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Abstract 

A method to recover the density matrix of radiation states expressed by a finite superpositions of number states is 
presented. It starts from realistic, not fully efficient, heterodyne or double homodyne detection. Examples are given by 
means of numerical simulations. 
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From the quantum mechanical point of view a sin- 
gle mode radiation field is completely characterized 

by the density operator /j. From the knowledge of den- 
sity operator one can readily evaluate the probability 
distribution of any quantity of interest, even if it does 

not correspond to an observables in strict sense, as it 
happens for the quantum phase [ 11. The problem of 
recovering fi from measurable quantities is therefore 
a matter of great interest and recent efforts in this di- 

rection are largely justified. Until now the attention 
has been mostly focused on Quantum Tomography, 
namely the reconstruction of density matrix (lj) from 
a set of homodyne measurements of the field quadra- 
tures ZP = i(aeeiv + atei+‘). The commutation rela- 
tion [a,~+] = 1 imposes to the quantum phase space 
of the harmonic oscillator a structure quite different 
relative to the corresponding one from classical sta- 
tistical mechanics. There is a unique definition for 
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classical distribution function, whereas for a quantum 
state 6 one can define an entire one-real-parameter 
of quantum distribution functions W,( a, C), the so- 
called generalized Wigner functions 

W,(a,G) = s $ Tr{exp(hat + ia + ASH)} 

x exp(A& + ia). (1) 

The existence of the latter is related to the different or- 
dering of the boson operators a, at as the statistical av- 

erage (Cuka’), over W, (a, E) provides the quantum ex- 
pectation value of the operator product {atka~},y in the 
s-ordered representation. The most important distribu- 
tions are obtained for s = 1, the Glauber P-function, 
for s = 0, the distribution originally proposed by 
Wigner and for s = 1 the Husimi Q-function which are 
respectively related to normal, symmetric and antinor- 
ma1 ordering of the boson operators. The possibility 
of recovering generalized Wigner functions W,Y( a, 5) 
from a continuous set of homodyne measurements has 
been shown theoretically by Vogel and Risken [ 2 1, 
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and later it has been experimentally applied to the re- 
construction of Wigner function WO( (Y, E) for coher- 

ent and squeezed states [3]. The use of a finite set 
of 40 values had been circumvented by means of a 
filtering procedure on data borrowed by medical to- 

mography. More recently, a fully quantum mechanical 
method suitable for statistical sampling has been de- 

veloped for the reconstruction of the density matrix in 
the Fock representation, working also in the case of 
non efficient homodyne detectors [4]. 

Only little attention was devoted to the reconstruc- 

tion problem starting from heterodyne or double ho- 
modyne detection [ 51. This is quite strange as quan- 

tum tomography requires the detection of many field 

quadratures R, and thus a lot of repeated measure- 
ments on the state under examination. On the contrary 

heterodyne detection [6] and double homodyne de- 
tection [ 71 involve the measurement of only two con- 

jugated field quadratures 4, and ?(D+V~2 and their out- 
comes probability distribution represents a sampling 

of a Wigner function Ws(ct, 6) with s 5 -1 3. The 
precise value of the parameter s depends on the quan- 
tum efficiency of the involved photodetectors as s = 
1 - 2~~’ [ 91. This lack of interest is probably due to 

the fact that Wigner distributions W,( a, 5) are very 
smoothed functions for s < -1 and thus they do not 
seem to provide information on non classical features 
of the field mode states. This phenomenon is well il- 
lustrated in Fig. 1 where I report the Wigner func- 
tion Wo( a, 6) and the Husimi Q-function Q( LY, &) = 
W-1 (a, 5) for a single number state fi = 13)(3/. The 
Q-function is positive definite and does not exhibit os- 

cillations, thus it seems that crucial informations are 
washed out. 

The task of this paper is to show that, on the con- 
trary, quantum features in the Wigner distribution 
W,,(a, 6) for s 5 -1 are not destroyed, even though 

they are highly suppressed. I will show that starting 
from realistic heterodyne or double homodyne detec- 

tion the exact reconstruction of the density matrix in 
the Fock representation is possible for the relevant 
class of states expressed by a finite superposition of 
number states. 

7 The equivalence of heterodyne and heterodyne detection has 

been shown in Ref. [ 81. Throughout the paper any reference to 

the heterodyne detectors is also valid for the double homodyne 

detectors. 

The ordering expansion of an operator 8 is an 
important tool in the treatment of optical systems. 
This arises from the fact that the expectation value 
(6) = Tr(fi6) can be expressed as a statistical aver- 
age over W, (cr, 5) of certain non operatorial function 

F.! [ d] (a, ii) associated with the s-ordered form of 
the operator 8 

(2) 

For a fixed operator 8 the quantity .& [ 81 (a, Ci) can 
be both an ordinary function or a tempered distribu- 

tion [lo] depending on the value of s. However, the 
analytical properties of the Wigner functions assure 
the integral in Eq. (2) to be well defined for any value 

of s. 
The matrix elements P~,~, are the expectation values 

of the generalized projectors pn,,, = In)(m] and thus 
their ordering is of interest in the reconstruction prob- 
lem. The density matrix is Hermitian and thus I will 

consider only the case m > n. Using the definition of 
Fock states and the Louise11 expansion of the vacuum 

[Ill 

it is straightforward to obtain the normal ordered form 

of the projectors 

Ijn.n+k = 
(-&)‘I J&y JJy-_ T y+“+pa”+“+k. 

(4) 

An arbitrary t-ordered product {atn’an’+Q}r can be ex- 
pressed in terms of a finite number of s-ordered ones 
{u+5zr+q}S using the formula [ 101 

x {atrar+q 1 S, (5) 

where also s is arbitrary. When t is chosen to be t = 1 
Eq. (5) expresses normal ordered moments in terms of 
arbitrary ordered ones. Upon inserting Eq. (5) in Eq. 
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Fig. 1. (a) Wigner function W(~(a,d) and (b) Husimi function W_,(CU,G) for a single Fock state p = 13)(31 

(4) one obtains the s-ordered form of the generalized mkn.n+kl(~~~~ = 
C-1” 

projectors @G-C@ 

(7) 

S’ (6) 

The function FY [ P ,,,l+k] (cy, 5) is thus expressed by 

where 15: (x) denotes Laguerre polynomials. Eq. (7) 

shows the singularity of TV [ pnn,n+k] (a, E), which be- 
long to the class of tempered distributions. In the case 
of s = -1, namely for average over Q-function, Eq. 
(7) is the series representation of the explicit expres- 
sion 
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where a((~,&) denotes the Dirac distribution in 

the complex plane. When one has at disposal the 

analytical expression of the considered Wigner 

distribution function W,(cu, &) the singularity of 
?‘Y [ p,l,,l+k] (a, 6) does not prevent the evaluation of 

p!l+k.Jl = (p,,,,,+k), However, we are interested in the 

density matrix reconstruction starting from measured 
Wigner distribution function, namely by statistical 

sampling of Eq. (2) 

(9) 

which cannot be accomplished for & [ p,,n+k] (a, 5) 
in Eq. (7). Some filtering or smoothing procedure is 
thus needed on experimental data and this biases the 

reliability of the reconstruction, as the details of the 

distribution are crucial and any smoothing unavoid- 
ably introduces some a priori hypothesis on the mea- 
sured state. 

However, Eq. (2) is far from being a purely formal 

tool if we restrict our attention on special classes of 
states. 

The exact reconstruction of the entire density ma- 

trix (in the Fock representation) is, in fact, possible 
for states with a finite number of moments (a+“‘a”) 
different from zero, in particular for finite superposi- 

tions of number states 

(10) 

The latter are extensively investigated in the frame- 
work of cavity electrodynamics. They can be produced 
in different ways in a high-Q cavity, substantially by a 
careful control on the resonant interaction of the field 
with the injected two-level atoms [ 121. Very recently, 
it has been also suggested that special nonlinear inter- 
actions lead to the generation of Fock states and their 
superposition [ 131. For these states the problem of 
recovering the density matrix can be solved exactly, 
leading to a reconstruction formula suitable for statis- 

tical sampling. In fact, if the moments (atstan) vanish 
for n or m beyond a certain value the sum over p in 
Eqs. (6) and (7) is truncated by definition. Deriva- 
tives and limiting procedures can now be readily car- 

ried out leading to the reconstruction formula 

(11) 

I would stress the fact that Eq. (1 I) is exact as the 
truncation in Eqs. (6) and (7) is not the result of any 
approximation but it comes just from considering the 

finite superposition of number states ( 10). 
The value of N in Eq. ( 11) has to be chosen 

large enough to ensure the cancellation of any mo- 
ment a+N+jaN+i i j = 0 1 , 3 
start with a large value of’; and 

In practice one can 

then optimize it by 

means of some stability criterion. I will show in the 
following the effectiveness of this procedure. 

A complete check of the present reconstruction 
method can be performed by means of numerical sim- 
ulation of realistic heterodyne (double homodyne) 

detection. I consider the state 

I$) = -& [IO) + (2 + i)l2)] , (12) 

and apply Eq. ( 11) with a sample of lo6 experimen- 

tal (simulated) heterodyne data. The results for unit 

quantum efficiency 9 = 1 .O and for r) = 0.8 are re- 
ported in Tables 1 and 2. The reliability of the method 
is apparent also for non unit quantum efficiency. Con- 
fidence intervals are evaluated as usual [ 141, by divid- 
ing the entire sample in subensembles and then calcu- 
lating the rms deviation relative to the global average. 
Obviously to obtain the same confidence level with a 
smaller value of ~7 a larger sample is needed. Tables 
1 and 2 have been obtained fixing N = 2 in Eq. ( I I) 
but, as it has been mentioned above, this information 
is not needed by the algorithm. In Fig. 2, I report the 
simulated determination of the matrix elements ~0.0 
for the state (12) carried out with different values of 
N. It is apparent that beyond the critical value N = 
2 the reconstruction is insensitive to the value of N 
which slightly affects only the confidence interval. It 



Table I 

M.G.A. Paris/Optics Communications I24 (1996) 277-282 281 

Reconstructed density matrix for the superposition state in Eq. ( 12). Simulated experiment with unit quantumefficiency of the photodetectors 

and a sample of 10” data. Theoretical values are given in parentheses. 

0.1623 +c 0.0089 -0.0009 + iO.0033 f 0.0085 + iO.0076 0.3335 - iO.1630 zt 0.0050 + iO.0051 

(0.1666) (0.0 + iO.0) (0.3333 - iO.1666) 

-0.0009 - iO.0033 i 0.0085 + iO.0076 0.0090 zt 0.0208 0.0005 - iO.0035 h 0.0074 + iO.0068 

(0.0 + iO.0) (0.0 + iO.0) (0.0 + iO.0) 

0.3335 + i0. I630 f 0.0050 + lo.005 1 0.0005 + iO.0035 & 0.0074 + iO.0068 0.8286 f 0.0123 

(0.3333 + iO.1666) (0.0 + iO.0) (0.8333) 

0.0089 i 0.00 I72 

Table 2 

Reconstructed density matrix for the superposition state in !Zq. (12). Simulated experiment with quantum efficiency of the photodetectors 

equal to 7 = 0.8 and a sample of lo6 data. Theoretical values are given in parentheses. 

0. I823 z’c 0.0360 -0.0601 - iO.0373 & 0.1104 + iO.1001 0.3327 - i0.1758 k 0.0566 + iO.0571 

(0.1666) (0.0 -I- iO.0) (0.3333 - io. 1666) 

-0.0601 + iO.0373 f 0.1104 + iO.1001 0.0814f0.1061 0.0597 - iO.0308 f 0.0922 + iO.0842 

(0.0 + iO.0) (0.0 + iO.0) (0.0 + iO.0) 

0.3327 + iO.17.58 f 0.0566 + iO.057 I 0.0597 + iO.0308 k 0.0922 + iO.0842 0.8790 f 0.0752 

(0.3333 + i0.1666) (0.0 + iO.0) (0.8333) 
. 0.0989 f 0.00.1077 

Fig. 2. Determination of the vacuum matrix elements p0.u for the 

superposition state in Eq. ( 12) with quantum efficiency 7 = 0.7 

and different value of the parameter N. 

is worth noting also the ability of the algorithm in 
identifying the vanishing matrix elements, as it could 
be of special interest to know whether or not a Fock 
component is present in the superposition. 

In conclusion, a method for recovering the density 
matrix in the Fock representation from realistic, not 
fully efficient, heterodyne or double homodyne mea- 
surements has been presented. It works exactly for the 

relevant class of states expressed as a finite superpo- 
sition of number states. The reconstruction algorithm 

is, in this case, very effective and statistically reliable. 
The application in the general case requires some fil- 
tering on experimental data and thus could be useful 

only when partial information on the measured state 
is at disposal in advance. 
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