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We address the dynamics induced by collective atomic recoil in a Bose-Einstein condensate in the presence
of radiation losses and atomic decoherence. In particular, we focus on the linear regime of the lasing mecha-
nism, and analyze the effects of losses and decoherence on the generation of entanglement. The dynamics is
that of three bosons, two atomic modes interacting with a single-mode radiation field, coupled with a bath of
oscillators. The resulting three-mode dissipative Master equation is solved analytically in terms of the Wigner
function. We examine in details the two complementary limits ofhigh-Q cavity and bad cavity, the latter
corresponding to the so-called superradiant regime, both in the quasiclassical and quantum regimes. We found
that three-mode entanglement as well as two-mode atom-atom and atom-radiation entanglement is generally
robust against losses and decoherence, thus making the present system a good candidate for the experimental
observation of entanglement in condensate systems. In particular, steady-state entanglement may be obtained
both between atoms with opposite momenta and between atoms and photons.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion opened the possibility to generate macroscopic atomic
fields whose quantum statistical properties can in principle
be manipulated and controlled[1]. The system considered
here for this purpose is an elongated Bose-Einstein conden-
sate(BEC) driven by a far off-resonant pump laser of wave
vectorkp=vp/c along the condensate long axis and coupled
to a single mode in an optical ring cavity. The mechanism at
the basis of this kind of physics is the so-called collective
atomic recoil lasing(CARL) [2] in its full quantized version
[3–6]. In CARL the scattered radiation mode and the atomic
momentum side modes become macroscopically occupied
via a collective instability. A peculiar aspect of the quantum
regime is the possibility of populating single momentum
modes separated byDp=2"kp off the condensate ground
state with zero initial momentum. The experimental observa-
tion of CARL in a BEC has been until now realized in the
so-called superradiant regime[7–9], i.e., without the optical
cavity. In this case the radiation is emitted along the “end-fire
modes” of the condensate[10] with very large radiation
losses(in the mean field model, with 2k<c/L, where 2k is
the radiation intensity decay rate andL is the condensate
length). Recent experiments reported in[11] represent a re-
alization of CARL in a ring cavity for a noncondensate
sample of cold atoms. The apparatus is very promising and
makes it likely that CARL experiments with BECs in an
optical cavity will be performed in the near future.

Recent works have shown that atom-atom or atom-photon
entanglement and squeezing[6,12,13] can be produced in the
linear regime of CARL, in which the ground state of the
condensate remains approximately undepleted. In this re-
gime, the atomic multimode system can be described by only
two momentum side modes, withp= ±2"kp. Furthermore,
this source of entanglement has been also proposed for a
quantum teleportation scheme among atoms and photons
[14].

The results presented in[6,12,13] refer to the ideal case of
a perfect optical cavity and an atomic system free of deco-

herence. However, in view of an experimental observation of
entanglement, a detailed analysis of the sources of noise is in
order, which in turn may be a serious limitation for entangle-
ment in CARL [15]. Also, it has not yet been proved that
BEC superradiance experiments may generate entangled
atom-photon states, as it has been conjectured in[10]. This
issue is investigated in this paper, where we demonstrate the
entangled properties of the atom-atom and atom-photon pairs
produced in the linear stage of the superradiant CARL re-
gime in a BEC.

The aim of the present work is to analyze systematically,
by solving the three-mode Master equation in the Wigner
representation, the effects of losses and decoherence on the
generation of entanglement. We will investigate the effects of
either a small atomic decoherence or a finite mirror transmis-
sion of the optical cavity, and then analyze in details the
generation of entanglement in the superradiant regime,
where the cavity losses are important.

The paper is structured as follows. In Sec. II we briefly
review the ideal dynamics and derive the general solution of
the Master equation. In Sec. III we consider the evolution of
the system starting from the vacuum and calculate the rel-
evant expectation values, such as average and variance of the
occupation number and two-mode squeezing parameters. In
Sec. IV the different working regimes are introduced and the
dynamics analyzed, whereas in Sec. V we investigate three-
and two-mode entanglement properties of the system as a
function of loss and decoherence parameters. Section VI
closes the paper with some concluding remarks.

II. DISSIPATIVE MASTER EQUATION

We consider a one-dimensional(1D) geometry in which
an off-resonant laser pulse, with Rabi frequencyV0=dE0/"
(whered is the dipole matrix element andE0 is the electric
field amplitude) and detuned from the atomic resonance by
D0=vp−v0, is injected in a ring cavity aligned with the sym-
metry z axis of an elongated BEC. The dimensionless posi-
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tion and momentum of the atom along the axisẑ are u
=2kpz and p=pz/2"kp. The interaction time ist=rvrt,
wherevr =2"kp

2/m is the recoil frequency,m is the atomic
mass,r=sV0/2D0d2/3svpd

2N/V"e0vr
2d1/3 is the CARL pa-

rameter,N is the number of atoms in the cavity mode volume
V ande0 is the permittivity of the free space.

In a second quantized model for CARL[5,6] the atomic

field operatorĈsud obeys the bosonic equal-time commuta-

tion relations fĈsud ,Ĉ†su8dg=dsu−u8d, fĈsud ,Ĉsu8dg=0,

and the normalization condition ise0
2p duĈsud†Ĉsud=N. We

assume that the atoms are delocalized inside the condensate
and that, at zero temperature, the momentum uncertaintyspz
can be neglected with respect to 2"kp

In this limit, we can introduce creation and annihilation
operators for an atom with a definite momentump, i.e.,

Ĉsud=om ĉmku uml, wherepuml=muml (with m=−` , . . . ,`),
ku uml=s1/Î2pdexpsimud andĉm are bosonic operators obey-
ing the commutation relationsfĉm, ĉn

†g=dmn and fĉm, ĉng=0.
The Hamiltonian in this case is[6]

Ĥ = o
n=−`

` Hn2

r
ĉn

†ĉn + iÎ r

2N
sâ†ĉn

†ĉn+1 − H.c.dJ − dâ†â,

s1d

whereâ is the annihilation operator(with fâ,â†g=1) for the
cavity mode(propagating along the positive direction of the
z axis) with frequencyvs andd=svp−vsd /rvr is the detun-
ing with respect to the pump frequencyvp. Let us now con-
sider the equilibrium state with no photons and all the atoms
at rest, i.e., withuC0l=ÎNu0l. Linearizing around this equi-
librium state and defining the operatorsâ1= ĉ−1e

idt, â2
= ĉ1e

−idt, and â3= âe−idt, the Hamiltonian(1) reduces to that
for three parametrically coupled harmonic oscillator opera-
tors [3,12,13]:

Ĥ = d+â2
†â2 − d−â1

†â1 + iÎ%

2
fsâ1

† + â2dâ3
† − sâ1 + â2

†dâ3g,

s2d

whered±=d±1/r. In Ref. [6] we have explicitly evaluated
the state evolved from the vacuum of the three modes,
u01,02,03l, as

ucstdl =
1

Î1 + kn̂1l
o

n,m=0

` S kn̂3l
1 + kn̂1l

Dm/2S kn̂2l
1 + kn̂1l

Dn/2

3e−isnf2+mf3dÎsm+ nd!
m ! n!

um+ n,n,ml, s3d

where kn̂il=kâi
†âil with i =1,2,3 are theexpectation values

of the occupation numbers of the three modes, related by the

constant of motionĈ= n̂1− n̂2− n̂3. In this paper we extend
our previous analysis to include the effects of atomic deco-
herence and cavity radiation losses. In this case the dynamics
of the system is described by the following Master equation:

d%̂

dt
= − ifĤ,%̂g + 2g1Lfâ1g%̂ + 2g2Lfâ2g%̂ + 2kLfâ3g%̂,

s4d

whereg1, g2, andk are the damping rates for the modesai
andLfâig is the Lindblad superoperator

Lfâig%̂ = âi%̂âi
† −

1

2
âi

†âi%̂ −
1

2
%̂âi

†âi . s5d

The atomic decay stems from coherence loss between the
undepleted ground state withpz=0 and the side modes with
pz= ±2"kp. In general, we assume that the two atomic modes
may have different decoherence rates, depending on the di-
rection of recoil [9]. The radiation decay constant isk
=cT/2L, whereT is the transmission of the cavity andL is
the cavity length. Through a standard procedure[16], the
Master equation can be transformed into a Fokker-Planck
equation for the Wigner function of the state%̂,

Wsa1,a2,a3,td =E p
i=1

3
d2ji

p2 eji
*ai−ai

*jixsj1,j2,j3,td, s6d

wherea j and j j are complex numbers andx is the charac-
teristic function defined as

xsj1,j2,j3,td = Trf%̂stdD̂1sj1dD̂2sj2dD̂3sj3dg, s7d

whereD̂jsj jd=expsj jâj
†−j j

* âjd is a displacement operator for
the j th mode. Using the differential representation of the
Lindblad superoperator, the Fokker-Planck equation is

] W

] t
= − su8TAu + c.c.dW+ u8TDu8*W, s8d

where

uT = sa1
* ,a2,a3d, u8T = S ]

] a1
* ,

]

] a2
,

]

] a3
D s9d

andA andD are the following drift and diffusion matrices:

A = 1g1 + id− 0 − Îr/2

0 g2 + id+ Îr/2

− Îr/2 −Îr/2 k
2 ,

D = 1g1 0 0

0 g2 0

0 0 k
2 . s10d

The solution of the Fokker-Planck equation(8) reads as
follows:

Wsu,td =E d2u0Wsu0,0dGsu,t;u0,0d, s11d

whereWsu0,0d is the Wigner function for the initial state and
the Green functionGsu ,t ;u0,0d is the solution of Eq.(8) for
the initial conditionGsu ,0 ;u0,0d=ds3dsu−u0d. The calcula-
tion of the Green function, the solution of Eq.(8), is reported
in detail in Appendix A and yields the following result:
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Gsu,t;u0,0d =
1

p3det Qstd
exph− fu − M stdu0g†Q−1std

3fu − M stdu0gj, s12d

where

M std ; eAt = 1 f11std f12std f13std
− f12std f22std f23std
f13std − f23std f33std

2 s13d

and

Qstd =E
0

t

dt8M st8dDM †st8d. s14d

In Eq. (13) the complex functionsf ij , given explicitly in
Appendix B, are the sum of three terms proportional toeivkt,
where vk, with k=1,2,3, are thethree roots of the cubic
equation:

fv − d − isk − g+dgFv2 − S1

r
+ ig−D2G + 1 + irg− = 0

s15d

andg±=sg1±g2d /2

III. EVOLUTION FROM VACUUM AND EXPECTATION
VALUES

Let us now assume that the initial state is the vacuum. The
characteristic function and the Wigner function att=0 are
given by

xsj,0d = exph− j†C0jj, Wsu,0d = S 2

p
D3

exph− u†C0
−1uj,

s16d

wherej=sj1
* ,j2,j3d and the covariance matrix is multiple of

the identity matrixC0= 1
2I . Since the initial state is Gaussian

and the convolution in Eq.(11) maintains this character we
have that the Wigner function is Gaussian at any timet,

Wsu,td =
1

p3Îdet Cstd
exph− u†Cstd−1uj. s17d

After some algebra, we found that the covariance matrix is
given by

Cstd = Qstd +
1

2
M stdM †std, s18d

where the explicit form of the elementsCij =ksui −kulidsuj

−kul jd*l in terms of the functionsf ij is reported in Appendix
B. Since the state is Gaussian, from Eq.(18) it is possible to
derive all the expectation values for the three modes. In par-
ticular, Cii =1/2+kn̂il, C12=kâ1

†â2
†l, C13=kâ1

†â3
†l, and C23

=kâ2â3
†l. The number variances and the equal-time correla-

tion functions for the mode numbers are calculated from the
fourth-order covariance matrixGijkl =ksui −kulidsuj −kul jdsuk

−kulkd*sul −kulld*l, which in turn is related to the covariance
matrix as follows:

Gijkl = CkiClj + CliCkj. s19d

In particular, we have

Giiii = kn̂i
2l + kn̂il +

1

2
, s20d

Gijij = kn̂in̂jl +
1

2
kn̂il +

1

2
kn̂jl +

1

4
si Þ jd. s21d

From Eqs.(19)–(21) it follows that

s2snid = kn̂ilskn̂il + 1d, s22d

gi
s2d =

kâi
†âi

†âiâil
kn̂il2 = 2, s23d

gi,j
s2d =

kn̂in̂jl
kn̂ilkn̂jl

= 1 +
uCij u2

kn̂ilkn̂jl
, s24d

where s2snid=kn̂i
2l−kn̂il2, with i =1,2,3, andi Þ j in Eq.

(24). The two-mode number squeezing parameter is calcu-
lated as[12]

ji,j =
s2sn̂i − n̂jd
kn̂il + kn̂jl

=
s2snid + s2snjd − 2uCij u2

kn̂il + kn̂jl
. s25d

We observe, from Eqs.(22) and(23) that the statistics is that
of a chaotic(i.e., thermal) state, as obtained in Ref.[6] for
the lossless case. If the two modes are perfectly number-
squeezed, thenji,j =0, whereas if they are independent and
coherent,ji,j =1. As it will be clear in the following sections,
it is also worth to introduce also the atomic density operator

for the linearized matter-wave fieldĈsud<fÎN+a1e
−isu+dtd

+a2e
isu+dtdg /Î2p, defined as

n̂sud = Ĉ†sudĈsud <
N

2p
s1 + B̂e−isu+dtd + B̂†eisu+dtdd,

s26d

where B̂=sa1
†+a2d /ÎN is the bunching operator, withkB̂l

=0 and

kB̂†B̂l =
1

N
sC11 + C22 + C12 + C21d. s27d

The non-Hermitian operatorB̂ describes amplitude and phase
evolution of the matter-wave grating with a periodicity of
half of the laser wavelength[3]

IV. ANALYSIS OF WORKING REGIMES

We now investigate the different regimes of operation of
CARL. For the sake of simplicity, we will discuss only the
case withg1=g2=g, so thatg+=g andg−=0. In this case the
cubic equation(15) becomes

fv − d − isk − gdgSv2 −
1

r2D + 1 = 0. s28d

We will discuss two pairs of different regimes for CARL, as
defined in Ref.[17], i.e., (i) the semiclassical good-cavity
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regime (r@1 and k!1); (ii ) the quantum good-cavity re-
gime sk2!r,1d; (iii ) the semiclassical superradiant regime
sr@Î2k.1d; (iv) the quantum superradiant regimesk2

@Î2k.rd. Also, we note that the caseg=k is worth special
attention. In fact, in this case Eq.(28) is independent on
losses: the effect of decoherence is only a overall factor
exps−gtd multiplying the functionsf ij , elements of the ma-
trix M . Hence, it is expected that the caseg=k will have
statistical properties similar to those of the ideal case without
losses, as it will be discussed below.

A. CARL instability

First, we investigate the effect of decoherence and cavity
losses on the CARL instability in the different regimes. For
large values oft the functions f ij of Eq. (13) grow as
expsgtd, whereg=−Imv−g andv is the unstable root of Eq.
(28) with a negative imaginary part. The exponential rateg is
a gain when it is positive or a loss when it is negative.

In Fig. 1 we plotg vs d in the semiclassical regime(e.g.,
r=100) for the good-cavity casesk=0d andg=0.5,1,2[Fig.
1(a)], whereas the transition to the superradiant regime is
shown in Fig. 1(b) for k=1,5,10 andg=0. The dashed line
in Fig. 1 shows the gaings0d for the ideal casek=g=0. A
similar behavior is obtained in the quantum regime shown in
Fig. 2, whereg is plotted vs d for r=0.2, k=0, and g
=0.2,0.5,1[Fig. 2(a), “quantum good-cavity regime”] and
for r=1, g=0, andk=0.5,1,5[Fig. 2(b), “quantum super-
radiant regime”]. In the special case where atomic loss
equals cavity loss(i.e., wheng=k), g=gs0d−g, wheregs0d is
shown by dashed lines in Figs. 1 and 2.

Notice thatg is asymmetric aroundd=0 in the “semiclas-
sical regime,” but symmetric aroundd=1/r in the “quantum
regime.” This is a reflection of the different gain mechanism

in the two regimes: in the first case gain results from the
difference between emission and absorption rates, as in the
free-electron-laser gain[19]; on the contrary, in the quantum
regime absorption is inhibited by the photon recoil shift and
atoms behave as an inverted system, in a similar way as it
occurs in a laser.

B. Average populations and number squeezing parameter

Figures 3 and 4 show the effect of losses in the semiclas-
sical regime on the atomic populationkn̂1l (a), and on the
number squeezing parameterj1,2 (b), plotted as a function of

FIG. 1. Growth rateg=−Imv−g vs d for the unstable root of
the cubic equation(15) in the semiclassical limit,r=100. In (a) k
=0, andg=0.5,1,2; in(b) g=0 andk=1,5,10. Thedashed lines
represent the casek=g=0.

FIG. 2. Growth rateg=−Imv−g vs d for the unstable root of
the cubic equation(15) in the quantum limit. In(a) r=0.2, k=0,
and g=0.2,0.5,1; in(b) r=1, g=0, andk=0.5,1,5. Thedashed
lines represent the casek=g=0.

FIG. 3. Semiclassical regime withk=0: (a) kn̂1l and(b) j1,2 vs
d for r=100,t=2, g=0 (dashed line), 0.5, and 1.

COLA, PARIS, AND PIOVELLA PHYSICAL REVIEW A 70, 043809(2004)

043809-4



d for r=100 andt=2. Figure 3 shows the effect of the
atomic decoherence on the high-Q cavity regime(k=0) for
g=0 (dashed line), 0.5, and 1. We observe that increasingg
the population of the mode 1 decreases and the number
squeezing parameterj1,2 increases in the region of detuning
wherej1,2 is less than unity, i.e., where atom-atom number
squeezing occurs. A similar behavior is observed increasing
the radiation losses in the semiclassical regime as shown in
Fig. 4, wherekn̂1l (a) andj1,2 (b) are plotted vsd for g=0,
k=0,1,5, andr=100. In both the cases, in order to observe
number squeezing in the semiclassical regime, it is necessary
to detune the probe field from resonance, as was already
pointed out in Ref.[6].

Notice that the linear approximation of the CARL dynam-
ics is justified until when the average populationskn̂1l and
kn̂2l of the two “side-modes” remain much less thanN, oth-
erwise the depletion of the atomic pump mode must be taken
into account and the nonlinear dynamics addressed. In our
model the parameterN is imbedded in the dimensionless
time t=vrrt, where the CARL parameterr is proportional to
N1/3 [2].

The inclusion of losses also allows us to reach a steady-
state regime when the gaing is negative. In this case, the
covariance matrixCs`d=Qs`d becomes asymptotically con-
stant. An example of this behavior is shown in Fig. 5, where
kn̂1l (a) and j1,2 (b) are plotted vst for r=100 andd=3.5.
The dashed line shows the ideal caseg=k=0: becausegs0d

=0 (as can be observed from Fig. 1), the solution is oscillat-
ing and the two atomic modes 1 and 2 are periodically num-
ber squeezed. The dotted line of Fig. 5 shows the case with
k=0 andg=0.2. Here,g=0.025 and both the average popu-
lation and the number squeezing parameter grow in time.
Finally, the continuous line of Fig. 5 shows the caseg=k
=0.5: the gain isg=−0.5 and the system reaches a stationary
state in whichj1,2=0.7. This case is of some interest because
a steady-state atom-atom number squeezed state is obtained
in a linear system.

Let us now consider the effect of losses on the quantum
regime. Figure 6 shows the average populationkn̂1l (a) and
the atom-photon number squeezing parameterj1,3 (b) as a
function of t for 1/r=d=5. Dashed lines in Figs. 6(a) and
6(b) are for k=g=0, the dotted lines are fork=0 and g
=0.15, and the continuous lines are fork=g=0.15. We note
that the atomic decoherence(i.e., g) causes a drastic reduc-
tion of the number squeezing between atoms and photons.
However, choosingg=k,gs0d (wheregs0d,Îr /2), we may
keepj1,3 constant and less than unity for a relatively long
time, as in the ideal case without losses. Notice that in the
quantum regime the below-threshold case(i.e., g,g) is not
of interest because the average number of quanta generated
in each mode remains less than unity.

FIG. 4. Semiclassical regime withg=0: (a) kn̂1l and(b) j1,2 vs
d for r=100,t=2, k=0 (dashed line), 1, and 5.

FIG. 5. Semiclassical regime forr=100 andd=3.5: (a) kn̂1l and
(b) j1,2 vs t for g=0, k=0 (dashed line), for g=0.2, k=0 (dotted
line), and forg=k=0.5 (continuous line).

FIG. 6. Quantum regime for 1/r=d=5: (a) kn̂1l and (b) j1,3 vs
t for g=0, k=0 (dashed line), for g=0.15,k=0 (dotted line), and
for g=k=0.15 (continuous line).
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C. Superradiant regime

In this section we present analytical results for the super-
radiant regime in the asymptotic limituImv1ut@1, wherev1
is the unstable root of Eq.(28) with a negative imaginary
part. Fork@ uv1u and assuming for simplicityg=0, one root
of Eq. (28) can be discharged as it decays to zero as
exps−ktd and the other two roots may be obtained solving
the following quadratic equation:

v2 +
v + d + ik

sd + ikd2 − 1/r2 −
1

r2 = 0. s29d

From Eq. (29) it is possible to calculate explicitly the un-
stable root and evaluate asymptotically the expressions of the
function f ij appearing in Eq.(13). From them, it is possible
to evaluate the expectation values of the occupation numbers
in the semiclassical and quantum regimes.

1. Semiclassical limit of the superradiant regime

For k3/2.1@Îk /r andd=0, the solutions of Eq.(29) are
v1,2= <s17 id /Î2k and the average occupation numbers are

kn̂1l <
r2

16k
F1 +

Î2k

r
Ges2/kd1/2t, s30d

kn2l <
r2

16k
es2/kd1/2t, s31d

kn3l <
r

8k2es2/kd1/2t. s32d

We observe that the growth rate is proportional toÎN [17]
andkn̂1l<kn̂2l andkn̂3l<s2/rkdkn̂1l! kn̂1l, so that the num-
ber of emitted photons is much smaller than the number of
atoms in the two motional states. The asymptotic expression
of the expectation value(27) of the bunching parameter is

kB̂†B̂l <
1

4N
F1 +

Î2k

r
Ges2/kd1/2t. s33d

Assuming thatkB̂†B̂l approaches a maximum value of the
order of 1, then the maximum average number of emitted
photons is aboutrN/2k2, whereas the maximum fraction of
atoms gaining a momentum 2"kp is aboutr2/4k.

2. Quantum limit of the superradiant regime

For k3/2@1.r /Îk andd=1/r, the solutions of Eq.(29)
are v1,2<1/r7 ir / s2kd and the average occupation num-
bers are

kn̂1l < F1 +S r

Î2k
D4Gesr/kdt, s34d

kn2l < S r

2Îk
D4

esr/kdt, s35d

kn3l <
r

2k2esr/kdt. s36d

In this case, the growth rate is proportional toN (as in the
usual superradiance[18]) and kn̂2,3l! kn̂1l and kn̂2l
<sr /2d3kn̂3l: the average number of emitted photons is
much less than the average number of atoms scattering a
photon from the pump to the probe. Furthermore, the number
of atoms making the reverse process, i.e., scattering a photon
from the probe to the pump, can be larger than the number of
photons scattered into the probe mode ifr.2, as it occurs in
the current experiment on BEC superradiance[7,9]. In this
regime the asymptotic expression of the expectation value of
the bunching parameter is

kB̂†B̂l <
1

NF1 +
1

2S r

Î2k
D4Gesr/kdt, s37d

so thatkn̂3l<srN/2k2dkB̂†B̂l, as in the semiclassical limit.
The only difference is that in the quantum regime the maxi-

mum of kB̂†B̂l is 1/2, so that the maximum number of scat-
tered photons in the quantum limit is half of that obtained in
the semiclassical limit.

V. ENTANGLEMENT AND SEPARABILITY

In this section we analyze the kind of entanglement that
can be generated from our system. First, we establish nota-
tion and illustrate the separability criteria. We also apply the
criteria to the state obtained in the ideal dynamics. Then, we
address the effects of losses. We study both the separability
properties of the tripartite state resulting from the evolution
from the vacuum, as well as of the three two-mode states that
are obtained by partial tracing over one of the modes. The
basis of our analysis is that both the tripartite state and the
partial traces are Gaussian states at any time. Therefore, we
are able to fully characterize three-mode and two-mode en-
tanglement as a function of the interaction parameters
[20,21].

A. Three-mode entanglement

Concerning entanglement properties, three-mode states
may be classified as follows[21].

Class 1.Fully inseparable states, i.e., not separable for
any grouping of the modes.

Class 2.One-mode biseparable states, which are sepa-
rable if two of the modes are grouped together, but insepa-
rable with respect to the other groupings.

Class 3.Two-mode biseparable states, which are sepa-
rable with respect to two of the three possible bipartite
groupings but inseparable with respect to the third.

Class 4.Three-mode biseparable states, which are sepa-
rable with respect to all three bipartite groupings, but cannot
be written as a product state.

Class 5.Fully separable states, which can be written as a
three-mode product state.

Separability properties are determined by the characteristic
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function. In order to simplify the analysis we rewrite the
characteristic function(7) in terms of the real variablesxT

;sx1,x2,x3,y1,y2,y3d with j j =2−1/2syj − ixjd, j =1,2,3. We
have

xsxd = expH−
1

4
xTVxJ , s38d

where

V = 2L0SA − B

B A
DL0, s39d

with L0=diags−1,1,1,1,1,1d and

A = ReC, B = Im C, s40d

and where we omitted the explicit time dependence of the
matrices. The entanglement properties of the three-mode
state are determined by the positivity of the matrices

G j = L jVL j − iJ, j = 1,2,3

[21], where L1=diags1,1,1,−1,1,1d, L2=diags1,1,1,1,
−1,1d, L3=diags1,1,1,1,1,−1d, and J is the symplectic
block matrix

J = S0 − I

I 0
D , s41d

I being the 333 identity matrix. The positivity of the matrix
G j indicates that thej th mode may be factorized from the
other two. Therefore, we have that(i) if G j ,0 ∀ j the state is
in class 1;(ii ) if only one of theG j is positive the state is in
class 2;(iii ) if only two of the G j are positive the state is in
class 3;(iv) if G j .0, ∀ j then the state is either in class 4 or
in class 5.

The covariance matrixV can be written as

V =1
G − A − B 0 D E

− A H C D 0 − F
− B C I E F 0

0 D E G A B
D 0 F A H C
E − F 0 B C I

2 , s42d

where

A = 2 ReC12, D = 2 Im C12, G = 2kn̂1l + 1,

B = 2 ReC13, E = 2 Im C13, H = 2kn̂2l + 1,

C = 2 ReC23, F = 2 Im C23, I = 2kn̂3l + 1, s43d

and the matrix elementsCij are reported in Appendix B. Let
us first consider the ideal case, when no losses are present. In
this case we can prove analytically that the evolved state(3)
is fully inseparable. In fact, we have that

A = 2Îkn̂2ls1 + kn̂1ldcosf2, D = 2Îkn̂2ls1 + kn̂1ldsin f2,

B = 2Îkn̂3ls1 + kn̂1ldcosf3, E = 2Îkn̂3ls1 + kn̂1ldsin f3,

C = 2Îkn̂2lkn̂3lcossf3 − f2d, F = 2Îkn̂2lkn̂3lsinsf3 − f2d,

s44d

from which, in turn, it is straightforward to prove that the
minimum eigenvalues of the matricesG j are always negative.
In the nonideal case, wheng or k are different from zero, the
expressions given in Eqs.(43) and accordingly the minimum
eigenvalues of matricesG j should be calculated numerically.
In Figs. 7–9 the minimum eigenvalues of matricesG1, G2,
andG3 are plotted in the semiclassical regime, withr=100.
In this regime we can observe that modes 1 and 2 remain
nonseparable from the three-mode state even for large values
of atomic decoherenceg and radiation lossesk. Instead in-
separability of mode 3 is not so robust especially in the pres-

FIG. 7. Semiclassical regime forr=100 andd=0.01: minimum
eigenvalue of matrixG1 for k=0 and different values ofg (a) and
for g=0 and different values ofk (b).

FIG. 8. Semiclassical regime forr=100 andd=0.01: minimum
eigenvalue of matrixG2 for k=0 and different values ofg (a) and
for g=0 and different values ofk (b).
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ence of some atomic decoherence. In Figs. 10 and 11 the
minimum eigenvalues of matricesG1 and G2 are plotted in
the quantum regime, withr=0.2. The minimum eigenvalue
of the matrixG3 is not reported in the figure since the behav-
ior is similar to that ofG1. In this regime we can observe that
modes 1 and 3 remain nonseparable from the three-mode
state even for large values of atomic decoherenceg and ra-
diation lossesk. Instead inseparability of mode 2 is very
sensible, especially in the presence of some radiation losses.
In any case in the quantum regime the three eigenvalues
increasingg andk approach zero but remain negative.

B. Two-mode entanglement

In experimental conditions where only two of the modes
are available for investigations, the relevant piece of infor-

mation is contained in the partial traces of the global three-
mode state. Therefore, besides the study of three-mode en-
tanglement it is also of interest to analyze the two-mode
entanglement properties of partial traces. At first we notice
that the Gaussian character of the state is preserved by the
partial trace operation. Moreover, the covariance matricesVij

of three possible partial traces%̂i j =Trkf%̂g, i Þ j Þk can be
obtained fromV by deleting the correspondingk and k+3
rows and columns. The Gaussian character of the partial
traces also permits us to check separability using the neces-
sary and sufficient conditions introduced in Ref.[20],
namely by the positivity of the matricesSi j andSi j8 that are
obtained by deleting thek andk+3 rows and columns either
from Gi or G j. Since they differ only for the sign of some
off-diagonal elements it is easy to prove that they have the
same eigenvalues. Therefore, we employ onlySi j in checking
separability. The matricesSi j are given by

S12 =1
G − A i D

− A H − D i

− i − D G − A
D − i − A H

2 , s45d

S13 =1
G − B i E

− B L − E i

− i − E G − B
E − i − B I

2 , s46d

FIG. 9. Semiclassical regime forr=100 andd=0.01: minimum
eigenvalue of matrixG3 for k=0 and different values ofg (a) and
for g=0 and different values ofk (b).

FIG. 10. Quantum regime forr=0.2 andd=5: minimum eigen-
value of matrixG1 (or G3, see the text) for k=0 and different values
of g (a) and forg=0 and different values ofk (b).

FIG. 11. Quantum regime forr=0.2 andd=5: minimum eigen-
value of matrixG2 for k=0 and different values ofg (a) and for
g=0 and different values ofk (b).
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S23 =1
H C i − F
C L − L i

− i − L H − C
− F − i − C I

2 . s47d

In ideal conditions withg=k=0 the minimum eigenvalues of
S1k, k=2,3 aregiven by

h1k = kn̂1l + kn̂kl − Î4kn̂kl + skn̂1l + kn̂kld2 s48d

and thus are always negative. On the contrary, the minimum
eigenvalue ofS23 is given by

h23 = 1 + kn̂1l + Îs1 + kn̂1ld2 − 4kn̂kl, s49d

wherekn̂kl=maxskn̂2l ,kn̂3ld. Note thath23 is always positive.
Therefore, after partial tracing we may have atom-atom en-
tanglement(entanglement between modea1 and modea2) or
scattered atom-radiation entanglement(entanglement be-
tween modea1 and modea3) but no entanglement between
modea2 and modea3.

For t@1 we know the asymptotic expressions for popu-
lations in the ideal case without losses[6], so we can obtain
the stationary value ofh1k as

h1k < −
2kn̂kl

kn̂1l + kn̂kl
. s50d

In the high-gain semiclassical regimesr@1d [6],

kn̂1l <
1

18
Fr2

2
+ rGeÎ3t, s51d

kn̂2l <
r2

36
eÎ3t, s52d

kn̂3l <
r

18
eÎ3t, s53d

so that

h12 < −
r

1 + r
, h13 < −

4

4 + r
. s54d

In the high-gain quantum regimesr,1d,

kn1l <
1

4
F1 +Sr

2
D3GeÎ2rt, s55d

kn2l <
1

4
Sr

2
D3

eÎ2rt, s56d

kn3l <
1

4
eÎ2rt, s57d

so that

h12 < −
r3

4 + r3, h13 < −
16

16 +r3 . s58d

In the nonideal case, wheng or k are different from zero, the
minimum eigenvalues of matricesS12 andS13 can be easily

obtained numerically. In Figs. 12 and 13 the minimum eigen-
values of matricesS12, S13 are plotted for the semiclassical
regime. We can observe that the atom-atom entanglement of
the reduced state 12 is robust, as the minimum eigenvalue
remains negative, increasing atomic decoherenceg and ra-
diation lossesk. On the contrary, atom-photon entanglement
of the reduced state 13 is more sensitive to noise: the eigen-
value remains negative increasingk and becomes positive in
the presence of some atomic decoherence.

In Figs. 14 and 15 are plotted the minimum eigenvalues
of matricesS12, S13 in the quantum regime, withr=0.2. Here
the atom-photon entanglement in the state 13 is robust while
atom-atom entanglement of the state 12 is not. The minimum
eigenvalue always remains negative, but it starts from a very
small absolute value and approaches very fast to zero, in-
creasingk andg.

FIG. 12. Semiclassical regime forr=100 andd=0: minimum
eigenvalue of matrixS12 for k=0 and different values ofg (a) and
for g=0 and different values ofk (b).

FIG. 13. Semiclassical regime forr=100 andd=0: minimum
eigenvalue of matrixS13 for k=0 and different values ofg (a) and
for g=0 and different values ofk (b).
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VI. CONCLUSIONS

We have investigated how cavity radiation losses and
atomic decoherence influence the generation of two-(atom-
atom or atom-radiation) and three-mode entanglements in the
collective atomic recoil lasing(CARL) by a Bose-Einstein
condensate driven by a far off-resonant pump laser. The at-
oms backscatter photons from the pump to a weak radiation
mode circulating in a ring cavity, recoiling with opposite
momentum ±2"kp along the ring cavity axis. Our analysis
has been focused to the linear regime, in which the ground
state of the condensate remains approximately undepleted
and the dynamics is described by three parametrically
coupled boson operators, corresponding to the radiation

mode and two condensates with momentum displaced by

±2"kWp. The problem resembles that of three optical modes
generated in axs2d medium [22] and thus our results may
have a more general interest also behind the physics of the
BEC. We have solved analytically the dissipative Master
equation in terms of the Wigner function and we have inves-
tigated the entanglement properties of the evolved state. We
found that three-mode entanglement as well as the two-mode
atom-atom and atom-photon entanglements are generally ro-
bust against cavity losses and decoherence. Our analysis has
been focused on the different dynamical regimes, the high-Q
cavity regime, with low cavity losses, and the superradiant
regime in the so-called “bad-cavity limit.” We have found
that entanglement in the high-Q cavity regime is generally
robust against either cavity or decoherence losses. On the
contrary, losses seriously limit atom-atom and atom-radiation
number squeezing production in CARL[15], the only excep-
tion being the symmetric loss caseg=k. Concerning the su-
perradiant regime, atom-atom entanglement in the semiclas-
sical limit is generally more robust than atom-radiation
entanglement in the quantum limit. Finally, we have proved
that the state generated in the ideal case without losses is
fully inseparable. We conclude that the present system is a
good candidate for the experimental observation of entangle-
ment in condensate systems since, in particular, steady-state
entanglement may be obtained both between atoms with op-
posite momenta and between atoms and photons. The main
implications for CARL are twofold: on one hand the charac-
terization of entanglement may be performed also in non-
ideal cases. On the other hand, the experimental require-
ments to implement the interspecies teleportation of Ref.
[14] can be weakened without losing the nonlocal character
of the protocol. It should also be mentioned that the separa-
bility criteria used here, i.e., the negativity of the modified
covariance matrix, is related to the negativity of the partially
transposed density matrix, which itself is a good measure of
entanglement[23,24]. Therefore the present analysis, besides
establishing a threshold for separability, also provides criteria
to compare different working regimes in terms of the degree
of entanglement.
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APPENDIX A: SOLUTION OF THE FOKKER-PLANCK
EQUATION

In order to solve Eq. (8) for the Green function
Gsu ,t ;u0,0d it is helpful to first perform a similarity trans-
formation to diagonalize the drift matrixA:

FIG. 14. Quantum regime forr=0.2 andd=5: minimum eigen-
value of matrixS12 for k=0 and different values ofg (a) and for
g=0 and different values ofk (b).

FIG. 15. Quantum regime forr=0.2 andd=5: minimum eigen-
value of matrixS13 for k=0 and different values ofg (a) and for
g=0 and different values ofk (b).
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Ã = SAS−1 = diaghl1l2l3j, sA1d

where the complex eigenvaluesl j of A (with j =1,2,3) are
obtained from the characteristic equation

detsA − lI d = 0, sA2d

I is the 333 identity matrix and the columns ofS−1 are the
right eigenvectors ofA with detsSd=1. Solving Eq.(A2) we
obtain l j = isv j −dd−g+, wherev j are the three roots of the
cubic equation(15), whereas the eigenvectors ofA corre-
sponding to thej th eigenvalue are

aj
T = N jSiÎr

2
sv j + bd,− iÎr

2
sv j − bd,− v j

2 + b2D ,

sA3d

whereb=1/r+ ig− and

N1 =
1

v2 − v3
, N2 =

1

v1 − v3
, N3 =

1

v1 − v2
. sA4d

Explicitly calculating the inverse matrix ofS−1 we have

S= 1 iÎr/2sa22a23/N1d iÎr/2sa12a13/N1d − N2N3/N1

− iÎr/2sa23a21/N2d − iÎr/2sa11a13/N2d N1N3/N2

iÎr/2sa21a22/N3d iÎr/2sa12a11/N3d − N1N2/N3
2 , sA5d

whereaij =sajdi. Now we transform the Fokker-Plank equa-
tion (8) in the new variablev;Su. From Eq.(A1) we obtain

u8TAu = u8TsS−1ÃSdu = v8TÃv, sA6d

u8TDu8* = sv8TSdDsSTv8d* = v8TD̃v8* , sA7d

where D̃;SDS†, S†=sSTd* , and v8T=u8TS−1. Using Eqs.
(A6) and (A7) Eq. (8) becomes

] W̃

] t
= − sv8TÃv + c.c.dW̃+ v8TD̃v8*W̃, sA8d

whereW̃sv ,td=WsS−1v ,td. Equation(A8) is a linear Fokker-
Planck equation with diagonal drift. Introducing the Fourier
transform

Ũsk,td =E d2k

p3 W̃svdexpsk*Tv − kTv*d, sA9d

Eq. (A8) becomes

] Ũ

] t
= sk*TÃk8* + kTÃ*k8dŨ − sk*TD̃kdŨ, sA10d

where

kT = sk1,k2,k3d, k8T = S ]

] k1
,

]

] k2
,

]

] k3
D . sA11d

The Fourier transform of the initial condition of the Green

function G̃sv ,0 ;Su0,0d=d3sv−Su0d is

Ũsk,0d = expfk*TSu0 − kTsSu0d*g. sA12d

Equation(A10) is now solved using the method of the char-

acteristics. SinceÃ is diagonal the subsidiary equations are

dt

1
=

dk1
*

− l1k2
* =

dk2
*

− l2k2
* =

dk3
*

− l3k3
* =

dŨ

s− k*TD̃kdŨ
sA13d

and have solutions

k = e−Ã*tc = const. sA14d

Then

dŨ

Ũ
= − k*TD̃kdt = − c*Tse−ÃtD̃e−Ã*tdcdt =

− c*TfD̃i je
−sli+l j

* dtgcdt, sA15d

where sBi jd denotes the matrix with elementsBi j , and we
find, using Eq.(A14),

lnŨ = k*TH D̃i j

li + l j
* f1 − esli+l j

* dtgJk + const. sA16d

It follows that

Ũexphk*TQ̃kj = const, sA17d

whereQ̃ is the 333 matrix with elements

Q̃ij ; −
D̃ij

li + l j
* f1 − esli+l j

* dtg =E
0

t

dt8D̃ije
sli+l j

* dt8.

sA18d

Thus, from Eqs.(A14) and (A17), the solution forŨ takes
the general form

Ũsk,td = FseÃ*tkdexph− k*TQ̃kj, sA19d

whereF is an arbitrary function. ChoosingF to match the
initial condition (A12), we find
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Ũsk,td = exphk*TsSeAtu0d − kTsSeAtu0d*jexph− k*TQ̃kj.

sA20d

In the argument of the first exponential on the right-hand

side we have used Eq.(A1) to write expsÃtdS=S expsAtd.
Inverting the Fourier transform we obtain

G̃sv,t;Su0,0d =
1

p3detQ̃
exphsv − SeAtu0d†Q̃−1sv − SeÃtu0dj

sA21d

and so transforming back the variables

Gsu,t;u0,0d =
1

p3det Q
exphsu − eAtu0d†Q−1su − eAtu0dj,

sA22d

where

Q = S−1Q̂sS−1d† =E
0

t

dt8eAt8DseAt8d†. sA23d

APPENDIX B: ELEMENTS OF THE MATRICES M,
EQ. (13), AND C, EQ. (18)

The expressions of the functionsf ij which appear as ele-
ments of the matrixM , Eq. (13), are

f11std = e−sg++iddto
j=1

3

fsv j − adsv j + bd − r/2g
eiv jt

D j
,

sB1d

f22std = e−sg++iddto
j=1

3

fsv j − adsv j − bd + r/2g
eiv jt

D j
,

sB2d

f33std = e−sg++iddto
j=1

3

sv j
2 − b2d

eiv jt

D j
, sB3d

f12std = −
r

2
e−sg++iddto

j=1

3
eiv jt

D j
, sB4d

f13std = − iÎr

2
e−sg++iddto

j=1

3

sv j + bd
eiv jt

D j
, sB5d

f23std = iÎr

2
e−sg++iddto

j=1

3

sv j − bd
eiv jt

D j
, sB6d

where a=d+ isk−g+d, b=1/r+ ig−, D j =sv j −vkdsv j −vmd
(with j ÞkÞm), andv1, v2, andv3 are the roots of the cubic
equation(15). It is possible to show thatf ijs0d=di j in order to
satisfy the initial conditionM s0d= I .

The explicit components of the covariance matrix

Cstd = Qstd +
1

2
M stdM †std, sB7d

whereM andQ are defined in Eqs.(13) and (14), are

C11std =E
0

t

dt8hg1uf11u2 + g2uf12u2 + kuf13u2j

+
1

2
suf11u2 + uf12u2 + uf13u2d, sB8d

C22std =E
0

t

dt8hg1uf12u2 + g2uf22u2 + kuf23u2j

+
1

2
suf12u2 + uf22u2 + uf23u2d, sB9d

C33std =E
0

t

dt8hg1uf13u2 + g2uf23u2 + kuf33u2j

+
1

2
suf13u2 + uf23u2 + uf33u2d, sB10d

C12std =E
0

t

dt8h− g1f11f12
* + g2f12f22

* + kf13f23
* j

+
1

2
s− f11f12

* + f12f22
* + f13f23

* d, sB11d

C13std =E
0

t

dt8hg1f11f13
* − g2f12f23

* + kf13f33
* j

+
1

2
sf11f13

* − f12f23
* + f13f33

* d, sB12d

C23std =E
0

t

dt8h− g1f12f13
* − g2f22f23

* + kf23f33
* j

+
1

2
s− f12f13

* − f22f23
* + f23f33

* d, sB13d

with Cij =Cji
* .

In the special caseg+=g=k andg−=0, f ij =e−gtf ij
s0d, where

f ij
s0d is the solution without losses. As shown in Ref.[6], they

satisfy the following relations:

uf13
s0du2 + 1 = uf23

s0du2 + uf33
s0du2, sB14d

uf11
s0du2 − 1 = uf12

s0du2 + uf13
s0du2, sB15d

uf12
s0du2 + 1 = uf22

s0du2 + uf23
s0du2, sB16d

f11
s0dsf13

s0dd* = − f12
s0dsf23

s0dd* + f13
s0dsf33

s0dd* , sB17d

− f11
s0dsf12

s0dd* = f12
s0dsf22

s0dd* + f13
s0dsf23

s0dd* , sB18d
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− f12
s0dsf13

s0dd* = − f22
s0dsf23

s0dd* + f23
s0dsf33

s0dd* . sB19d

Using Eqs.(B14)–(B16) in Eqs. (B8)–(B10) and Cii =1/2
+kn̂il, we obtain that

kn̂1l = kn̂2l + kn̂3l sB20d

and

dkn̂il
dt

=
dkn̂i

s0dl
dt

e−2gt, sB21d

where kn̂i
s0dl are the expectation values of the occupation

numbers of the three modes in the ideal case without losses.
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