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Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.

perspective Copyright c⃝ EPLA, 2019

Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of
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the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a
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percolation graph links between nodes are created with a
certain probability p. A generalization of the static per-
colation, where the links can be created and destroyed
in time with a certain rate, is called dynamical percola-
tion [27]. If the percolation rate vanishes, the static case is
recovered. For CTQW, the absence or presence of a link
between two nodes of the underlying graph is identified
with the corresponding tunneling amplitude between the
walker sites, which may take a zero or non-zero value, i.e.,
it can flip between two values. This duality allows us to
further generalize the percolation model by assuming that
the coupling between sites can randomly switch between
any two non-zero values, thus mimicking the fact that the
weights of the edges are dichotomic random variables. We
call this dynamical noise generalized percolation, since it
includes dynamical percolation as a special case. In par-
ticular, a convenient way to describe generalized percola-
tion is by means of the random telegraph noise (RTN):
a stochastic process where a certain variable may flip be-
tween two values at a certain rate, that from now on we
refer to as percolation rate.

The aim of this perspective article is to describe realistic
models of quantum walks affected by of noise. In partic-
ular, we focus on the CTQW model in the presence of
generalized percolation described by RTN. The aim is to
provide a general understanding of the role of environmen-
tal noise in the dynamics of the walker by reviewing re-
cent results concerning the temporal behavior of a CTQW,
with particular attention to the propagation properties of
the walker and on its ability to search for a marked vertex
on a graph. The paper is organized as follows: we first
establish the notation and we introduce concepts of graph
Laplacian and CTQW Hamiltonian; After that, we intro-
duce noise in the model. We then review recent results on
the propagation properties of the walker in the presence of
noise and on its ability to fast searching for a target node
on a graph. We close the paper with concluding remarks
and future perspectives.

Dynamics of CTQW on graphs. – CTQWs evolve
on graphs, i.e., sets of N nodes (discrete positions) con-
nected by edges. If two nodes are connected by a link,
then the walker may jump from one to the other, and vice
versa, with a tunnelling amplitude J . The Hilbert space
of the walker is thus spanned by the orthonormal posi-
tion states {|j}N

j=1,where |j denotes the state of the the
walker localized at site j. The mathematical object that
fully characterizes the topology of a graph is its adjacency
matrix, whose elements are Ajk = 1 if nodes j and k are
connected, and Ajk = 0 otherwise, i.e., if there is no edge
linking j and k. From the adjacency matrix it is possible
to build the Laplacian L of the graph: Ljk = Ajk if j ̸= k
and Ljk = −dk if j = k, where dj =

∑

k Ajk is the so-
called vertex degree. The Hamiltonian for a CTQW on a
graph is thus defined by

H = −J0 L. (1)

An initial state of the walker |ψ0⟩ evolves according to
|ψt⟩ = e−iHt|ψ0⟩, where we set ! = 1. The evolution
through the Laplacian operator L is one possible generator
for the CTQW dynamics. But since quantum mechanics
only imposes that the Hamiltonians are Hermitian opera-
tors, another possible candidate to describe the evolution
of the walker is the adjacency matrix A alone, leading
to the Hamiltonian H ′ = −J0A. In the case of regu-
lar graphs, where the vertex degrees are all equal, the two
Hamiltonians H and H ′ only differ for a term proportional
to the identity matrix, thus they generate equivalent time
evolutions, while this equivalence does not hold true for ir-
regular graphs. The different dynamics generated by these
Hamiltonians and the physical systems that they are as-
sociated with are thoroughly described in ref. [28]. In the
following, we will focus on the evolution generated by the
Laplacian.

In the simple case of the line, i.e., a one-dimensional
regular graph, the Hamiltonian reads

HL = 2J0

∑

j

|j⟩⟨j| − J0

∑

j

(|j⟩⟨j + 1| + |j + 1⟩⟨j|) , (2)

which physically corresponds to the propagation of a par-
ticle in a periodic potential, e.g., to simulate tight-binding
models [29]. Despite the simplicity of the underlying
graph, this model allows us to highlight the differences
between the quantum and the classical QW. The most
striking difference is the limit distribution of the particle
for long times: in the case of a classical walk, the tran-
sition probability from the site j to the site k may be
expressed as pkj(t) = ⟨k|e−Ht|j⟩ and thus, due to the cen-
tral limit theorem, the long-time probability distribution
of the walker is Gaussian, while for a CTQW a non-trivial
non-Gaussian shape is found [30]. Indeed, the probability
of finding the quantum particle at site k at time t when
it is initially localized at site k0 = 0 is pk(t) = J2

|k|(2J0t),

where Jk(x) is the Bessel function of order k. This proba-
bility distribution has many peaks, with the external ones
larger than the internal ones, and it is symmetric with
respect to the central point k = 0.

An interesting characteristic of CTQW is that it spreads
on the infinite line with a variance σ2

q ∝ t2 (referred to as
ballistic propagation), while in the classical case the vari-
ance is σ2

c ∝ t (diffusive propagation), meaning that a
quantum walker is able to explore the nodes faster than
the classical one. This property has sparked research into
possible applications of QW for computational and trans-
port tasks.

Spatial search. – The ballistic propagation of CTQW
has been suggested as a resource to improve the search
for a marked node on a graph, a task requiring a time
of order O(N) by classical, diffusive, propagation. The
corresponding quantum CTQW search algorithm has been
introduced in [3] by means of the Hamiltonian

Hs = −J L − |w⟩⟨w|, (3)
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which is expected to drive the walker to the target node
|w⟩, with the help of the oracle operator |w⟩⟨w|. The
coefficient J is the tunnelling amplitude between any two
connected nodes, and it needs to be optimized in order to
yield the maximum probability of finding the walker on
the target node, given that the walker is initially prepared
in a superposition of all sites, i.e., the maximum of

pw(t) =
∣

∣

∣
⟨w|e−iHst|s⟩

∣

∣

∣

2
, (4)

where |s⟩ = 1√
N

∑

j |j⟩. For few special regular graphs,

it has been proved [3] that the algorithm finds the target
state (i.e., the walker localises on the target) in a time
of order of O(

√
N), quadratically faster than the classical

analogue. For the complete graph CN , i.e., a graph where
each of the N nodes is connected to all the other nodes, it
was demonstrated that the CTQW search is equivalent to
the Grover algorithm [31], and yields a unit probability of
finding the target after a time T = π

2

√
N , for any N . The

proof of this result is obtained by setting J = 1
N and by

working on the reduced two-dimensional subspace spanned
by the vectors {|r⟩, |w⟩}, where |r⟩ = 1√

N−1

∑

k ̸=w |k⟩.
The reduced search Hamiltonian for the complete graph
can thus be written as

Hs
CN

=
1

N

(

1 −
√

N − 1
−

√
N − 1 −1

)

, (5)

and the initial state |s⟩ =
√

N−1
N |r⟩ +

√

1
N |w⟩, such

that Hs
CN

|s⟩ = − 1√
N

|w⟩. Upon exploiting the fact that

(Hs
CN

)k = 1
N⌊k/2⌋ (Hs

CN
)

1−(−1)k

2 with (Hs
CN

)0 = I, the
probability of finding the target node is found to be

pw(t) = |⟨w|e−iHt|s⟩|2 = 1
N cos2

(

t√
N

)

+ sin2
(

t√
N

)

, i.e.,

the algorithm finds |w⟩ with probability one in a time
topt = T = π

2

√
N .

Recently, the same quadratic speedup has been proved
also for the star graph [32], i.e., a graph where only a cen-
tral node is connected to all the other (N − 1) nodes. In
this case, two different scenarios may be considered: the
target is either the central node or an external one. In
the first case, it can be shown that the reduced search
Hamiltonian has the same form as the one for the com-
plete graph in eq. (5) in the {|r⟩, |w⟩} basis. It follows that,
despite the completely different topology, the reduced dy-
namics of pw(t) is the same as in the complete-graph case,
with a maximum equal to one reached in time topt = T .
The analogy with the complete graph is broken if the tar-
get is an external node. In this case the reduced space is
made of the three states {|c⟩, |w⟩, |r⟩}, where c stands for
the central node and |r⟩ = 1√

N−2

∑

k ̸=c,w |k⟩. The reduced

Hamiltonian for the star graph with external target and
coupling J = 1 reads

Hs
star =

⎛

⎝

N − 1 −1 −
√

N − 2
−1 0 0

−
√

N − 2 0 1

⎞

⎠ . (6)

By properly manipulating the expression of the
Hamiltonian and after using perturbation theory [32], one
obtains that the initial state |s⟩ evolves into the state
|w⟩ + O(N−1/2) after a time topt = T . This indicates
that for very large values of N the algorithm is optimal
even for external target nodes. Moreover, numerical sim-
ulations show that the success probability for a smaller
number of nodes is proportional to pw(topt) ≃ 1 − N−2

with topt ∝
√

N : the algorithm is successful, with high
probability, also for smaller values of N .

Noisy CTQW. – In order to address how the dynam-
ics of CTQW is modified by graph imperfections or by
the interaction with the environment, let us consider a
graph made of nodes of a physical network, that may be
affected by external noise, i.e., turbulences, thermal fluc-
tuations, or imperfections in the fabrication process. As
a consequence, links may be weakened or temporary re-
moved from the graph and the values of tunneling ampli-
tudes between any two nodes may fluctuate in time. We
are interested in how this noise modifies the features of
the QW.

The Hamiltonian describing this non-ideal CTQW reads

H̃(t) =
N

∑

j, k=1

[

(

J0dj + νJS
j (t)

)

δjk

−
(

J0 + νJT
jk(t)

)

Ajk

]

|j⟩⟨k|, (7)

where JT
jk(t) and JS

j (t) are adimensional stochastic pro-
cesses that describe the perturbation of the tunneling and
the on-site energies, respectively. The matrix JT is sym-
metric, whereas ν ∈ [0, J0] ia a real parameter which de-
termines the strength of the noise. The factors Ajk are
the elements of the adjacency matrix of the graph and δjk

is the Kronecker delta.
The Hamiltonian (7) is the most general expression of

QW in the presence of classical noise: it contains pertur-
bations on both the diagonal and off-diagonal elements.
In general, the coefficients JT (t) depend on time, and de-
scribe random fluctuations in the tunnelling amplitudes
(dynamical percolation). The autocorrelation function of
the noise dictates the characteristic time of the perturba-
tions τc. Two regimes arise: fast noise if τc < 1/ν and
slow noise in the opposite case, τc > 1/ν. In the limiting
case τc → ∞ we have static noise (ordinary percolation)
which is apt to describe defects in the graph, e.g., due to
impurities or imperfections during the implementation of
the couplings between nodes.

In order to describe dynamical percolation, we should
model a situation where links are created and destroyed
randomly in time with a certain percolation rate [33]. This
may be obtained assuming that the links are affected by
random telegraph noise (RTN), which is a non-Gaussian
stochastic process where a random variable X switches
in time between two values, e.g., X = ±1, with a cer-
tain switching or percolation rate γ. The probability that
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X switches n times in a time t follows a Poissonian dis-
tribution with mean value n̄ = γt. The autocorrelation
function of the noise is exponential C(t) = e−2γt, cor-
responding to a Lorentzian spectrum. If the couplings
{JT

jk(t)} in eq. (7) are independent realizations of RTN

with JT
jk(t) = ±1, then the tunneling energies (i.e., the

links of the graph) jump in time between the values J0±ν.
If ν = J0 we recover the true dynamical percolation case,
where links are created and destroyed with rate γ. For
other values of ν we have generalized dynamical percola-
tion, in which links, rather than just appearing and dis-
appearing in time, are modulated : the coupling constants
switch between a larger and a smaller non-zero value or,
in other words, they are weakened and strengthened ran-
domly in time.

The dynamics of the noisy walker is described as an
ensemble average over all possible realizations of {JT (t)},

ρ(t) = ⟨U(t)ρ0U
†(t)⟩{JT }, (8)

where U(t) = T exp[−i
∫ t
0 H(s)ds] with T the time-

ordering operator and ρ0 the initial state of the walker.
Equation (8) describes a completely positive, trace-
preserving quantum map. The evolved density matrix ρ(t)
cannot be, in general, computed analytically, and numeri-
cal techniques are required. For a low number of nodes and
noise sources, an exact method using a quasi-Hamiltonian
technique is available [34], but for a high number of nodes
the ensemble average over the noise realizations has to be
performed with Monte Carlo techniques, possibly using
GPUs for efficient parallel computation [35].

Noisy CTQW dynamics. – Let us start by discussing
recent results on the effects of classical noise on the dy-
namics of a CTQW on a simple one-dimensional graph,
i.e., a line. At first, we want to understand how the dy-
namics of the walker is changed if noise is introduced in
the model. To this aim, we assume a generalized perco-
lation where the links of the graph switch between two
values, and focus the attention on CTQW on a line with
periodic boundary conditions. The noise is introduced as
RTN with strength ν to the coupling constants. We also
set JS(t) = 0, i.e., we focus to the off-diagonal perturba-
tion which describe the phenomenon of percolation. Upon
specializing eq. (7) to the case of a line and setting J0 = 1,
i.e., expressing all quantities in unit of J0, we obtain

H̃L =
∑

j

2|j⟩⟨j| −
∑

j

[

1 + νJT
j (t)

] (

|j⟩⟨j +1| + |j + 1⟩⟨j|
)

.

(9)
This model, depicted in fig. 1 (left), has been studied
in [36], where the different perturbations JT

j (t) are iid re-

alizations of RTN, i.e., ⟨JT
j (t)JT

k (0)⟩ = δjke−2γt, where γ
is the process percolation rate.

The spread of the particle is analyzed in terms of the
variance of the wave function as a function of time. By
increasing the value of the percolation rate, one is able
to move from a localized regime, where the wave function

Fig. 1: (Color online) Pictorial representation of the lattice
described in eq. (9), with uncorrelated noise sources (left) and
spatially correlated noise (right).
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Fig. 2: (Color online) Probability distribution of the walker
at t = 50 for slow (γ = 0.01, red) and fast (γ = 1, blue)
noise. The noiseless walker is shown in black for comparison.
Inset: the variance σ2 as a function of time. The black lines
are visual guides for different propagation regimes: ballistic
(dashed) and diffusive (dotted). With fast noise we can see a
transition from the ballistic to the diffusive propagation, while
slow noise causes temporary localization of the walker.

stays localized over few sites of the chain, to a classical
diffusive regime, with a Gaussian-like probability distri-
bution over the lattice nodes (see fig. 2). Specifically, in
the slow noise regime, also called quasi-static since the
percolation rate is very small compared to J0, the larger
the strength of the noise ν, the more spatially confined
the spatial probability distribution. Localization in quan-
tum walks has been largely addressed in the past years.
However, those models always considered localization in-
duced by static disorder on the on-site energies of the
QW [24–26,37]. Model (9) instead shows that localiza-
tions can also be due to quasi-static noise on the tunnel-
ing energies, thus defying the common concept that only
disorder can confine a quantum particle. When the parti-
cle localizes, transport through the lattice is suppressed,
thus localization is often considered a threat to transfer of
an excitation. However, there are situations where local-
ization is deliberately induced in order to keep the walker
confined into few sites, thus viewing disorder as a resource
more than a threat [38].

In the opposite regime of fast noise, a small strength of
the perturbations leads to quasi-unperturbed probability
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distribution, while larger values make the walker “classi-
cal”, with a Gaussian-shaped distribution, and the sys-
tem is driven from a ballistic to a diffusive propagation.
A qualitatively similar behavior is obtained if the walker
is initially prepared in a Gaussian wave packet with a non-
zero velocity p0 and standard deviation ∆, i.e.,

|ψ0⟩ =
∑

j

1

2π∆2
e− j−N/2

2∆2 e−ip0j |j⟩. (10)

This indicates independence of the above results of the
initial state of the walker. Moreover, in this case, assuming
a small strength of the noise, transport through the lattice
is possible.

An advantage of the generalized percolation noise model
is that it is not specific to the single-particle CTQW. In-
deed, it can easily be integrated in a n-particle QW model,
in order to study the effects of disturbance on the many-
body dynamics. For the two-particle case, for instance,
the Hamiltonian is

H2p(t) = H0(t) + Hint, (11)

H0(t) = H̃(t) ⊗ I + I ⊗ H̃(t), (12)

where H̃(t) is the single-particle perturbed Hamiltonian
given in eq. (7) and Hint = Hint(|j − k|) is the interaction
Hamiltonian, which usually depends on the distance be-
tween particles located at sites j and k. Different dynam-
ical behaviors arise depending on the statistical nature of
the particles, i.e., whether they are bosons or fermions,
on their indistinguishability and the noise parameters.
Moreover, the initial conditions and the strength of inter-
particle interactions are crucial for their time evolution.
Generalized percolation for a two-particle CTQW is an-
alyzed in [39,40] for on-site and nearest-neighbors inter-
actions. Numerical evidence shows that fast percolation
leads to a faster propagation of the initial wave packet
of two interacting particles with respect to the noiseless
case thus breaking the localization induced by the inter-
particle interaction. This means that some components
of the wave function gain a larger momentum because of
noise and can travel faster across the lattice introducing a
new regime that it is not achievable without noise. This
behavior is possible only when the particles are initially
localized within the range of interaction. In the slow per-
colation regime localization is induced, with the particles
unable to propagate though the lattice.

The model described by eq. (9) can be further improved
by assuming that the tunneling amplitudes can be grouped
into spatial domains, with the constraint that all edges
within the same domain are synchronized in their fluc-
tuations [41], as depicted in fig. 1 (right). These spatial
regions are called percolation domains. In this case spa-
tial correlations are added to temporal correlations and
the autocorrelation function of the noise becomes

C(t) =

{

e−2γt, if j, k belong to the same domain,

0, otherwise.

(13)

The spatial domains are created randomly, i.e., if two
neighbor edges are correlated with probability p, then the
probability of creating M domains follows the distribution
PM =

(N−1
M−1

)

(1 − p)M−1pN−M . As a consequence, the av-

erage length of the domains L = pN −1
p−1 moves from the case

of independent RTN with L = 1, as described in eq. (9),
to the case of uniform noise where all edges percolate syn-
chronously L = N . The dynamical evolution of the walker
is computed as ensemble average not only on the realiza-
tions of the noise, but also on the realizations of the ran-
domly generated domains ρ(t) = ⟨U(t)ρ0U †(t)⟩{JT

1 ...JT
M }.

The dynamics of a Gaussian wave packet with an ini-
tial momentum p0 shows that the average velocity of the
packet decreases with decreasing average lengths and thus
the quantum walker can travel longer across the lattice
thanks to spatial correlations. The smaller the value of
γ, the faster this decay, leading to a full localization in
the case L = 1, while the presence of spatial correlations
breaks the localization. For bigger values of γ, on the
other side, the effects of large spatial domains is to allow
the wave packet to travel across the graph with an almost
unaltered form, i.e., the walker is transfered across the line
at fast speed and without losing the information about
the initial superposition state. All these results show that
spatial correlations can assist the transport of quantum
particles over a linear array of nodes.

Noisy spatial search by CTQW. – In the following,
we report recent advancements on the analysis of the ro-
bustness of the spatial search algorithm by CTQW [32]
against dynamical percolation by RTN. In order to do
so, one needs to compare the success probability, i.e., the
maximum of eq. (4) with respect to time, of finding the
target in the noiseless and noisy case. The study has
focussed on the complete graph and on the star graph,
because they both allow for a quadratic speed-up of the
search in the noiseless case (as seen above), but have very
different topological properties. A pictorial representation
of the model is shown in fig. 3. The scaling of the search
time with the numbers of nodes N has been studied for
various combinations of noise strength ν and percolation
rate γ.

Let us start with the complete graph. Numerical anal-
ysis shows that, depending on the noise regime, different
behaviors are found. In particular, for fast noise, the suc-
cess probability is very close to one even for percolation
noise, while slow noise is detrimental for fast search, with
a decrease in the success probability. This qualitative re-
sult does not depend on N , although pw(topt) is slightly
higher for larger values of N . Moreover, the optimal cou-
pling J = 1/N remains unaltered regardless of the noise.
The role of the noise strength is to reduce the success
probability, with full percolation being the worst-case sce-
nario. Interestingly, even if the success probability departs
from the optimal one, the algorithm still retains an average
speed-up over the classical one. Indeed, one can assume
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Fig. 3: (Color online) Pictorial representation of the graphs
considered for the quantum spatial algorithm: the complete
graph (left), where each node is connected to all the others,
and the star graph (right), with a central node connected to
the remaining ones. In the case of the star graph, we have
different results for a central target (blue) or an external target
(green), as shown in fig. 4.
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Fig. 4: (Color online) Left: the success probability of the spa-
tial search algorithm as a function of N for slow percolation
noise (γ = 0.01, ν = 1.0) in the complete graph (red), star
graph with central target (blue), star graph with external tar-
get node (green). On the right, the scaling of the average
running time T with N for the same graphs.

that the algorithm can be repeated until the correct re-
sult is found, and this happens, on average, after 1/psucc

times, where psucc is the success probability. The average
running time of the algorithm is still growing as O(

√
N)

even in the presence of percolation, as shown in fig. 4.
Similar results are obtained in the case of the star graph

with the target placed on the central node, but with
stronger effects of the noise. Indeed, the optimal coupling
is J = 1/N ; the influence of fast noise is almost neg-
ligible while slow noise decreases the success probability.
The average running time, however, still scales as O(

√
N),

thus the quantum speed-up is preserved. This is not the
case if the target node is external. The success proba-
bility is in general heavily affected by noise, both in the
fast and slow percolation regime, as the left panel of fig. 4
shows. Again, the larger the noise strength, the smaller
the success probability. In this case, the average running
time, depending on the strength of the fluctuations, shows
a transition from quantum (O(

√
N)) to classical (O(N))

scaling (see fig. 4, right panel). These results can be in-
terpreted in terms of the connectivity of the two graph
topologies: in the complete graph with N nodes there are
N(N − 1)/2 links, while in the star graph there are only
N − 1. While the higher connectivity is not necessary for

the noiseless spatial search [42], it allows for greater redun-
dancy in the presence of noise. In the limiting case of the
star graph with external target node, which is connected
to a single edge, noise can completely break the algorithm.

Conclusions and perspectives. – The concepts of
graph and quantum walk are inherently connected, since
a CTQW naturally evolves on a graph. In constructing a
physical graph, or network, defects and noise may come
into play, thus deforming and/or damaging the original
structure. The simplest, yet effective, form of perturba-
tion that might affect the topology of a graph is gener-
alized dynamical percolation, where the coupling among
the nodes fluctuates in time. A special case of this noise
is ordinary dynamical percolation, in which links are cre-
ated and removed randomly in time. As a matter of fact,
generalized percolation modifies the propagation proper-
ties of CTQWs on networks, as well as its performance in
certain quantum information tasks.

In this perspective article, we have reviewed recent re-
sults about the effects of generalized percolation on tasks
such as transport on a lattice and spatial search on graphs.
The main result is the observation that noise with higher
percolation rate leads to faster propagation of the walker.
On the other hand, slow percolation favors the localiza-
tion of the particle. This might be a desired behavior in
certain situations, but also a drawback in others, such as
in the spatial search algorithm.

Links are not the only part of a graph that can be af-
fected by noise. The on-site energies of the nodes may also
experience fluctuations, though the corresponding effects
are largely unexplored. The presence of diagonal defects
has been investigated [43], but a comprehensive study of
dynamical noise on the on-site energies is still missing.
This is an interesting topic in itself, since it would allow
one to understand the role of time-dependent fluctuations
compared to static defects, and ultimately shed light on
the differences and similarities in the dynamics induced
by diagonal and off-diagonal noise. Besides, RTN, i.e.,
bistable fluctuations, is just one possible model to mimic
generalized percolation. Indeed, any stochastic process
may be employed to effectively describe noise affecting
the coupling constants. Relevant examples are the Gaus-
sian version of a Lorenzian-spectrum noise, i.e., the so-
called Ornstein-Uhlenbeck noise, and the class of colored
noises, especially the celebrated 1/f noise, stemming from
a weighted collection of bistable fluctuators.

Generalized percolation is a universal noise model, i.e.,
it is neither specific to a fixed topology nor to a single-
particle CTQW. Any noisy physical system whose evolu-
tion can be mapped into a CTQW on a graph [44] may
be described using the noise model discussed in this per-
spective article. Moreover, the same stochastic description
may be applied to multi-particle CTQW. Relevant systems
where the effects of both time and spatial correlations are
worth being investigated are those described by Hubbard
or Fermi models. In those systems, besides the study of
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the role of noise in many-body systems, it would be of
interest to understand the interplay among particle inter-
action, statistics and noise in determining the dynamics
of the system. As a specific topic of interest, we foresee
the possible formation of correlated noisy domains, which
would introduce new features in the multi-particle dynam-
ics that are worth exploring.

Another interesting direction for future investigation
is the propagation on hypergraphs, i.e., generalization
of graphs where hyperlinks connect two or more nodes,
instead of just pairs of nodes as in standard graphs. Hy-
pergraphs have been introduced as a more realistic de-
scription of real networks and, as such, they call for a
careful noise analysis. So far, studies have been focused
on the dynamics of discrete-time quantum walks [45] and
a question arises on whether CTQW may be defined on
hypergraphs, and how generalized percolation affects hy-
perlinks. Overall, the investigation about the effects of
disturbance on the dynamics of a CTQW on hypergraphs
is a promising line of research.

As a final remark, we mention that CTQW, which cor-
responds to a quantum particle moving on a random or
noisy graph, may be used as a quantum probe to charac-
terize the graph and its imperfections. In this framework,
the added value of using quantum probes to characterize
graphs, and the underlying complex quantum systems, is
based on the optimisation of the extractable information,
as well as the inherently small disturbance introduced into
the system itself. In turn, CTQW has been already proved
useful to infer the value of the coupling constant of a lat-
tice [46], and of more complex graphs [14].

More generally, being able to characterize properties of
networks, including their noise properties, is an essential
step in the context of network engineering for quantum in-
formation tasks. Indeed, searching for imperfections and
defects in a physical network is a crucial step in the im-
plementation and correct functioning of the network itself.
In particular, it will be of interest in the near future to in-
vestigate how to exploit local quantum measurements on
a controllable quantum probe [47] to asses the properties
of complex networks instead of resorting to global mea-
surements on the whole graph. Understanding whether
CTQWs may be used as reliable probes would imply sav-
ing resources, such as energy and time, in order to extract
precise information about large complex networks.
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