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Characterization of qubit chains by Feynman probes
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We address the characterization of qubit chains and assess the performances of local measurements compared to
those provided by Feynman probes, i.e., nonlocal measurements realized by coupling a single-qubit register to the
chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian
strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian
local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a
consistent Bayesian estimator that saturates the Cramér-Rao bound, thus providing an effective characterization
of the chain. Finally, we show that ultimate bounds to precision, i.e., saturation of the quantum Cramér-Rao
bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.
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I. INTRODUCTION

Spin networks and strongly coupled systems of qubits are
crucial building blocks for large-scale quantum computers
[1,2]. They also represent a resource for short-distance quan-
tum communication [3,4], state transfer [5–8], and quantum
engineering, e.g., generation of entanglement between distant
qubits [9–14]. These tasks usually require fine-tuning of the
interaction parameters and, in turn, precise characterization
of the spin coupling. Coupling constants, however, are often
unaccessible in a direct way, either because of experimental
impediments or because they do not correspond to any proper
observable. This happens for several quantities of interest
in quantum technology, and in all these cases, quantum
estimation theory [15–17] provides tools to evaluate the
ultimate precision attainable by any estimation procedure and
to design optimal measurement schemes. Examples include
the estimation of the phase [18–21], quantum correlations
[22–24], temperature [25,26], characterization of classical
processes or environmental parameters [27–30], and, indeed,
the coupling constants of different kinds of interactions
[31–35].

Here, we address the characterization of qubit systems made
of linear chains of coupled two-level systems, with emphasis
on strongly coupled ones, and assess performances of local
measurements compared to Feynman probes, i.e., nonlocal
measurements realized by entangling a single-qubit register
to the chain of qubits. The Feynman probes implement the
idea of characterizing complex systems, with many degrees
of freedom, by coupling them to a simple quantum system,
such as a qubit in our case, whose dynamics depends on the
features of the complex systems we want to describe [36–39].
By performing measurements on the quantum probe, we are
able to extract useful information about the system, causing
minimal disturbance.
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In this work we show that local measurements provide
optimal characterization for small values of the coupling
constant, whereas for larger couplings Feynman probes allow
one to build a consistent Bayesian estimator that saturates the
Cramér-Rao (CR) bound, i.e., provides an effective charac-
terization of the qubit system. We also show that estimation
by Feynman probes, complemented by local measurement,
represents an optimal characterization scheme for strongly
coupled qubit systems, achieving the ultimate bound to
precision. Indeed, nonlocal measurements have already been
suggested as a convenient toolbox for quantum circuits based
on trapped ions [40,41] and superconducting qubits [42,43].

The system we are going to investigate is a linear lattice of
equally coupled two-level systems σ⃗ j = (σ j

x ,σ
j
y ,σ

j
z ), where

σ
j
k denotes the Pauli matrix in direction k = x,y,z for the j th

particle and j = 1,2, . . . ,s, whose interaction Hamiltonian is
given by

H0 = −ν

2

s−1∑

j=1

σ
j+1
+ σ

j
− + σ

j
+σ

j+1
− , (1)

where σ
j
± = 1

2 (σ j
x ± iσ

j
y ) and ν is the coupling constant be-

tween nearest-neighbor spins. The Hamiltonian H0 preserves
the number Nz =

∑s
j=1

1
2 (I + σ

j
z ) of “up” spins, i.e.,

[H0,Nz] = 0. (2)

The characterization of the system amounts to the determina-
tion of the unknown value of the effective coupling λ = ντ ,
with τ being the interaction time from the initialization of
the chain. To this aim, we focus on initial preparations of the
system where a single spin is up, whereas all the others are
down. We will refer to the single spin up as the excitation of the
chain. Thanks to the conservation law (2), the Hamiltonian (1),
restricted to the single-excitation subspace, can be rewritten as

H0 = −ν

2

s−1∑

j=1

|j + 1⟩⟨j | + |j ⟩⟨j + 1|, (3)

where |j ⟩ denotes a state having an excitation at site j
and the set {|j ⟩} constitutes an orthonormal basis in the
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single-excitation subspace. The eigenvalues and eigenvectors
of the Hamiltonian (3) are

ek(ν) = −ν cos
(

kπ

s + 1

)
, (4)

|ek⟩ =
√

2
s + 1

s∑

j=1

sin
(

kπj

s + 1

)
|j ⟩. (5)

In the following we analyze and compare different strategies
for the estimation of the effective coupling parameter λ and
also assess their precision against the ultimate bounds posed
by quantum mechanics itself.

This paper is structured as follows. In Sec. II we review the
main tools of the quantum estimation theory; in Sec. III, we
apply these tools to the estimation of the coupling constant of
the chain by a local measurement on a single site of the chain.
In Sec. IV, we introduce the concept of Feynman probes, and
we evaluate the associated Fisher information. In Sec. V, we
present the results of a simulated set of repeated measurements
on the system, both local and using a Feynman probe, to
estimate the coupling constant of the qubit lattice and compare
their performances by evaluating their variances. Section VI
closes the paper with final remarks and discussion.

II. OPTIMAL MEASUREMENT

The performances of an estimation procedure in terms of
precision may be assessed by the Fisher information of the as-
sociated distribution. The Fisher information on the parameter
λ carried by an observable random variable whose distribution
depends on the parameter λ, i.e., X ∼ p(x|λ), is defined as

F (λ) = E

[(
∂

∂λ
ln p(x|λ)

)2]
, (6)

where E(· · · ) denotes the expectation value over the
distribution p(x|λ).

The Fisher information sets the lower bound for the variance
of any unbiased estimator λ(x1,x2, . . . ) of the parameter λ
based on the outcomes of X through the CR inequality:

Varλ ! 1
MF (λ)

, (7)

where M is the number of repeated measurements. Estimators
saturating the CR inequality are referred to as efficient
estimators.

In a quantum setting, a measurable quantity corresponds
to an observable A =

∑
a|a⟩⟨a| on some Hilbert space H,

whose statistical properties are fully determined by the state
ρ of the measured system via the Born rule. If the state of
the system depends on some parameter λ, the distribution
p(a|λ) = Tr[ρλ |a⟩⟨a|] of the outcomes of A does depend on λ
as well. The CR inequality (7) sets the lower bound to precision
on any estimation strategy for λ based on the measurement of
A. Quantum estimation theory [15,17,44–46] provides tools to
maximize the Fisher information over observables and to find
the best measurement to estimate a parameter. The optimal
measurement is defined by the spectral decomposition of the
so-called symmetric logarithmic derivative (SLD) Lλ, which

is implicitly defined through the equation

1
2 (Lλρλ + ρλLλ) def= ∂λρλ, (8)

where ρλ is the quantum state, parametrized by an unknown
parameter λ, on which the measurement is performed. The
quantum Fisher information is defined in terms of Lλ as

H (λ) def= Tr
(
ρλL

2
λ

)
, (9)

and the ultimate bound to precision is set by the quantum CR
inequality

Varλ ! 1
MH (λ)

. (10)

In our case, the initial state ρ0 = |ψ0⟩⟨ψ0| = |x0⟩⟨x0| and
the evolved one ρλ = |ψλ⟩⟨ψλ|, where |ψλ⟩ = Uλ|ψ0⟩ =
exp (−iλG)|ψ0⟩, are pure. The expression for |ψλ⟩ can be
easily derived from the spectral decomposition (4) and (5).
The generator G is the self-adjoint operator H0/ν, with H0
defined in Eq. (3), i.e.,

G = −1
2

s−1∑

j=1

|j + 1⟩⟨j | + |j ⟩⟨j + 1|. (11)

The SLD takes the explicit form

Lλ = |ψλ⟩⟨∂λψλ| + |∂λψλ⟩⟨ψλ|. (12)

Like for any unitary family of states, i.e., states that can
be expressed as |ψλ⟩ = Uλ|ψ0⟩, with Uλ being a unitary
transformation, the quantum Fisher information turns out to
be independent of the value of λ = νt , i.e., independent of the
bare coupling ν and on the interaction time. We have

H = 4⟨ψ0|G2|ψ0⟩ − (⟨ψ0|G|ψ0⟩)2. (13)

That is, the quantum Fisher information is proportional to the
fluctuations of the generator on the initial pure state |ψ0⟩.

The determination of the optimal measurement through the
spectral decomposition of Lλ is straightforward. We must,
however, consider two families of initial conditions. If the
excitation is initially located at one of the extremal sites of the
chain (|ψ0⟩ = |1⟩ or |ψ0⟩ = |s⟩), we have H = 1, whereas for
|ψ0⟩ = |j ⟩, j ̸= 1,s the quantum Fisher information is given
by H = 2. This result may be intuitively explained as follows:
the fluctuations of the generator G acting on excitations next
to the boundaries of the chain are smaller than the fluctuations
of G when it acts on an excitation that is free to move in
both directions (|j + 1⟩ or |j − 1⟩). In order to determine the
optimal observable, we need the eigenvectors of L0, with Lλ =
UλL0U

†
λ . It turns out that L0 for the initial excitation not at the

extremes of the chain (NE) admits the spectral decomposition:

eNE
1 = − 1√

2
, eNE

2 = 1√
2
, eNE

j = 0, for j > 2, (14)

∣∣eNE
1

〉
=

(
G − 1√

2
I
)

|ψ0⟩, (15)

∣∣eNE
2

〉
=

(
G + 1√

2
I
)

|ψ0⟩, (16)
∣∣eNE

kern

〉〈
eNE

kern

∣∣ = I −
∣∣eNE

1

〉〈
eNE

1

∣∣ −
∣∣eNE

2

〉〈
eNE

2

∣∣, (17)
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whereas for the excitation at the extremes (E) we have

eE
1 = −1

2
, eE

2 = 1
2
, eE

j = 0, for j > 2, (18)

∣∣eE
1

〉
=

(√
2G − 1√

2
I
)

|ψ0⟩, (19)

∣∣eE
2

〉
=

(√
2G + 1√

2
I
)

|ψ0⟩, (20)
∣∣eE

kern

〉〈
eE

kern

∣∣ = I −
∣∣eE

1

〉〈
eE

1

∣∣ −
∣∣eE

2

〉〈
eE

2

∣∣. (21)

As mentioned above, the eigenvectors of Lλ are then given by
∣∣ψK

i (λ)
〉
= Uλ

∣∣ψK
i

〉
, (22)

with K = NE,E. The spectral decomposition of Lλ defines an
admissible observable for any value of the parameter which,
however, may be hard to implement in a realistic scenario. A
question thus arises about the performances of other kinds of
measurements, which may correspond to feasible interaction
schemes, at least in principle. In the following, we analyze
estimation procedures based on local measurements and on
Feynman probes and assess their performances in terms of
precision; that is, we compare their Fisher information to the
quantum Fisher information.

III. LOCAL MEASUREMENT

The effective coupling parameter λ is the transition rate for
the excitation to move to an adjacent site. For example, it tells
us the rate at which the particle leaves its initial position x0.
This suggests a simple measurement to infer the value of λ:
we place the excitation initially at a given site x0, and after
the chosen interaction time, we test via local measurement at
x0 whether the excitation is still there or not. The information
about the unknown parameter λ obtained through this kind
of measurement may be quantified by the classical Fisher
information of the associated distribution, which consists of a
Bernoulli trial with success probability P L

λ (x0) = |⟨ψλ|x0⟩|2.
The Fisher information for the local measurement is thus given
by

FL
x0

(λ; x0) =
[
∂λP

L
λ (x0)

]2

P L
λ (x0)

[
1 − P L

λ (x0)
] . (23)

The test measurement may be, of course, performed at a
different site m ̸= x0 (still placing the excitation initially at
x0). The corresponding Fisher information then reads

FL
m (λ; x0) =

[
∂λP

L
λ (m|x0)

]2

P L
λ (m|x0)

[
1 − P L

λ (m|x0)
] , (24)

where

P L
λ (m|x0) = |⟨ψλ|m⟩|2. (25)

The analytic expression of the probabilities P L
λ (m|x0) is

cumbersome but can be straightforwardly derived from (4)
and (5), so we do not report it here.

In Fig. 1 we show the evolution of FL
m (λ; x0) as a function of

λ for three different values of the measured site m = 1,2,3 and
two different initial conditions: x0 = 1 [Fig. 1(a)] and x0 = 2
[Fig. 1(b)]. At t = 0 the Fisher information FL

x0
(λ; x0) of the

m = 1 m = 2
m = 3

m = 1

m = 2
m = 3

(a) x0 = 1

(b) x0 = 2

FIG. 1. Fisher information for the local measurement F L
m (λ; x0)

(solid lines) and for the Feynman probe F P
m (λ; x0) (dashed lines) as

a function of λ = νt . The data refer to a chain of s = 10 spins for
different values of the measured or plugging site: m = 1 (green lines),
m = 2 (orange lines), and m = 3 (blue lines). (a) Initial condition
set to x0 = 1; (b) x0 = 2. In both frames the dot-dashed black line
represents the quantum Fisher information.

observable |x0⟩⟨x0| saturates the quantum Fisher information;
this is a general fact: given an arbitrary initial condition
|ψ0⟩ = δx,x0 |x⟩, the most efficient projective measurement is
the projector |x0⟩⟨x0|. The Fisher information FL

m (λ; x0), on the
other hand, does not saturate the quantum Fisher information;
its maximum, achieved after an interaction time proportional
to |m − x0|/ν, is, in general, well below the quantum Fisher
information threshold.

IV. FEYNMAN PROBES

Feynman’s quantum computer [47] consists of two logically
separated parts; one part, the clock, is an excitation moving
along a lattice. The second part, the input-output register, is
a collection of additional degrees of freedom, say, n spin-1/2
particles σ⃗ j , j = 1,2, . . . ,n. The overall system is governed
by the time-independent Hamiltonian:

HF = −ν

2

s−1∑

j=1

|j + 1⟩⟨j | ⊗ Uj + |j ⟩⟨j + 1| ⊗ U−1
j . (26)
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Cursor
1 2 s − 1 s

σn−1 σnσ1 σ2

Register

U1 Us−1

FIG. 2. A schematic representation of the Feynman quantum
computer.

Each term of the Hamiltonian involves two nearest-neighbor
sites of the clock and a self-adjoint or unitary operator Uj act-
ing on the register. The ordered product Us−1 · · · U2U1 realizes
some input-output transformation that the computing device is
expected to accomplish. Figure 2 shows the architecture of the
machine. Because of the properties of the Hamiltonian HF ,
the position of the excitation in the clock, i.e., along the chain,
uniquely determines the state of the register. This fact has
interesting consequences. Let us consider the overall machine
initially prepared in the state |ψ0⟩ = |1⟩ ⊗ |R1⟩ ≡ |1,R(1)⟩,
i.e., with the excitation located at the beginning of the chain
and the register in the pure initial state |R1⟩. Then the set

B(ψ0) = {|1,R1⟩,|2,R2⟩, . . . ,|s,Rs⟩},

where |Rj ⟩ = Uj−1 · · ·U2U1|R1⟩ constitutes an orthonormal
computational basis, often referred to as the Peres basis [48],
for the region of the Hilbert space visited by the evolved
state |ψt ⟩ = exp(−iHF t)|ψ0⟩. This basis may be defined
constructively for any choice of the initial condition |ψ0⟩.
We refer to the space spanned by the Peres basis as the
computational subspace. In particular, if upon measurement
the clock is found at the rightmost site of the chain, the register
collapses to the output state |R(s)⟩ = Us−1 · · · U2U1|R(1)⟩.
Before discussing the kinematics of the clock, we point out that
the sole effect of the interaction of the clock with the register
of n spins is the appearance of a degeneracy of order 2n in the
spectrum {ek(ν)}sk=1 of the tight-binding (clock) Hamiltonian

H0 = −ν

2

s−1∑

j=1

|j + 1⟩⟨j | + |j ⟩⟨j + 1|,

i.e., the Hamiltonian (3). Once an initial condition of the form
|ψ0⟩ = |1,R(1)⟩ has been set, however, the spectrum of the
Hamiltonian HF , restricted to the computational subspace, is
no longer degenerate. In this subspace, the eigenvector

|vk⟩ =
√

2
s + 1

s∑

j=1

sin
(

kπj

s + 1

)
|j,R(j )⟩ (27)

corresponds to each eigenvalue ek(ν). The properties of the
Feynman quantum computer have been extensively discussed
[49,50]. The most relevant property of the Feynman machine
that we want to exploit here is the entanglement between
the clock and the register. The idea is to gain information

about some physical parameter characterizing the clock by
performing suitable measurements on the register alone. To
this aim, we consider a streamlined version of the Feynman
machine. Indeed, we consider a register made up of a single
two-level system, which we refer to as the probe. The probe
is initialized, without loss of generality, into the eigenstate of
σz belonging to the eigenvalue +1, or the up state |↑⟩. All
the operators Uj but the mth one, 1 " m " s − 1, are set to I,
whereas Um = σx . In this setting, the Feynman Hamiltonian
(26) reads

HF (m) = −ν

2

s−1∑

j = 1
j ̸= m

|j + 1⟩⟨j | + |j ⟩⟨j + 1|

− ν

2
(|m + 1⟩⟨m| ⊗ σx + |m⟩⟨m + 1| ⊗ σx).

(28)

If the clock is initially at a site x0 " m, the Peres basis for the
system is

|1, ↑⟩, . . . ,|m, ↑⟩,|m + 1, ↓⟩, . . . ,|s, ↓⟩. (29)

Upon a projective measurement I ⊗ |↑⟩⟨↑| of the σz com-
ponent of the probe, the evolved state |ψλ⟩ collapses into a
state with support in either the span (|1, ↑⟩, . . . ,|m, ↑⟩) or
span (|m + 1, ↓⟩, . . . ,|s, ↓⟩) subspace of the Hilbert space of
states.

As a matter of fact, the Feynman structure provides a
nonlocal alternative to characterize the qubit chain. Instead of
measuring whether the excitation has left its initial position
x0 or reached a target one xm, we can measure the σz

observable of the probe qubit, which we will now refer to
as the Feynman probe. The Fisher information associated with
such measurement is given by

FP
m (λ; x0) = [∂λPλ(↑ |m,x0)]2

Pλ(↑ |m,x0)[1 − Pλ(↑ |m,x0)]
, (30)

where

Pλ(↑ |m,x0) = |⟨ψλ| ↑⟩|2 (31)

is the probability of measuring the Feynman probe in the state
|↑⟩ when it is plugged into the mth site of the chain and
the excitation is initially located at site x0. Because of the
probe-system entanglement, we have

Pλ(↑ |m,x0) =
m∑

x=1

|⟨ψλ|x⟩|2. (32)

The behavior of FP
m (λ; x0) for three different plugging sites

m = 1,2,3 and two different initial positions x0 = 1,2 is
shown in Fig. 1. For x0 = 1 and m = 1 a Feynman probe
provides the same information as a local measurement, i.e.,
FL

1 (λ; 1) = FP
1 (λ; 1). For m = 2, FL

2 (λ; 1) still saturates the
quantum Fisher information at t = 0, whereas FP

2 (λ; 1) does
not. For m ! 3, the maximum Fisher information for the
Feynman probe is typically larger than the Fisher information
of the corresponding local measurement, whereas for x0 > 1,
local measurements typically carry more information than the
Feynman probe for any value of m > 1.
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m = 1

m = 2

m = 3

m = 2

m = 3

m = 1

FIG. 3. P L
λ (m|x0) (top plot) and Pλ(↑ |m,x0) (bottom plot) as

defined in Eqs. (25) and (31), respectively, as a function of the
parameter λ. The excitation is initially localized in the first site
x0 = 1 of a chain of length s = 10. Three different values of m are
considered: m = 1 (solid black line), m = 2 (dashed red line), and
m = 3 (blue dotted line).

Overall, from the point of view of the efficiency of the
measurement scheme alone, our results show that the ultimate
bounds to the precision of Feynman probes are enhanced
compared to those of local measurements when the excitation
is initially located at the boundary of the chain and m > 2. On

the other hand, a proper comparison should be made in terms
of an actual estimation strategy, and that is the scope of the
next section.

Notice that the implementation of the Feynman Hamilto-
nian of Eq. (28) involves a three-spin interaction. This may
be challenging from the experimental point of view. On the
other hand, promising proposals based on cold atoms in optical
lattices have already been discussed [37,51,52].

V. BAYESIAN ESTIMATION

Classical and quantum CR theorems pose bounds to
the precision of any unbiased estimator of the parameter
of interest. However, no recipes are given to find optimal
estimators saturating the classical bound. Therefore, in order to
properly compare the performances of the local measurement
(LM) and of the Feynman probe (FP) and to assess them against
the ultimate quantum bound, we employ a Bayesian estimation
strategy for the parameter λ, starting from a numerically simu-
lated set of experimental data. Indeed, Bayesian estimators are
known to be asymptotically optimal; that is, they saturate the
CR bound for large data samples. Hereafter, we fix the initial
position of the excitation in the first site |x0⟩ = |1⟩. The key
ingredient in the Bayesian estimation is the Bayes theorem,
which we can rewrite as

PB(λ|*) = P (*|λ)P (λ)∫
P (*|λ′)P (λ′)dλ′ , (33)

where PB(λ|*) is the a posteriori Bayesian probability
distribution of the parameter λ given the set of experimental
data *, whereas P (λ) is the a priori probability distribution of
λ. We assume we do not have any prior knowledge about the
estimable parameter, so we can consider a flat distribution for
P (λ). The quantity P (*|λ) is the likelihood of obtaining the set
of experimental data * when the true value of the parameter is
λ. In our case, we have M identical repeated Bernoulli trials,
each of which is characterized by a success probability pλ;
then the likelihood of having N0 successes out of M is given

0.2

0.4

0.6

0.8

1.0

m=1Pλ
L(1|1)

λ

1 2 3 4

2

4

6

8

10

PB(λ| )

0.1

0.2

0.3

0.4

0.5

LM
Pλ
L(2|1)

λ

1 2 3 4

1

2

3

4

5PB(λ| )

0.2

0.4

0.6

0.8

1.0

FPPλ(↑|2,1)

λ

λ λ λ1 2 3 4

2

4

6

8

10PB(λ| )

FIG. 4. (top) Success probability in a single trial for LM and FP as defined in Eqs. (25) and (31), respectively; (bottom) Bayesian probability
PB (λ|*) defined in Eq. (33). The plots refer to simulations of (left column) LM on site m = 1, (middle column) LM on site m = 2, and (right
column) FP coupled to site m = 2. In the bottom plots, we use the true values λT = 1 (solid black line), 2 (dashed red line), and 3 (dotted green
line). The vertical lines are a guide for the eye marking the values of λT .
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by

P (*|λ) = p
N0
λ (1 − pλ)M−N0 . (34)

If the performed measures are local measurements on a
site m, then pλ = P L

λ (m|x0), while in the case we measure
for the Feynman probe coupled to sites m and m + 1, we
have pλ = Pλ(↑ |m,x0). Once we reconstruct the Bayesian
probability distribution (33), we can estimate the parameter as
the expectation of the random variable λ:

λ̂ =
∫

λPB(λ|*)dλ. (35)

Accordingly, the variance of such an estimator is computed as

σ 2[λ̂] =
∫

[λ − λ̂]2PB(λ|*)dλ. (36)

The probability P L
λ (m|x0) of measuring the excitation on site

m is shown in Fig. 3 for three different values of m, together
with the probability Pλ(↑ |m,x0) of measuring the FP in the
state |↑⟩ when it is plugged between sites m and m + 1. If
we perform a local measurement on the first site m = 1, then
P L

λ (1|1) = Pλ(↑ |1,1), and the two strategies are equivalent.
The behavior of this probability is shown in Fig. 4. The success
probability for each of the M trials has a monotonic behavior,
giving rise to a single-peak Bayesian probability distribution.
The width of the peak is related to the variance of the estimator.
If we measure any site other than the first one, then the
local measurement and the FP strategy lead to dramatically
different results, as shown in Fig. 4. We first notice that
the probability P L

λ (m|1) is not invertible as a function of
λ except for the value corresponding to its maximum. On
the other hand, it is possible to find a value λmax such that
Pλ(↑ |m,1) is invertible in the region [0,λmax] of the parameter
space. This has profound consequences on the reliability of
the two estimation procedures because it affects the shape
of the a posteriori probability distribution for estimating the
parameter. In fact, the Bayesian probability built according to
Eq. (33) has two peaks for a local measurement procedure,
corresponding to the two values of the parameter λ which give
the same probability P L

λ (m|x0), and a single maximum for the
FP estimator.

Indeed, the probability distribution P L
λ (m|x0) is nonmono-

tonic, showing a maximum corresponding to the only value
of the parameter λ that can be estimated without any prior
knowledge about λT . For any other values of λT , the local
measurement strategy fails to uniquely identify a single solu-
tion for the estimation procedure, and a two-peak probability
distribution PB(λ|*) is obtained. For λT approaching the
maximum of the distribution, the two peaks start to merge,
leading to a broad probability distribution. On the contrary,
the FP success probability keeps its monotonic behavior in the
whole parameter region, and thus, Bayesian inversion strategy
always leads to a single solution within the variance of the
estimator. Except for the case where the local measurement
is performed on the first node |1⟩ of the lattice, a presence
measurement on any other site will give an a posteriori
probability distribution with two peaks; that is, the Bayesian
estimation procedure identifies two possible solutions λ1, λ2.
Since there is no way to discriminate between λ1 and λ2
without any a priori knowledge, the local measurement cannot

−

−

m=1

−

−

m=2

−

−

m=3

FIG. 5. Variance for the LM (blue squares), FP (red circles), and
combined FP+LM (black triangles) estimators as a function of the
number M of repeated simulated measurements for λT = 3. Each
plot refers to a different value of the measured (or plugging) site m.
The blue dashed line and the red dot-dashed one highlight the limit
imposed by the CR bound for LM and FP measurements, respectively.
The green shaded area delimits the region forbidden by the quantum
CR bound.

provide a reliable estimation of the coupling strength ν = λ
t
.

Measuring the state of the FP, on the other hand, allows one
to correctly infer the value of λ within an error given by the
width of the single-peak reconstructed Bayesian probability
distribution. Once we fix the time at which we perform the
measurement tM , the coupling constant is easily identified as
ν = λ/tM .
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The Bayesian FP estimator saturates the CR bound (7),
as shown in Fig. 5. However, as we have already mentioned,
neither the LM nor the FP allows us to saturate the quantum CR
bound. In order to improve precision we may use a two-step
scheme, in which we first employ the Feynman probe and
Bayesian estimation and then use the posterior distribution for
λ as a prior for Bayesian estimation using local measurements.
This procedure allows us to build a more precise estimator
with a smaller variance compared to those obtained using
solely local measurements or Feynman probes. The variance
σ 2 obtained from a set of M simulated experiments which
employ this LM+FP scheme is shown in Fig. 5 (black dots).
As is apparent from the plot, the two-step scheme performs
better than the other measurements schemes, and it allows
us to achieve, in some cases, the quantum CR bound, thus
representing an optimal procedure to characterize linear chain
of qubits.

VI. CONCLUSION AND OUTLOOK

In this paper we have introduced an estimation procedure
based on Feynman probes for the characterization of linear
qubit chains made of strongly interacting two-level systems.
A Feynman probe is a single-qubit register coupled to the chain
of qubits, which is initially prepared in a single-excitation state.
The probe is dynamically entangled to the excitation moving
along the linear chain, and by measuring the state of the probe
it is possible to extract information on the value of the coupling
constant.

First, we evaluated the quantum Fisher information associ-
ated with the coupling parameter, thus determining the ultimate
precision of any estimation procedure. We then showed that
local measurements, i.e., measuring the presence of the excita-
tion on a single site, provide optimal characterization of λ for
small values of the coupling. In particular, optimal estimation
is obtained when the local measurement is performed at site
x0, where the excitation is initially localized. In this regime
the CR bound may be attained by Bayesian estimation for
a large number of repeated measurements. On the contrary,

for larger values of the coupling λ, i.e., for strongly coupled
chains of qubits, a Bayesian local strategy does not lead
to a consistent estimate because the a posteriori probability
distribution shows two peaks. In this regime, Feynman probes
provide a consistent Bayesian estimator that saturates the CR
bound; that is, it achieves efficient characterization of the
qubit system. We concluded that characterization by Feynman
probes represents a suitable estimation strategy for a strongly
coupled qubit chain.

Finally, we suggested a two-step measurement scheme
where both FP and LM are employed one after the other to
estimate the coupling λ. In the first step, FP is used to infer
the coupling: the resulting distribution is then used as an a
priori distribution for a Bayesian LM estimation λ. The overall
precision may achieve the quantum CR bound. Our results
provide an alternative route to characterize qubit systems and
confirm the relevance of nonlocal measurements, which have
already been suggested as a convenient toolbox for quantum
circuits based on trapped ions [40,41] and superconducting
qubits [42,43]. Feynman probes could also be employed
to estimate the current in out-of-equilibrium quantum wires
[53,54] or the amount of disorder in linear lattices [55,56].

As we pointed out, cold atoms in optical lattices are
promising systems for the realization of the three-spin in-
teraction needed by Feynman probes. Our results confirm
the interest of these systems and may foster future research
about an implementation of the Feynman probe mechanism
based on current quantum technology. This would allow us
also to extend our analysis addressing the robustness of the
Feynman probe estimation procedure against experimental
imperfections.
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