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Abstract. We address the dynamics of two indistinguishable interacting particles moving on
a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph
processes whose values jump between 0 and 1, thus mimicking percolation. The interplay
between the particle interaction strength, initial state and the percolation rate determine
different dynamical regimes for the walkers. We show that, whenever the walkers are initially
localised within the interaction range, fast noise enhances the particle spread compared to the
noiseless case.

1. Introduction
Quantum walks (QWs) are the quantum analogue of classical random walks and describe the
propagation of quantum particles over a discrete lattice with non zero tunneling amplitudes
between adjacent sites [1]. Two-particles quantum walks are paradigmatic systems to address the
interplay between particle indistinguishability and particle interaction. Besides the fundamental
interest, two-particle quantum walks are implemented on different platforms also with the aim
of studying multiple quantum interference and to simulate physical, chemical, and biological
complex systems [2]. Experimental realisations of QWs are subject to different sources of
noise e.g. imperfections, defects or external perturbations - that may dramatically affect the
dynamical behaviour of the walkers [3, 4]. As a consequence of the external noise, the regular
structures underlying the QWs may be altered, and the ordered lattices may turn into irregular
graphs. Among dynamically varying graphs, a central role is played by dynamical percolation
graphs, which are random graphs where edges are created and destroyed in time, according to
some stochastic process. While, to analyse more realistic scenarios, in a previous work [4] we
focused on the case of a non-Gaussian random telegraph noise which randomises the tunneling
amplitudes between adjacent sites still retaining for them a finite value, in this paper we address
the decoherent dynamics of two indistinguishable and interacting particles over one-dimensional
percolation graphs, with links that appear and disappear randomly in time. The percolation
approach is indeed quite intriguing in quantum mechanics, and can even be thought as related
to the cellular automaton interpretation of quantum mechanics itself [5].
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2. The physical model
The continuous-time quantum walk of two indistinguishable particles on percolation graphs is
described by the Hamiltonian:

H2(t) = H1(t)⊗ I+ I⊗H1(t) +Hint (1)

where the single-particle Hamiltonian H1 and the interaction Hamiltonian Hint read:

H1 = ϵI+
∑

x

Jgx(t)
(
|x⟩⟨x+ 1|+ |x+ 1⟩⟨x|

)
, Hint = Up(|x− y|)

N∑

x,y=1

|x, y⟩⟨x, y|. (2)

I is the single-particle identity matrix and the term ϵI only determines a rescaling of the energies
and can be omitted without loss of generality, J is the coupling constant, {|x⟩} represents the
orthonormal basis of the site of the graphs, i.e. the walkers positions, while the set {|x, y⟩}
describes the orthonormal basis for the two-particle QW, where one occupies site x and the
other site y. gx(t) is a stochastic process describing the percolating links, i.e. it is described as
the non-Gaussian random telegraph noise with a switching rate γ and autocorrelation function
C(t) = ⟨gx(t)gy(0)⟩ = δx,y

1
4e
−2γt, whose values jump between 0 and 1, indicating the absence

and presence of edges respectively [3]. Up is the strength of the interaction between the two
walkers, as a function of their distance:

Up(|x− y|) =
{

U if x = y and p = bosons
U/3 if |x− y| = 1 and p = fermions

, (3)

i.e. bosons experience on-site interaction energy while fermions only nearest-neighbours
interaction. The initial state of the two walkers is taken in the form: |ψ0⟩ = 1√

2
(|x, y⟩ ± |y, x⟩)

to take into account their indistinguishability. Since Eq. (1) conserves the symmetry of the
wavefunction, the initial state of the walkers fixes the statistics of the particles. The time
evolution of the initial state is determined by ensemble-averaging the dynamics over all possible

realisations of the noise
〈
Λrρ0Λ

†
r(t)

〉
{gx(t)} where Λr(t) = T e−i

∫ t
0 H2(s)ds is the evolution operator

for the single realisation , T is the time-ordering operator and ρ0 = |ψ0⟩⟨ψ0|. Hereafter, we use
natural unit ! = 1 and we set J = 1 such that all quantities will be given in unit of the coupling
constant.

3. Results and discussion
In order to characterise the dynamics of the two-particle QW on percolation graphs, we consider
a 1D lattice with N=80 nodes, and we fix the switching rate of the percolating links γ = 10
(in unit of J). We simulate the dynamics, by numerically calculating the ensemble average over
1000 different percolation realisations, using a specific GPU accelerated code [7]. In order to
characterize the dynamics, we evaluate the temporal behaviour of the single particle variance
σ2(t) =

∑
x⟨x2(t)⟩ − ⟨x(t)⟩2, with ⟨xk⟩ =

∑
i i

kρ1ii(t) and ρ1 the single particle density matrix.
To complete our analysis, we also evaluate the occupation number of the lattice sites during the
evolution ⟨nk(t)⟩ = 2

∑
j ρkj,kj(t), where ρkj,kj(t) are the populations of the two-particle density

matrix in the {|k, j⟩} basis. In the following we present our results for both bosons and fermions.
In Fig. 1 we show the behaviour of the single-particle variance as a function of time (in unit of

J), for both bosons and fermions. In each panel we compare the dynamics for the regular lattice
without noise (black lines) and the case of percolation graphs (dashed red lines). In the left
part of the figure, we consider nearest-neighbours sites as initial state for fermions, while bosons
initially occupy the same node. An important result emerges here: for suitable interaction
strength regime (U < 6 for fermions and U < 2 for bosons), the single-particle variance for
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Figure 1. Single-particle variance as a function of dimensionless time t over a graph of N = 80
sites, for different values of the interaction strength U . Solid black lines are for regular noiseless
lattices, while the dashed red lines represent the case of percolation graphs with γ = 10. The
two panels in the right part of the figure are for fermions and bosons starting in third-next and
second-next-neighbours respectively. In the latter case the results are essentially independent
on the value of U .

percolation graphs is smaller with respect to the noiseless case, independently on the particle
statistics. But as the interaction strength grows, we observe a crossover in its behaviour, and σ2

for percolation graphs exceeds the noiseless case. This means that the particles can spread faster
over sites in the lattice, due to fast (γ = 10) percolation. This happens when the two particles
are initially located on nearest-neighbours sites (fermions) or same-site (bosons), that is, if they
are positioned within the range of interaction (3). One may notice that particles undergo a
different dynamics if the initial positions are outside the range of interaction (U=0), as shown
in the rightmost panels of Fig. 1 where the two particles start from third-next (fermions) and
second-next (bosons) -neighbours. In this case, indeed, the crossover between percolation and
noiseless variance never happen and the free walkers always spread faster on the noiseless graph
with respect to the percolation graph.

The effect of dynamical percolation is also further analysed by studying the occupation
number ⟨n(t)⟩ of the lattice sites. This is shown in Fig. 2. The top panels show the distribution of
the occupation number in the noiseless case, for strong interactions. As known [4], the particles
tend to localise, with minor components of the wavefunction travelling away from the initial
sites. The situation changes if we consider the dynamics of the QW over a percolation graph.
Indeed, the particles spread more over the lattice, with wavefunction components that occupy a
significantly larger number of the nodes, in agreement with the behaviour of the single-particle
variance. This dynamical behaviour can be explained in terms of the band structure of the
Hubbard model. In the absence of interaction (U=0), the band structure consist of a unique band
identical for bosons and fermions. For finite interaction strength, a small band is formed, called
mini-band, whose energy at the edge of the first Brillouin zone is given approximately by U/3 for
fermions and U for bosons. The remaining states are contained in the main band, which ranges
approximately from -4J to 4J [6]. Even if it is not possible to define proper band structures
since the translational invariance is broken by the noise, we can consider fast percolating noise
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Figure 2. Occupation
number ⟨nk(t)⟩ as a func-
tion of sites k and dimen-
sionless time t, for fermions
and bosons in the noise-
less and percolation lattice
of N = 80 sites. Particle
interaction is set U = 14
for fermions and U = 6
for bosons. Fermions start
in nearest-neighbours sites,
while bosons are initially lo-
calised on the same site.

as a perturbation to the noiseless dynamics and, to first-order approximation, we can explain
the QW features in terms of bands [4]. In this framework, we can state that noise provides
a redistribution of the wavefunction components among the subbands and it allows to access
a new regime where the particles acquire faster propagation contributions, thus breaking the
localisation induced by the strong interaction. This redistribution and the consequent crossover
of the single-particle variance happens whenever the particles initially belong to the mini-bands
and, because of noise, they are allowed to access other sub-bands. On the contrary, whenever
particles are located outside the range of interaction, i.e. in the main sub-band, noise cannot
add any faster contribution, thus the noiseless dynamics is always faster than the one obtained
on a percolation graph.

For the sake of completeness, we comment also on the dynamics of two-particle QW in the
presence of slow percolation, i.e. when γ ≪ 1. The percolation rate in this case is very small
and in the limit we reach a static percolation regime. This situation does not allow for any
propagation of the walker and the combined effect of noise and interaction strongly localise the
particle on their initial sites.

We conclude by remarking that localisation-breaking noise is an important feature that can be
exploited in many contexts especially for protocols for quantum transport and communication,
where noise can be engineered in order to obtain an enhancement of quantum properties.
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