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We address the dynamics induced by collective atomic recoil in a Bose-Einstein condensate in the presence
of radiation losses and atomic decoherence. In particular, we focus on the linear regime of the lasing mecha-
nism, and analyze the effects of losses and decoherence on the generation of entanglement. The dynamics is
that of three bosons, two atomic modes interacting with a single-mode radiation field, coupled with a bath of
oscillators. The resulting three-mode dissipative Master equation is solved analytically in terms of the Wigner
function. We examine in details the two complementary limitshigh-Q cavity and bad cavity the latter
corresponding to the so-called superradiant regime, both in the quasiclassical and quantum regimes. We found
that three-mode entanglement as well as two-mode atom-atom and atom-radiation entanglement is generally
robust against losses and decoherence, thus making the present system a good candidate for the experimental
observation of entanglement in condensate systems. In particular, steady-state entanglement may be obtained
both between atoms with opposite momenta and between atoms and photons.
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I. INTRODUCTION herence. However, in view of an experimental observation of

The experimental realization of Bose-Einstein condensa€ntanglement, a detailed analysis of the sources of noise is in
tion opened the possibility to generate macroscopic atomi€rder, which in turn may be a serious limitation for entangle-
fields whose quantum statistical properties can in principlénent in CARL [15]. Also, it has not yet been proved that
be manipulated and controllgd]. The system considered BEC superradiance experiments may generate entangled
here for this purpose is an elongated Bose-Einstein conde@tom-photon states, as it has been conjecturgdOh This
sate(BEC) driven by a far off-resonant pump laser of wave issue is investigated in this paper, where we demonstrate the
vectork,=wp/c along the condensate long axis and coupledentangled properties of the atom-atom and atom-photon pairs
to a single mode in an optical ring cavity. The mechanism aproduced in the linear stage of the superradiant CARL re-
the basis of this kind of physics is the so-called collectivegime in a BEC.
atomic recoil lasingCARL) [2] in its full quantized version The aim of the present work is to analyze systematically,
[3-6]. In CARL the scattered radiation mode and the atomicpy solving the three-mode Master equation in the Wigner
momentum side modes become macroscopically occupiegépresentation, the effects of losses and decoherence on the
via a collective instability. A peculiar aspect of the quantumgeneration of entanglement. We will investigate the effects of

regime is the possibility of populating single momentumsgither 4 small atomic decoherence or a finite mirror transmis-
modes separated bp=2#k, off the condensate ground gjon of the optical cavity, and then analyze in details the
state with zero initial momentum. The experimental Observa'generation of entanglement in the superradiant regime

tion of CARL in a BEC has been until now realized in the ; :
. ) : X . where the cavity losses are important.
so-called superradiant reginié-9, i.e., without the optical The paper is structured as follows. In Sec. Il we briefly

cavity. In this case the radiation is emitted along the “end-fire__ . . . : .
modes” of the condensatel0] with very large radiation review the ideal dynamics and derive the general solution of

losses(in the mean field model, with 2= c/L, where X is the Master equa?ion. In Sec. Il we consider the evolution of
the radiation intensity decay rate ahdis the condensate the system St"’!”'“g from the vacuum and calcula?e the rel-
length. Recent experiments reported [itil] represent a re- evant expectation values, such as average _and variance of the
alization of CARL in a ring cavity for a noncondensate ccupation number and two-mode squeezing parameters. In
sample of cold atoms. The apparatus is very promising an§€c- |V the different working regimes are introduced and the
makes it likely that CARL experiments with BECs in an dynamics analyzed, whereas in Sec. V we investigate three-
optical cavity will be performed in the near future. and two-mode entanglement properties of the system as a
Recent works have shown that atom-atom or atom-photoftinction of loss and decoherence parameters. Section VI
entanglement and squeezify12,13 can be produced in the closes the paper with some concluding remarks.
linear regime of CARL, in which the ground state of the
condensate remains approximately undepleted. In this re-
gime, the atomic multimode system can be described by only
two momentum side modes, with=+2%k,. Furthermore, We consider a one-dimensiondlD) geometry in which
this source of entanglement has been also proposed for an off-resonant laser pulse, with Rabi frequetity=dE,/%
quantum teleportation scheme among atoms and photorerhered is the dipole matrix element arf, is the electric
[14]. field amplitud¢ and detuned from the atomic resonance by
The results presented [6,12,13 refer to the ideal case of Ay=w,—wy, is injected in a ring cavity aligned with the sym-
a perfect optical cavity and an atomic system free of decometry z axis of an elongated BEC. The dimensionless posi-

II. DISSIPATIVE MASTER EQUATION
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tion and momentum of the atom along the aZisare 6 do

=2k,z and p=p,/2fik,. The interaction time isr=pwt, d_i =—i[H,0]+2yL[&1]0 + 2y,L[&;]0 + 2«L[&;]0,
where w,=2%k%/m is the recoil frequencym is the atomic
mass, p=(Qo/ 280)?}(w,d?N/ Vieyw?)? is the CARL pa- (4)
rameterN is the number of atoms in the cavity mode volume here v1, v, and « are the damping rates for the modgs
V and g, is the permittivity of the free space. andL[&] is the Lindblad superoperator

In a second quantized model for CARB,6] the atomic
field operator¥’(6) obeys the bosonic equal-time commuta- 215 =4 5aT - Lata s Lhats

P (6) obey q L[&]e =408/ - Sa/a0 - 5044 (5)

tion relations [W(6),¥1(0)]=8(0-0"), [V(6),¥(#)]=0,
and the normalization condition j%ﬂ dg\ir(g)T\ir(g):N_ We The atomic decay stems from coherence loss between the

assume that the atoms are delocalized inside the condensatedepleted ground state wih)=0 and the side modes with
and that, at zero temperature, the momentum uncertaity P-= +2fik,. In general, we assume that the two atomic modes

can be neglected with respect tHk3 may have different decoherence rates, depending on the di-
In this limit, we can introduce creation and annihilation rection of recoil [9]. The radiation decay constant is
operators for an atom with a definite momentymi.e., =CT/2L, whereT is the transmission of the cavity antlis

the cavity length. Through a standard proced[k§], the
Master equation can be transformed into a Fokker-Planck
equation for the Wigner function of the stage

\if(a):Em Cr(0|m), wherep|m)=m|m) (with m=—-c, ... ),
(0)my=(1/v2m)expiimé) andc,, are bosonic operators obey-
ing the commutation relation€,,,, &1]= 8, and [&,, &,]=0.

The Hamiltonian in this case ] S
Wlaazasn = | 17560 xbbatsn, ©
0 i=1
A= S LIPS PO H 573 :
= o Crln *1 ZN(a CC1—H.c)(-da'a, where a; and & are complex numbers andis the charac-
n=-ox

teristic function defined as
1) o .
x(€1,6,&5,7) = T 0(7)D1(£1)Do(£,)D3(£3)], (7)
wherea is the annihilation operatawith [&,a]=1) for the R At )
cavity mode(propagating along the positive direction of the WhereD;(§)=exp§;aj - &) is a displacement operator for
z axis) with frequencyw and 6= (w,— wy)/pw; is the detun- the jth mode. Using the differential representation .of the
ing with respect to the pump frequenay. Let us now con- Lindblad superoperator, the Fokker-Planck equation is
sider the equilibrium state with no photons and all the atoms W X
at rest, i.e., withWo)=yN|0). Linearizing around this equi- P (u"TAu +c.c)W+u'Du”’ W, (8
librium state and defining the operatoés=¢_,€%", & T
g p B=C1€", &
=¢,e7'%", andag=ae™'?", the Hamiltonian(1) reduces to that where
for three parametrically coupled harmonic oscillator opera-

* 1% J J
tOI‘S [3,12,13 uT: (a1,a2’a3), U'T: (—*’—’—> (9)
day dap das

= 5,818, - 6.418, +i \/g [(A] +8,)a% - (3, + &})as], andA andD are the following drift andiﬁusion matrices:
(2) Y1 +id 0 - \r’plz
A=l 0 s, o2 |,
where 6,=5+1/p. In Ref. [6] we have explicitly evaluated -2 -\pi2  «
the state evolved from the vacuum of the three modes,
|01,02,03>, as ’yl 0 0
w D=(0 0. 10
o= 3 (000D 0 0 ()
T)= 77— N ~ K
V1+ <ﬁ1> n,m=0 1+(ny) 1+(ny) . .
The solution of the Fokker-Planck equati@®) reads as
. m+n)! :
x @ i(ngzrmeps) (m+n) Im+n,n,m), 3) follows:
m!n!
W(u,7) = f d2uW(ug, 0)G(u, 73U, 0), (12)

where(ﬁi>:<éfé,-> with i=1,2,3 are theexpectation values
of the occupation numbers of the three modes, related by th@hereW(uy, 0) is the Wigner function for the initial state and
constant of motionC=f;-N,—A,. In this paper we extend the Green functioi®(u,t;ug,0) is the solution of Eq(8) for
our previous analysis to include the effects of atomic decothe initial conditionG(u,0;ug,0)=8%(u-ug). The calcula-
herence and cavity radiation losses. In this case the dynami¢i®n of the Green function, the solution of @), is reported
of the system is described by the following Master equationin detail in Appendix A and yields the following result:
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1 _ Giii =CiC;i + CiCyi. (19
G(u,7;Ug,0) = ————exp{- [u = M (D)u,]'Q7 (7 ijkl = CkiCjj + G Gy
’ mdetQ(7) Aol o] In particular, we have
X[u=M(7uo]}, (12
where Giii <n > + <n|> + (20)

fll(T) le(T) flS(T) 1
M(T)EeAT: —f7) fl7)  foq(7) (13 IJIJ <nnj>+ <n|>+ <nj>+Z (i#j). (21)

fia(7)  —fau(n) faa(7)
e e From Egs.(19)<21) it follows that

and A a
. o?(ny) = (P () + 1), (22)
Q(T):J d7’M(7)DM (7). (14) ata a
0 o &aad) 23
BT TR T
In Eq. (13) the complex functiond;;, given explicitly in :
Appendix B, are the sum of three terms proportionad'tt", . n 2
where w,, with k=1,2,3, are thethree roots of the cubic @ Ay _ o 1Gl (24)
equation: () (Ri(hy)’
. , (1. )2 o where o?(n) =(A%)—-(A)?, with i=1,2,3, andi#]j in Eq.
[o=6-i(k= )] 0= ;“7’- +1+ipy-=0 (24). The two-mode number squeezing parameter is calcu-
(15) lated ag[12]
o?(f - fy) _ d?(m) + o?(n) = 2|C; |2
and y.=(y,£y)/2 &ij= ( ) ) )= 26 . (29

() + () (P} + (y)

We observe, from Eq$22) and(23) that the statistics is that
of a chaotic(i.e., therma) state, as obtained in Rei6] for

Let us now assume that the initial state is the vacuum. Théhe lossless case. If the two modes are perfectly number-
characteristic function and the Wigner functionat0 are  squeezed, theg ;=0, whereas if they are independent and

Ill. EVOLUTION FROM VACUUM AND EXPECTATION
VALUES

given by coherent; ;=1. As it will be clear in the following sections,
)3 it is also worth to introduce also the atomic density operator
x(£,0) =exp— £'Co&}, W(u,0)= (-) exp{— u'C;u}, for the linearized matter-wave fieldr () ~[VN+a,ei(¢+57
m +a,e#97]/\27, defined as
(16) N
where£=(¢,, &, &) and the covariance matrix is multiple of A(O) = WT(0)W () = 5(1 +Be(#o7 + BT #7),

the identity matrixCo:%I. Since the initial state is Gaussian
and the convolution in Eq.11) maintains this character we
have that the Wigner function is Gaussian at any time

(26)

where B=(al+a,)/VN is the bunching operator, withB)

1 =0 and
W(u,7) = —F——=—=expi- u'C(nu}. (17)
a \rdetC( ) '*T'\ 1
. o (B'B) = =(C11+ Cpo+ Cio+ Cyy). (27)
After some algebra, we found that the covariance matrix is N
given by The non-Hermitian operatcﬁ} describes amplitude and phase
_ 1 + evolution of the matter-wave grating with a periodicity of
C(n=Q(n)+ EM (DM (1), (18 half of the laser wavelengtf8]
where the explicit form of the element; =((u;—(u))(y; IV. ANALYSIS OF WORKING REGIMES
—(u);)") in terms of the functiong; is reported in Appendix We now investigate the different regimes of operation of

B. Since the state is Gaussian, from Etg) it is possible to  CARL. For the sake of simplicity, we will discuss only the
derive all the expectation values for the three modes. In parease withy; =y,=1, so thaty,=vy andy_=0. In this case the

ticular, C;=1/2+f;), Cip= (alaz) Ci3= (alas) and C,3  cubic equation15) becomes

—<a2a3> The number variances and the equal-time correla- 1

tion functions for the mode numbers are calculated from the [w=-6-i(k- 'y)]<w2 - —2) +1=0. (28)
fourth-order covariance matri;j, ={(u; —(u);)(u;—{u);) (U p

=(uy) " (u=(uy)"), which in turn is related to the covariance We will discuss two pairs of different regimes for CARL, as
matrix as follows: defined in Ref[17], i.e., (i) the semiclassical good-cavity
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1.0

(a)

FIG. 2. Growth rateg=-Imw- 1y vs & for the unstable root of
the cubic equatiorf15) in the quantum limit. In(a) p=0.2, x=0,
and y=0.2,0.5,1; in(b) p=1, y=0, andx=0.5,1,5. Thedashed
lines represent the case=y=0.

FIG. 1. Growth rateg=—Imw—y vs & for the unstable root of
the cubic equatioril5) in the semiclassical limitp=100. In(a) «
=0, andy=0.5,1,2; in(b) y=0 andx=1,5,10. Thedashed lines
represent the case=y=0.

regime (p>1 and k<1); (i) the quantum good-cavity re- in the two regimes: in the first case gain results from the
gime (k¥ < p< 1): (iii) the semiclassical superradiant regimedifference between emission and absorption rates, as in the
oo C - : free-electron-laser gaifi9]; on the contrary, in the quantum
>\2k>1); (iv) the quantum superradiant regim&? . AN ’ N
(p>\2ic>1); (V) g P gim regime absorption is inhibited by the photon recoil shift and

>\2k>p). Also, we note that the case= « is worth special . . T .
: . . L atoms behave as an inverted system, in a similar way as it
attention. In fact, in this case E@28) is independent on occurs in a laser

losses: the effect of decoherence is only a overall factor
exp(—y7) multiplying the functionsf;;, elements of the ma-
trix M. Hence, it is expected that the cage « will have ) ) )
statistical properties similar to those of the ideal case without Figures 3 and 4 show the effect of losses in the semiclas-
losses, as it will be discussed below. sical regime on the atomic populatign,;) (a), and on the
number squeezing parametgr, (b), plotted as a function of

B. Average populations and number squeezing parameter

A. CARL instability

First, we investigate the effect of decoherence and cavity 10000; 7N =05
losses on the CARL instability in the different regimes. For @ /-
large values ofr the functionsf;; of Eqg. (13) grow as 1000
exp(g7), whereg=—Imw-y andw is the unstable root of Eq.
(28) with a negative imaginary part. The exponential iate
a gain when it is positive or a loss when it is negative.

In Fig. 1 we plotg vs § in the semiclassical regime.g.,
p=100 for the good-cavity case«=0) andy=0.5, 1, 2[Fig.
1(a)], whereas the transition to the superradiant regime is
shown in Fig. 1b) for k=1,5,10 andy=0. The dashed line
in Fig. 1 shows the gaig® for the ideal casec=y=0. A « 2
similar behavior is obtained in the quantum regime shown in wF
Fig. 2, whereg is plotted vsé for p=0.2, k=0, and vy
=0.2,0.5,1[Fig. 2a), “quantum good-cavity regimé”and 1
for p=1, y=0, and«x=0.5,1,5[Fig. 2b), “quantum super-
radiant regime]. In the special case where atomic loss
equals cavity lossi.e., wheny=«), g=g© -y, whereg®© is TTTE TS TR o
shown by dashed lines in Figs. 1 and 2. S

Notice thatg is asymmetric around=0 in the “semiclas-
sical regime,” but symmetric aroung:1/p in the “quantum FIG. 3. Semiclassical regime witk=0: (a) (A;) and(b) &, vs
regime.” This is a reflection of the different gain mechanisms for p=100, 7=2, y=0 (dashed ling 0.5, and 1.

<n1>

1004
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FIG. 4. Semiclassical regime with=0: (a) (fiy) and(b) & , vs
6 for p=100, 7=2, k=0 (dashed ling 1, and 5.

FIG. 5. Semiclassical regime fpr=100 ands=3.5:(a) (i;) and
(b) & o vs 7for y=0, k=0 (dashed ling for y=0.2, k=0 (dotted
line), and fory=«=0.5 (continuous ling

6 for p=100 andr=2. Figure 3 shows the effect of the Let us now consider the effect of losses on the quantum
atomic decoherence on the higheavity regime(x=0) for ~ regime. Figure 6 shows the average populatioy) (a) and
y=0 (dashed ling 0.5, and 1. We observe that increasing the atom-photon number squeezing paraméter(b) as a
the population of the mode 1 decreases and the numbeiinction of 7 for 1/p=6=5. Dashed lines in Figs.(& and
squeezing parameté , increases in the region of detuning 6(b) are for k=y=0, the dotted lines are fok=0 and y
whereé, , is less than unity, i.e., where atom-atom number=0.15, and the continuous lines are for y=0.15. We note
squeezing occurs. A similar behavior is observed increasinghat the atomic decoherengee., y) causes a drastic reduc-
the radiation losses in the semiclassical regime as shown ifion of the number squeezing between atoms and photons.
Fig. 4, where(ny) (a) and¢; » (b) are plotted vss for y=0,  However, choosingy=x<g© (whereg©® <p/2), we may
k=0,1,5, ancp=100. In both the cases, in order to observekeep ¢, ;3 constant and less than unity for a relatively long
number squeezing in the semiclassical regime, it is necessafiyne, as in the ideal case without losses. Notice that in the
to detune the probe field from resonance, as was a”eadq’uantum regime the below-threshold caie., g< ) is not

pointed out in Ref[6]. o of interest because the average number of quanta generated
Notice that the linear approximation of the CARL dynam- i, each mode remains less than unity.

ics is justified until when the average populatidiiig) and
(f,) of the two “side-modes” remain much less tHsnoth-
erwise the depletion of the atomic pump mode must be taken
into account and the nonlinear dynamics addressed. In our
model the parameteN is imbedded in the dimensionless
time 7= w,pt, where the CARL parameteris proportional to
Nl/S [2] 1
The inclusion of losses also allows us to reach a steady-
state regime when the gampis negative. In this case, the 0 10 20 30 40 50
covariance matrixC(e) =Q(«) becomes asymptotically con- T
stant. An example of this behavior is shown in Fig. 5, where 10°
(ny) (a) and¢; , (b) are plotted vsr for p=100 ands=3.5. (b)
The dashed line shows the ideal casex=0: becausey” o
=0 (as can be observed from Fig), the solution is oscillat- v r ]
ing and the two atomic modes 1 and 2 are periodically num- 10° " / ]
ber squeezed. The dotted line of Fig. 5 shows the case with g

x=0 andy=0.2. Hereg=0.025 and both the average popu-
lation and the number squeezing parameter grow in time.

10

Brvseanecmoms”

1

0

10 20 30 40 50

Finally, the continuous line of Fig. 5 shows the cagex
=0.5: the gain igg=—-0.5 and the system reaches a stationary
state in whiché; ,=0.7. This case is of some interest because FIG. 6. Quantum regime for bk 5=5: (a) (i;) and(b) & 3 vs
a steady-state atom-atom number squeezed state is obtaingtbr y=0, k=0 (dashed ling for y=0.15, k=0 (dotted ling, and
in a linear system. for y=«=0.15(continuous ling

T
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C. Superradiant regime p
. . . (Ng) =~ =€, (36)
In this section we present analytical results for the super- 2K

radiant regime in the asymptotic limime,| 7> 1, wherew, . . . .
is the unstable root of E(q28) Witma ne|gative imaginary In this case, the_growth rate is prgportlorlall‘ﬂo(as n Athe
part. Fork>|w,| and assuming for simplicity=0, one root usual 3Slfperrad|ance[18]) and <n2'3><<n'1> and (ny) _

of Eq. (28) can be discharged as it decays to zero as™(P/2)*Ny: the average number of emitted photons is
exp(—x7) and the other two roots may be obtained solvingMuch less than the average number of atoms scattering a

the following quadratic equation: photon from the pump to the probe. Furthermore, the number
of atoms making the reverse process, i.e., scattering a photon
) w+0+ik 1 from the probe to the pump, can be larger than the number of

O TR -1 2 0. (29 photons scattered into the probe modgi 2, as it occurs in

the current experiment on BEC superradiafi¢®). In this
From Eq.(29) it is possible to calculate explicitly the un- regime the asymptotic expression of the expectation value of
stable root and evaluate asymptotically the expressions of tHée bunching parameter is

function f;; appearing in Eq(13). From them, it is possible o 1 1 4

to evaluate the expectation values of the occupation numbers (B'B) = _{1 + _<L_> ]e(p/K)T’ (37)

in the semiclassical and quantum regimes. N 2\ 2k

1. Semiclassical limit of the superradiant regime so that(fi) = ()N/2«*)(B'B), as in the semiclassical limit.
The only difference is that in the quantum regime the maxi-

32- 1> o - i A~
For«”*> 1> y«/p and 5=0, the solutions of E¢29) are mum of (B'B) is 1/2, so that the maximum number of scat-

==~(15i)/\2k and the average occupation numbers are . o . .
w1.2= = (1F)/V2K g P tered photons in the quantum limit is half of that obtained in

p? \E{ s the semiclassical limit.
(fy) = I @/, (30)
K
P V. ENTANGLEMENT AND SEPARABILITY
p? 2 In this section we analyze the kind of entanglement that
(N =~ —e@ (31) - i
AT ' can be generated from our system. First, we establish nota-

tion and illustrate the separability criteria. We also apply the
criteria to the state obtained in the ideal dynamics. Then, we
)H2r (32) address the effects of losses. We study both the separability
properties of the tripartite state resulting from the evolution
_ from the vacuum, as well as of the three two-mode states that
We observe that the growth rate is proportionahté [17]  are obtained by partial tracing over one of the modes. The
and(ny) =(n,) and(fNg) =~ (2/p«x){Ny) <(Ny), so that the num-  pasis of our analysis is that both the tripartite state and the
ber of emitted photons is much smaller than the number opartial traces are Gaussian states at any time. Therefore, we
atoms in the two motional states. The asymptotic expressioare able to fully characterize three-mode and two-mode en-
of the expectation valug7) of the bunching parameter is tanglement as a function of the interaction parameters
[20,21.

p (2/k
Ng) = e
< 3> 8K2

~an 1 \@ 12
BBy~ —| 1+ — [e@&W77 33
(B'B) 4N{ ] (33

p A. Three-mode entanglement

Concerning entanglement properties, three-mode states

Assuming that(é*é) approaches a maximum value of the )
dnay be classified as follow21].

order of 1, then the maximum average number of emitte
photons is aboupN/2«?, whereas the maximum fraction of ~ Class 1.Fully inseparable states, i.e., not separable for

atoms gaining a momentuntiR, is aboutp?/4«. any grouping of the modes.
Class 2.0ne-mode biseparable states, which are sepa-
2. Quantum limit of the superradiant regime rable if two of the modes are grouped together, but insepa-

rable with respect to the other groupings.

Class 3.Two-mode biseparable states, which are sepa-
rable with respect to two of the three possible bipartite
groupings but inseparable with respect to the third.

)4} e Class 4.Three-mode biseparable states, which are sepa-

e plk)T

For x%2> 1> p/\k and 5=1/p, the solutions of Eq(29)
are w; ,~1/p=*ip/(2x) and the average occupation num-
bers are

(34 rable with respect to all three bipartite groupings, but cannot
be written as a product state.

Class 5.Fully separable states, which can be written as a
three-mode product state.

Separability properties are determined by the characteristic

043809-6
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function. In order to simplify the analysis we rewrite the 0.0

characteristic functior{7) in terms of the real variables’ 0.2 @ | )7:8 ]
= (X1,X2,%3,Y1,Y2:Ys) With &=2"Y2(y;~ix)), j=1,2,3. We wmn y=1
have 04
1 : -0.6' /"‘_ ________________________________ |
x(X) =expy - =x"Vx [, (38)
4 -0.8-[ -
where 1%TF 3.6 8 10
0.0 LI
A -B :
= hk. b K=0
v ZAO(B A )Ao’ 39 -0.24 ( ) = =10 |
. ) 04 N . x=100
with Ap=diag-1,1,1,1,1,1 and -
< o6l

A=ReC, B=ImC, (40) 08 L T
and where we omitted the explicit time dependence of the _1-0 L __________________________
matrices. The entanglement properties of the three-mode 0 2 4 x 6 8 10
state are determined by the positivity of the matrices

— ; - FIG. 7. Semiclassical regime fa=100 and§=0.01: minimum

I[=AVA;-iJ, j=1,2,3 gime o=

eigenvalue of matriX’; for k=0 and different values of (a) and
[21], where A;=diag1,1,1,-1,1,], A,=diagl1,1,1,1, for y=0 and different values ot (b).
-1,1), Az=diag1,1,1,1,1,-}], and J is the symplectic

block matrix C= 2V Rgcos b3~ ), F= 2V Rgsin(hs ~ o),

0 -1
- (44)
J_<I o)’ 4D

) ) , i o . from which, in turn, it is straightforward to prove that the
| being the 3<3 identity matrix. The positivity of the matrix - minimum eigenvalues of the matricEsare always negative.
I'j indicates that thgth mode may be factorized from the |y the nonideal case, whenor « are different from zero, the
other two. Therefore, we have th@tif I' <0 [Jj the state is  gxpressions given in Eqet3) and accordingly the minimum
in class 1{ii) if only one of thel’; is positive the state is in - gjgenyalues of matrice§; should be calculated numerically.
class 2i(iii) if only two of theI'; are positive the state is in |, Figs. 7-9 the minimum eigenvalues of matridég I,

class 3iv) if I';>0, 0j then the state is either in class 4 or 5ng T’ are plotted in the semiclassical regime, wjith 100.

in class 5. _ _ In this regime we can observe that modes 1 and 2 remain
The covariance matri¥ can be written as nonseparable from the three-mode state even for large values
G -A-B 0D €& of atomic decoherencg and radiation losses. Instead in-
separability of mode 3 is not so robust especially in the pres-
-A M C Do -F parabily pecialy In the p
v -B C 1 & F 0 42 0.0
| o »p & ¢ A B | (42) 0.2] @ | 1;0‘1 I
D 0 F AH C 04 Lz r=1
N
E -F 0 B C I Y
where -o.a-k »
A:2ReC12, D=2 |mC12, g:2<ﬁ1>+1, '100 2 4 T 6 8 10
. 0.0
B=2 ReCl3, E=21Im Cl31 H= 2<n2> + l, N (b) K=
-0.2 ‘\\ ....... x=10 |
- - — o/ R P -x=100
C=2ReCy;, F=2ImCy, ZI=2(N3y+1, (43 :“-0.4-: i S
and the matrix elements;; are reported in Appendix B. Let -06 )
us first consider the ideal case, when no losses are present. In 0.8{\"
this case we can prove analytically that the evolved stjte 10 R
is fully inseparable. In fact, we have that 0 2 4 8 8 10

A=2V(p)(1 +(hp)cos gy, D =2V(Mp)(1 +(fiy)sin ¢y, FIG. 8. Semiclassical regime far=100 and5=0.01: minimum

eigenvalue of matriX’, for k=0 and different values of (a) and
B=2\(Ng)(1 +({Ny))cos s,  E=2V(Nz)(1 +(Ny))sin ¢, for y=0 and different values of (b).
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05— 0.00
0.014%,
-0.02
o
£.0.03
-0.041
(a)
0.051-2, .
0 2 4_6 8 10
Y I
02 0.01{\ =0
A T I U k=1
T 002f \ | =10
=3 f o
bet! £ 0.03]
08 [ -0.04]
MO A6 T 10 005 P
* P03 4.6 & 10

FIG. 9. Semiclassical regime f@=100 and5=0.01: minimum
eigenvalue of matriX’; for k=0 and different values of (a) and
for y=0 and different values of (b).

FIG. 11. Quantum regime fg¥=0.2 ands=5: minimum eigen-
value of matrixI', for k=0 and different values o¥ (a) and for
y=0 and different values ot (b).
ence of some atomic decoherence. In Figs. 10 and 11 the
minimum eigenvalues of matricds; andI', are plotted in

the quantum regime, with=0.2. The minimum eigenvalue _ : : .
of the matrixI's is not reported in the figure since the behay- mation is contained in the partlal traces of the global three-
ior is similar to that ofl';. In this regime we can observe that Mode state. Therefore, besides the study of three-mode en-

modes 1 and 3 remain nonseparable from the three-mod@nglement it is also of interest to analyze the two-mode
state even for large values of atomic decoherep@ad ra- entanglement properties of partial traces. At first we notice
diation lossesk. Instead inseparability of mode 2 is very that the Gaussian character of the state is preserved by the
sensible, especially in the presence of some radiation losse@artial trace operation. Moreover, the covariance matNGes
In any case in the quantum regime the three eigenvaluesf three possible partial traces; =Trfo], i #j#k can be
increasingy and « approach zero but remain negative. obtained fromV by deleting the correspondingand k+3
rows and columns. The Gaussian character of the partial
traces also permits us to check separability using the neces-

In experimental conditions where only two of the modessary and sufficient conditions introduced in ReR0],
are available for investigations, the relevant piece of infor-name|y by the positivity of the matrices; and SI']_ that are

0.0 N obtained by deleting thie andk+3 rows and columns either

B. Two-mode entanglement

from I or I';. Since they differ only for the sign of some
0294 ‘ off-diagonal elements it is easy to prove that they have the
04{\77 same eigenvalues. Therefore, we employ &lyn checking
= o6l \ separability. The matriceS;; are given by
08{, \\
(a)
-1.0 , , .
0 2 4_6 8 10 G -A i D
0.0t ,
[ ——— S _A H _D i (45)
-0.2; S : 27l - -p ¢ -A
S04\ ! D -i -A H
:-0.6- KiO
------- k=1
08 N\ | k=10 |
(b)
B T I - G -B i ¢
0 2 4 T 6 8 10
-B L =& i
FIG. 10. Quantum regime fgy=0.2 ands=5: minimum eigen- Siz= - ¢ -8B (46)
value of matrixI'y (or I'5, see the teytfor k=0 and different values
of y (a) and for y=0 and different values of (b). E -i -B T
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H C i -F 0.0p
C L -L i . 0244
S V) “7 04
-F -i -C I & 08k
In ideal conditions withy=«=0 the minimum eigenvalues of 08" B
Sy, k=2,3 aregiven by -1.00 > 4 : T E 10
nuc= (o) + () = AP + () + () (49 R S ———
and thus are always negative. On the contrary, the minimum -0.24 — =
eigenvalue ofS,; is given by oal /T r=0.1]
S—‘ - ‘/i PR 'Y=1
723= 1 +(Np) + V(L +(A)? - &), (49) < 06l _
where(n)=max({f,),{N3)). Note thatz,; is always positive. -0.8] k )|
Therefore, after partial tracing we may have atom-atom en- 1.0 : :
tanglemententanglement between modgand modea,) or 0 2 4,6 8 10

scattered atom-radiation entanglemegintanglement be- . . . o

tween modea; and modeay) but no entanglement between  FIG. 12. Semiclassical regime far=100 and6=0: minimum

modea, and modeas. eigenvalue of matrixg,;, for k=0 and different values of (a) and
For 7> 1 we know the asymptotic expressions for popu-for ¥=0 and different values ok (b).

lations in the ideal case without losgég, so we can obtain

the stationary value ofy, as values of matricesS,, S; are plotted for the semiclassical
2(f) regime. We can observe that the atom-atom entanglement of
M= . (50) the reduced state 12 is robust, as the minimum eigenvalue
(hy) + (N remains negative, increasing atomic decoherep@nd ra-
In the high-gain semiclassical regimes 1) [6], diation lossesc. On the contrary, atom-photon e.ntanglem.ent
of the reduced state 13 is more sensitive to noise: the eigen-
() ~ — P a3 (51) value remains negative increasingnd becomes positive in
My =~ 18| 2 e the presence of some atomic decoherence.
In Figs. 14 and 15 are plotted the minimum eigenvalues
A 02 = of matricesS,;,, S;3in the quantum regime, with=0.2. Here
(M) =~ %6‘37, (52)  the atom-photon entanglement in the state 13 is robust while
atom-atom entanglement of the state 12 is not. The minimum
- eigenvalue always remains negative, but it starts from a very
(Ag) = ﬁe\’i%f, (53) small absolute value and approaches very fast to zero, in-
18 creasingk and .
so that 0.0
. 4 (54 0.2
712 1+p' 3 4+p' _0.4_::
w04
In the high-gain quantum regime<1), S 06
1 3~ -0.81
(ny) = —{1 + (B) }e‘zf", (55)
4 2 1.0 .
0 2 4.6 8 10
1(p\? = T
<n2>z;1(5) e, (56) 08 (b)
044 i -
1 - ® 0.0
(ng) = ;e %7, (57) e 1
4 -0.4] —y=0 |
------ v=0.1
so that 08y |- =1 |
3 —
p 16 0 2 4.6 8 10
~—-—, ~—-—. 58
712 4+p3 13 16+p3 (58)

FIG. 13. Semiclassical regime f@=100 and5=0: minimum
In the nonideal case, whepor « are different from zero, the eigenvalue of matrixs;; for k=0 and different values of (a) and
minimum eigenvalues of matrice%, and S;; can be easily for y=0 and different values of (b).
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0.000 mode and two condensates with momentum displaced by
-0.0014 iZhEp. The problem resembles that of three optical modes
= generated in 3'®? medium[22] and thus our results may
00021 | [T VA7 ooesnsieesy have a more general interest also behind the physics of the
— =0 BEC. We have solved analytically the dissipative Master
Racd I =1 ion i f the Wigner function and we have inves-
@ | =10 equation in terms o g :
0004 ————————— tigated the entanglement properties of the evolved state. We
0.000 i - found that three-mode entanglement as well as the two-mode
[ T atom-atom and atom-photon entanglements are generally ro-
Q0001 bust against cavity losses and decoherence. Our analysis has
& 0.002 ] been focused on the different dynamical regimes, the Righ-
j - cavity regime, with low cavity losses, and the superradiant
0003 | x=1 regime in the so-called “bad-cavity limit.” We have found
0,004 (b)' L x=10 that entanglement in the higQ-cavity regime is generally
0 2 4.6 8 10 robust against either cavity or decoherence losses. On the

contrary, losses seriously limit atom-atom and atom-radiation
FIG. 14. Quantum regime fgr=0.2 and5=>5: minimum eigen-  nymber squeezing production in CARLS5], the only excep-
value of matrixS;, for x=0 and different values of () and for oy peing the symmetric loss case «. Concerning the su-
=0 and different values ok (b). perradiant regime, atom-atom entanglement in the semiclas-
sical limit is generally more robust than atom-radiation
VI. CONCLUSIONS entanglement in the quantum limit. Finally, we have proved
that the state generated in the ideal case without losses is
We have investigated how cavity radiation losses andully inseparable. We conclude that the present system is a
atomic decoherence influence the generation of @®m-  good candidate for the experimental observation of entangle-
atom or atom-radiatiorand three-mode entanglements in thement in condensate systems since, in particular, steady-state
collective atomic recoil lasingCARL) by a Bose-Einstein entanglement may be obtained both between atoms with op-
condensate driven by a far off-resonant pump laser. The aposite momenta and between atoms and photons. The main
oms backscatter photons from the pump to a weak radiatiofmplications for CARL are twofold: on one hand the charac-
mode circulating in a ring cavity, recoiling with opposite terization of entanglement may be performed also in non-
momentum +2k, along the ring cavity axis. Our analysis ideal cases. On the other hand, the experimental require-
has been focused to the linear regime, in which the grounéhents to implement the interspecies teleportation of Ref.
state of the condensate remains approximately undepletgd4] can be weakened without losing the nonlocal character
and the dynamics is described by three parametricallyf the protocol. It should also be mentioned that the separa-
coupled boson operators, corresponding to the radiatiopility criteria used here, i.e., the negativity of the modified
covariance matrix, is related to the negativity of the partially
0.0 transposed density matrix, which itself is a good measure of

02\ entanglemenf23,24. Therefore the present analysis, besides

N establishing a threshold for separability, also provides criteria
-0.4 —=0 to compare different working regimes in terms of the degree

208l % |7 =01 of entanglement.
= . [ Y‘1
08{ N\
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(b) APPENDIX A: SOLUTION OF THE FOKKER-PLANCK
%53 F 6 8 10 EQUATION

T
FIG. 15. Quantum regime fgr=0.2 and=5: minimum eigen- In order to solve Eq.(8) for the Green function
value of matrixS;5 for k=0 and different values of (a) and for ~ G(u,t;Ug,0) it is helpful to first perform a similarity trans-
v=0 and different values of (b). formation to diagonalize the drift matrik:
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A = SAS ! =diagA A\ Al

dhaahsl A iy iy oy o 7).
where the complex eigenvaluas of A (with j=1,2,3 are
obtained from the characteristic equation (A3)

defA -\l =0, (A2)  whereB=1/p+iy. and

| is the 3x 3 identity matrix and the columns & are the
right eigenvectors oA with detS)=1. Solving Eq.(A2) we N, = 1 N, = 1 N = 1 (A4)
obtain A;=i(w; - 6)-y,, wherew; are the three roots of the Yomwy T wmws T oy
cubic equation(15), whereas the eigenvectors Af corre-
sponding to thgth eigenvalue are Explicitly calculating the inverse matrix &* we have

[ \“"m(azzazs/ N \’/ﬁ(alzalél/ ND)  —NoNIN
S=| —iVpl2(aysadNy) —iVpl2(aggayd Vo) NaNAA, |, (A5)
i \“‘"P/ 2@z N3) \’%(alzan/ N3) = NiNAN3

where g;;=(g;);. Now we transform the Fokker-Plank equa- dr  dKk dk; dk; dU
tion (8) in the new variables= Su. From Eq.(A1) we obtain —= L= F = T = — = (AL3)
~ ~ 1 =Nk Ak —A3Ks (- k' TDK)U
1T — /Tl —\ T
AU =UT(STAS)U=VTAY, (A6) and have solutions
u' DU’ = (v'TS)D(S'V')" =v'TDv"”", (A7) k =e™ "c= const. (A14)

where D=SDS, S'=(S")", and v'T=u’TS™%. Using Eqs. Then

(A6) and (A7) Eq. (8) becomes U

Q.

= —k"TDkdr= - c*T(e‘;Tf)e‘Z\*’)cdr:

oW _ _ _ -
— == ('TAv+c.c)W+Vv' DV'W, (A8) U
aT e .
_ - [D;e ™) edr, (A15)
whereW(v, 7)=W(S v, 7). Equation(A8) is a linear Fokker-

Planck equation with diagonal drift. Introducing the FourierWhere(B”) denotes the matrix with element;, and we

find, using Eq.(A14),

transform
~ d2k ~ * * I 1] = k*T Di' ()\i+)\f) k
Uk, 7 = f —W(v)expk Tv-kv),  (A9) nU=k 1) = "5[1-e¥7] (k + const. (A16)
T ! J
YR ) Uexplk TQk} = const, (A17)
—Z=(KTAK" +KTA'k)U - (K'TDK)U, (A10) 5
ar whereQ is the 3X 3 matrix with elements
where D .
PR Q=17 x -1 -ety)T] :f dr' Dy ™7
kT = (ky,Kp,Ks), k’T:<—,—,—). Al1l 0
( 1,12 3) ¢9k1 19k2 (9k3 ( )

(A18)
The Fourier transform of the initial condition of the Green

o . Thus, from Eqgs(Al14 A17), the solution forU tak
function G(v,0:Sup, 0)= #(v-St) is us, from Eqs(A14) and (Al17), the solution forU takes

the general form
E'(k,O) = exdk*TSuo - kT(SUO)*] (A12) G(k 7= (D(e;*rk)exp[_ k*Ték} (A19)

Equation(A10) is now solved using the method of the char- \ynered is an arbitrary function. Choosind to match the
acteristics. Sincé is diagonal the subsidiary equations are initial condition (A12), we find
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T _ *T T T T, * L TA 1
U(k,T) —eXF{k (SeA Uo) k (SeA UO) }exp{ k Qk} C(T) :Q(T) + EM(T)MT(T), (B?)
(A20)
In the argument of the first exponential on the right-handWhereM andQ are defined in Eqg13) and(14), are
side we have used E@AL) to write exgA7)S=S exp(A7).
Inverting the Fourier transform we obtain Cui(7) :f dr’ {yalf1al®+ yalf 1o + wlf14%
0
G(V, 7:SUy, 0) = —expl(v - Se*up) T Y(v - Sehu 1
(750 mdeQ Al o o) + §(|f11|2+ |f1%+1f13), (B8)
(A21)
and so transforming back the variables Co(7) :f A {ya|f12+ sl fool2 + K F g2
0
G(u, 7;uo,0) = 3d " ————exp{(u - e*"ug)'QY(u - e*up)}, 1
o # Sl 112 + 1124, (89
(A22)
where

A r Caa(7) =f dr' {mlf1d?+ valfod®+ «lfad?}
Q=s"'Q(sH'= J dref"D(E)T. (A23) 0
0

1
+E(|f13|2+ |foqf? +[f34?), (B10)

APPENDIX B: ELEMENTS OF THE MATRICES M,

EQ. (13), AND C, EQ. (18) T . . .
Cia7) = f d7'{= yifiafio+ vaf1of oo + kfisfoat
The expressions of the functioig which appear as ele- 0

ments of the matriM, Eq. (13), are 1 . X .
3 . + E(_ frafyo+ frof + fasfaa), (B11)
- i el
f12(7) = €I [(w) = a)(w; + B) - pl2] A
=1 i T
(B1) Ci3(7) :f dT/{ylfllf*ls_ 72f12f;3+ Kflsfgs}
0
Ia)JT 1 * * *
fou(7) = (7++"S)TE [(wj— a)(w;— B) + p/2] + 5(f11f13_ f1ofo5+ f1afaa), (B12)
A
(B2) r
. Cos(7) = f d7'{= 1f1af13= vafaofpg + Kfasf gt
o eia)jT 0
=1 ) + 5(‘ f1of 15— fof o5+ fasfag), (B13)
3 .
P oo g with C;; =C:..
f =gt = B4 ij = i
127) 2 gl hy (B4) In the special casg,=y=« andy_=0, f;=€" VTf(o) where
f( ) is the solution without losses. As shown in Rgﬁ] they
p 3 doyr sat|sfy the following relations:
fig(n) =i \ﬁe_(”*‘é‘”E (w+B)——.  (BY
8 A 191+ 1=[18 + FYP, (14
19 - 1113+ 1P, 819
fas() =1 \[2 -<V++'5>TE (0 - ﬁ) (B6)
19+ 1=I1QR + 1197, (619

where a=38+i(k—17,), ,8=1lp+|'y_, Aj:(wj—wk)(wj—wm)

(with j # k+# m), andw,, w,, andw; are the roots of the cubic OO = - £9(19Q)" + f9(1Q)’
equation(15). It is possible to show thé;(0)=&; in order to fir(fi3) = —fia(fs) +fi3(fa3) (B17)
satisfy the initial conditiorM (0)=1. © © o

The explicit components of the covariance matrix = (f) =f(f2) +fi3(fa3) (B1y)
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- 100 = 1R0R) + 3R (B19) () _ KA (B21)
Using Egs.(B14<B16) in Egs. (B8)~(B10) and C;=1/2 dr  dr
+(R,), we obtain that
(M) = (R +(Ng) (B20) where(ﬁf‘”) are the expectation values of the occupation
and numbers of the three modes in the ideal case without losses.
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