. 2. (Left): the ratios q2/p2 (blue circles) and q/p (red
squares) as a function of the preparation noise parameter ∆
for fixed values of the frequencies γ1 = 0.1, γ2 = 0.8 and for
the alternative measurement taken at θ = 5

36π rad. Solid lines
denotes the theoretical predictions of equations (3) and (6).
The vertical line denotes the noise threshold for the occurrence
of the YS effect at the given values of γ1, γ2, and θ, i.e. ∆th ≃
0.558 rad. (Right): the ratios q2/p2 (blue circles) and q/p (red
squares for γ1 = 0.05 and black triangles for γ1 = 0.4) as a
function of probability γ2 for a fixed value of the preparation
noise ∆ = 2

9π rad and for the alternative measurement taken
at θ = 5

36π rad. Solid lines denotes the theoretical predictions
of equations (3) and (6). The vertical line denotes the threshold
for the occurrence of the YS effect for γ1 = 0.05 and at the
given values of θ and ∆, i.e. γ2 = 0.414 (no YS effect for
γ1 = 0.4). Notice that the q/p data in the right panel have
been slightly shifted to the right for clarity but they have been
collected for the same values of γ2 as the q2/p2 ones.

of the YS effect for γ1 = 0.05 and at the given values of θ
and ∆, i.e. γ2 = 0.414, whereas, as expected, no YS effect
occurs for γ1 = 0.4.

4 Conclusions

In this paper, we have discussed the implications of
quantum-classical Yule-Simpson effect for quantum hy-
pothesis testing and demonstrated its occurrence in the
problem of discriminating which polarization quantum
measurements has been actually performed by a given box,
with the two possible detectors designed to measure linear
polarization of single-photon states along slightly differ-
ent directions. If noise affects the preparation stage, one
is actually probing the box with two different kinds of sig-
nals, the unperturbed one and its noisy version. Since one
usually ignores which preparation actually arrived at the
detector in each run, data from the two preparations are
aggregated and one may reach opposite inference, depend-
ing on the noise occurrence rate. This is a plain manifesta-
tion of the quantum-classical Yule-Simpson effect, which
may easily occur when discriminating measurement ap-
paratuses in the presence of noise. Overall, there is no
mathematical paradox: still the effect is puzzling for what
concerns statistical inference, since the aggregated data
and the partitioned ones may, in fact, suggest opposite
conclusions.
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