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Optimal quantum transport on a ring via locally monitored chiral quantum walks
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In purely coherent transport on finite networks, destructive interference can significantly suppress transfer
probabilities, which can only reach high values through careful fine-tuning of the evolution time or tailored
initial-state preparations. We address this issue by investigating excitation transfer on a ring, modeling it as a
locally monitored continuous-time chiral quantum walk. Chirality, introduced through time-reversal symmetry
breaking, imparts a directional bias to the coherent dynamics and can lift dark states. Local monitoring,
implemented via stroboscopic projective measurements at the target site, provides a practical detection pro-
tocol without requiring fine-tuning of the evolution time. By analyzing the interplay between chirality and
measurement frequency, we identify optimal conditions for maximizing the asymptotic detection probability.
The optimization of this transfer protocol relies on the spectral properties of the Perron-Frobenius operator,
which capture the asymptotic nonunitary dynamics, and on the analysis of dark states. Our approach offers a
general framework for enhancing quantum transport in monitored systems.
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I. INTRODUCTION

In a classical random walk the walker takes steps in
random directions through a network, resulting in diffusive
spreading. In a quantum walk, instead, the walker takes a
quantum superposition of paths, leading to quantum inter-
ference effects [1,2]. While constructive interference enables
ballistic spreading (faster than the classical diffusive spread-
ing), destructive interference can hinder transport or cause
localization [3]. Continuous-time quantum walks are versa-
tile for modeling coherent transport in discrete systems [4].
Equivalent to the tight-binding approximation in solid-state
physics and in Hückel’s molecular-orbital theory, their ap-
plicability is broad across systems [5–11]. Several studies
on environment-assisted quantum transport have highlighted
the beneficial interplay of coherent and incoherent dynamics
[12–16], where the loss of phase coherence can enhance trans-
port by suppressing destructive interference [17,18]. Focusing
on purely coherent transport, achieving unit transport effi-
ciency in highly symmetric networks often requires nontrivial
delocalized initial states due to symmetry-protected states
[19,20]. Breaking some symmetries, e.g., via network defects
[21,22], can improve transport.
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Chiral quantum walks leverage time-reversal symmetry
breaking, typically through complex-valued edge weights
[23,24], to enable controlled directional transport [25–27]
or its suppression [28], with promising applications in rout-
ing [29]. Experimentally, chiral quantum walks have been
demonstrated using NMR on a three-qubit system [24], silicon
photonic chips [30], and gate-based quantum computers [31],
while artificial gauge fields can induce chiral dynamics in
ultracold neutral atoms confined in optical lattices [32,33].
While chirality can mitigate destructive interference by affect-
ing phase coherences, achieving nearly optimal transfer, even
on a simple ring [26], often requires fine control of the evolu-
tion time [34]. This represents an experimental challenge, as
it requires a priori knowledge of the optimal time to halt the
transfer protocol. Classically, this relates to first-passage-time
problems [35–38], which address the statistics of the time a
random walker takes to reach a target. However, in a quantum
context the concept of first passage is not meaningful; instead,
measurements must be explicitly incorporated [19], leading to
the notion of first-detected-passage time [39–43]. The latter
bridges unitary dynamics and measurement-induced collapse
in monitored systems [44], offering insights into quantum-
classical transition and measurement backaction. Although
chirality has been shown to enhance transfer probabilities by
lifting energy degeneracies that give rise to dark states, ini-
tial conditions which, suffering from destructive interference,
prevent the detection of the desired state [31,42,45], the op-
timal interplay between chirality and measurement frequency
remains unexplored.

In this work we address this gap by investigating a locally
monitored chiral quantum walk on a ring (see Fig. 1), where
the purely coherent evolution of the system is repeatedly
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FIG. 1. Schematic illustration of the excitation transfer, modeled
as a locally monitored chiral quantum walk under a stroboscopic
detection protocol, investigated in this work.

interrupted by projective measurements at the target (Sec. II).
First, we show the effective role of chirality and detection
period in enhancing the detection probability at finite time
(Sec. III). Then we identify the optimal conditions for
maximizing the (asymptotic) detection probability, deriving
a general prescription that relies on the Perron-Frobenius
spectrum of the nonunitary dynamics (Sec. IV) and on the
analysis of dark states (Sec. V). We elaborate on the timescale
for the asymptotic dynamics to emerge (Sec. VI) and conclude
with a summary of the main results (Sec. VII).

II. MODEL AND FIRST-DETECTED-PASSAGE-TIME
PROBLEM

We investigate coherent excitation transfer on a cycle graph
with N sites (a ring) under local monitoring (see Fig. 1). The
transfer is modeled as a continuous-time chiral quantum walk
and the Hilbert space of the system is conveniently spanned
by localized states at the sites of the graph {| j〉} j=0,...,N−1. In
this basis, the Hamiltonian of the chiral quantum walk can be
written as [25]

Ĥ =
N−1∑
j=0

e−iφ |( j + 1)N 〉〈 j| + eiφ|( j − 1)N 〉〈 j|, (1)

where ( j ± 1)N = ( j ± 1)modN due to the periodic bound-
ary conditions. We set all the diagonal elements to zero to
solely focus on the effects of the phase φ ∈ [− π

N , π
N ] respon-

sible for the chirality. The upper bound follows from the fact
that, in loops, the overall net phase is what matters and so
−π � Nφ � π [26,46]. Eigenvectors and eigenvalues of the
Hamiltonian (1), a circulant matrix, read

|λ j〉 = 1√
N

N−1∑
k=0

ei(2π/N ) jk|k〉, λ j = 2 cos

(
φ − 2π

N
j

)
,

(2)
respectively, with j = 0, . . . , N − 1. Under the time-
independent Hamiltonian (1), the system initially prepared in

a state |ψ0〉 ≡ |ψ (t = 0)〉 evolves unitarily according to

|ψ (t )〉 = Û (t )|ψ0〉 = e−iĤt |ψ0〉, (3)

where we set h̄ = 1.
In quantum systems the first-detected-passage time, or hit-

ting time, is defined through repeated monitoring at the target
site [19,41], where the detector reveals the presence or ab-
sence of the walker. Here we assume a stroboscopic detection
protocol in which projective measurements are performed at
times τ, 2τ, 3τ, . . ., where the arbitrary finite detection pe-
riod τ > 0 is chosen by the experimentalist. The scheme is
illustrated in the box in Fig. 1: Starting from an initial state
|ψ0〉 = |0〉 localized at a site (without loss of generality we
assume the zeroth), the monitored dynamics alternates unitary
evolution Û (τ ) [Eq. (3)] and projective measurements at the
target site D̂ = |δ〉〈δ|. In the following, we assume the target
site to be opposite to the initial one, i.e., |δ〉 = |N/2〉 for even
N and |δ〉 = |(N ± 1)/2〉 for odd N . A typical run of the
monitored dynamics produces a string of binary measurement
outcomes: a sequence of no (the walker has not been detected)
repeated until a yes (the walker has been detected) occurs at
time nτ , i.e., at the nth detection attempt. This time nτ is then
defined as the first-detected-passage time for the run under
investigation. The probability Fn to first detect the walker at
the nth attempt is Fn = 〈θn|D̂|θn〉, where |θn〉 = Û (τ )[(I −
D̂)Û (τ )]n−1|ψ0〉 is the first-detection (unnormalized) vector
[41]. The detection probability up to time nτ is

Pdet (n) =
n∑

m=1

Fm. (4)

As a final remark, we point out that we investigate local mon-
itoring for excitation transfer since purely coherent transport
performs poorly. Indeed, under unitary dynamics, the transfer
probability Pδ (t ) = |〈δ|Û (t )|ψ0〉|2 typically exhibits low val-
ues with rare sharp peaks (see Appendix A).

III. OPTIMIZATION PROBLEM

Our purpose is to leverage the key parameters of our model,
i.e., the detection period τ between consecutive measurements
and the phase φ in the Hamiltonian (1), to determine an
optimal, robust transfer protocol: optimal, as it maximizes
the detection probability (4) over φ and τ , and robust, as it
does not require fine-tuning of parameters. This optimization
is subject to a constraint, as we assume the total time T
of the process to be a finite resource. Therefore, what we
maximize is the detection probability Pdet (φ, τ ) after n de-
tection attempts, where n = �T/τ�, which is clearly upper
bounded by its asymptotic value Pdet (φ, τ ) � Pdet (n → ∞).
In the following, we conveniently set T = 200, a value which
allows us to achieve detection probabilities greater than 90%
when the number of sites N is relatively small (see Sec. VI for
a discussion on the asymptotic timescale) while keeping the
number of measurements n limited. Hereafter, we will focus
first on the role of the detection period τ and then on that of
the phase φ.
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FIG. 2. Detection probability as a function of the phase φ and the detection period τ at fixed total observation time T = 200. Shown are
density plots of Pdet (φ, τ ) for (a) N = 20 and δ = N/2 and (b) N = 21 and δ = (N − 1)/2. (c) and (d) Curves showing Pdet (φ) at given τ for
the same system sizes N and detection sites δ as in (a) and (b), respectively.

A. Optimal detection period τ

To gain initial insight into how the detection probability
depends on the parameters of interest, Fig. 2 shows the density
plots of Pdet (φ, τ ) for a fixed number of sites, comparing
even (N = 20) and odd (N = 21) cases. For both even and
odd N , the detection probability exhibits two qualitatively
distinct regimes separated by a sharp transition at a criti-
cal threshold τ ∗ in the detection period. Operationally, we
define the threshold τ ∗ ≈ 1.58 as the first pronounced lo-
cal minimum in the detection probability that follows the
most prominent maximum identified while scanning increas-
ing values of τ . When τ < τ ∗, Pdet (φ, τ ) is smooth, generally
increasing with τ (recall we fixed T = nτ ), and remains high
over extended intervals. Conversely, when τ > τ ∗, a highly
structured pattern with sharp oscillations emerges. As τ → 0,
we observe a quantum Zeno effect [47,48]. Here frequent
measurements performed on a state |δ〉 (orthogonal to the
initial one) effectively confine the walker’s evolution in the
subspace orthogonal to the detection subspace, preventing it
from reaching |δ〉. As a result, the detection probability ap-
proaches zero as τ → 0. Although the detection probability
exhibits local maxima for τ > τ ∗ that can exceed the max-
imum observed at τopt ≈ 1.53 < τ ∗, accessing these higher
maxima requires prior knowledge of their locations and fine-
tuning of τ , conditions that are challenging to meet in practice.
Since we aim for a robust and agnostic protocol, we restrict
the optimization to the region 0 < τ < τ ∗, where suitable
parameters can always be identified regardless of N . In the
remainder of this paper, we will show that τ ∗ → π/2+ for

large N , thus providing a well-bounded interval 0 < τ � π/2
in which to maximize the detection probability.

B. Optimal phase φ

For even N [Fig. 2(a)], we observe that for τ < τ ∗ the de-
tection probability is maximized at φopt = 0, exhibits a lower
local maximum at intermediate values 0 < |φ| < π/N [49],
and ultimately vanishes at φ = ±π/N . Therefore, introducing
a nonzero phase in the Hamiltonian (chirality) hinders excita-
tion transfer between opposite sites of the symmetric cycle
(even N), as it reduces the detection probability at the target.
In contrast, chirality enhances this transfer in the asymmetric
cycle (odd N) [Fig. 2(b)]. The directionality induced by the
nonzero phases causes the detection probability to increase
at either of the two target sites δ = (N ± 1)/2 opposite to
the starting one. In particular, for τ < τ ∗ the detection proba-
bility is always maximized at φopt = ±π/2N and minimized
at φ = 0,±π/N . Finally, we note that while Pdet (φ, τ ) =
Pdet (−φ, τ ) for even N , this symmetry is lifted for odd N
[Figs. 2(c) and 2(d)]. For odd N , however, the detection prob-
ability is symmetric upon changing both the target site and the
sign of φ.

The numerical results discussed above highlight the
presence of optimal parameters φopt and τopt as well as a
critical threshold τ ∗. Below we present two complementary
interpretations of these features based on the analysis of the
Perron-Frobenius spectrum and dark states.
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IV. PERRON-FROBENIUS ANALYSIS

Local monitoring repeatedly interrupts the unitary evolu-
tion of the system by projective measurements, resulting in
an overall nonunitary evolution. The elementary step, a free
evolution (3) for time τ followed by the detection attempt
D̂ = |δ〉〈δ|, is governed by the (nonunitary) Perron-Frobenius
operator [50]

Ô(φ, τ ) = (I − D̂)Û (φ, τ )

=
∑

j

μ j (φ, τ )|μ j (φ, τ )〉〈μ̄ j (φ, τ )|. (5)

Since the operator is non-Hermitian, it admits eigendecom-
position in the biorthogonal basis consisting of right and
left eigenvectors {|μ j〉, |μ̄ j〉}, with eigenvalue μ j ∈ C, such
that Ô(φ, τ )|μ j〉 = μ j |μ j〉 and 〈μ̄ j |Ô(φ, τ ) = μ j〈μ̄ j |. The
orthogonality and completeness relations read 〈μ̄ j |μk〉 = δ j,k

and I = ∑
j |μ j〉〈μ̄ j |, respectively [51]. Here and throughout

the paper, we omit the explicit dependence of eigenvalues and
eigenvectors on φ and τ for brevity. The Perron-Frobenius
analysis allows us to characterize the asymptotic dynamics
of the system in the long-time limit [52–55]. Repeatedly ap-
plying such an operator on an initial state |ψ0〉 generates a
nonunitary evolution which does not preserve the probability.
The survival probability

S(n) = ‖Ôn(τ )|ψ0〉‖2 =
N−1∑
j=0

|μ j |2n〈ψ0|μ j〉〈μ̄ j |ψ0〉 (6)

is the probability that the detector has not clicked after n detec-
tion attempts, that is, the walker has not been detected yet, and
relates to the detection probability (4) via S(n) = 1 − Pdet (n).
The fact that S(n) � 1 means that |μ j | � 1 ∀ j (see [42]
for details). In particular, eigenvectors with |μ j | < 1 yield
exponentially decaying contributions to the survival proba-
bility that vanish as n → ∞, while eigenvectors with |μ j | =
1 yield nondecaying contributions that remain finite in this
limit. The asymptotic dynamics are thus determined by the
largest-modulus eigenvalue of the Perron-Frobenius operator
μPF, i.e., the closest to the unit circle, and its corresponding
eigenvector(s). Since by definition |μ j | � |μPF| � 1 ∀ j, if
|μPF| < 1, or if |μPF| = 1 and the initial state is orthogonal
to the corresponding eigenspace, then the detection proba-
bility can approach 1 arbitrarily closely, because the survival
probability (6) decays exponentially fast with the number of
measurement attempts n. Otherwise, one has to identify the
subleading eigenvalue, i.e., the largest eigenvalue in modu-
lus strictly less than one, whose eigenspace overlaps with
the initial state. In this case, the survival probability attains
a finite asymptotic value S(∞) > 0, resulting in Pdet (∞) <

1. Minimizing the modulus of the relevant eigenvalue, de-
pending on the scenario, serves two purposes: (i) identifying
parameters, if any, such that |μPF| < 1 and (ii) minimizing
the number of measurements attempts n required to approach
Pdet (∞) arbitrarily closely. The analysis of the eigenproblem
of Ô(φ, τ ) will equip us with the necessary tools to under-
stand both the presence of the threshold τ ∗ and the optimal
values of the parameters. For clarity of discussion, we focus

here on the case of odd N , deferring the case of even N to
Appendix B.

The existence of the threshold τ ∗ is reflected in the Perron-
Frobenius (PF) spectrum, evaluated at fixed N and φ =
φopt, which differs between the regimes τ < τ ∗ and τ > τ ∗
[Figs. 3(a) and 3(b)]. For 0 < τ < τ ∗, all the eigenvalues
fall within the unit circle |μ j | < 1 ∀ j [see also the largest-
modulus eigenvalue in Fig. 3(d)], meaning that all the modes
decay and so the excitation will be transferred to the target
state with unit probability in the long-time limit Pdet (n →
∞) = 1. For τ > τ ∗, instead, there may exist unit-modulus
eigenvalues, indicating the emergence of modes which do not
decay over time [56]. These results align with the numerical
ones discussed above [Figs. 2(b) and 2(d)], including our
previous estimate τ ∗ ≈ 1.58.

The optimal parameters τopt and φopt can be estimated by
minimizing the modulus of μPF, the eigenvalue governing
the asymptotic dynamics in the long-time limit. The study
of |μPF| as a function of φ and τ in Fig. 3(c) reveals the
following. At φ = φopt = ±π/2N (odd N), |μPF| decreases
smoothly with increasing τ < τ ∗, attains a minimum at τopt,
and for τ > τ ∗ its behavior becomes highly oscillatory, with
|μPF| = 1 for specific values of τ [Fig. 3(d)]. At a given
detection period τ < τ ∗, |μPF| is minimum at the optimal
phase φopt [Fig. 3(e)]. The locations (φ, τ ) of the minima
(maxima) of |μPF| are consistent with those of the maxima
(minima) of the detection probability in Figs. 2(b) and 2(d),
supporting the Perron-Frobenius analysis as a valuable tool to
optimize the transport. In the next section we discuss in terms
of dark states the presence of regions where the detection
probability is minimum, the emergence of the threshold τ ∗
in the detection period, and that τ ∗ → π/2+ as N increases.

V. DARK-STATE ANALYSIS

As thoroughly explained in [42], the presence of a detector
in a finite-dimensional quantum system, such as ours, splits
the Hilbert space into two parts: a bright subspace, whose
states are guaranteed to be eventually detected [Pdet (∞) = 1],
and a dark subspace, whose states are never detected, not even
after an infinite number of detection attempts [Pdet (∞) = 0].
A state that lies in the dark subspace is orthogonal (and re-
mains orthogonal under the action of the evolution operator)
to the detection site |δ〉. A state that satisfies these properties,
i.e., it is stationary with respect to the evolution and detection
attempts, is called a dark state. The total detection probabil-
ity Pdet (∞) is the squared modulus of the projection of the
initial state |ψ0〉 on the bright space [42]. Accordingly, when-
ever |ψ0〉 has a nonzero projection on the dark space, then
Pdet (∞) < 1, meaning that we are not guaranteed to detect
the walker even with infinite measurements. Understanding
when dark states arise and characterizing them are therefore
important to optimize the detection probability.

Considering the time evolution in Eq. (3), a dark state can
be built from the energy eigenstates (2),

|γn,m〉 =
√

N

2
[〈δ|λn〉|λm〉 − 〈δ|λm〉|λn〉], (7)
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FIG. 3. Eigenvalues of the Perron-Frobenius operator (5) on the unit circle for two representative values of the detection period (a) τ < τ ∗

and (b) τ > τ ∗ at φ = π/2N and δ = 10. (c) Density plot of the largest-modulus PF eigenvalue |μPF| as a function of φ and τ . (d) Curve |μPF|
as a function of τ at fixed φ = π/2N . (e) Curve |μPF| as a function of φ at fixed τ = 1.53. The other parameters are N = 21 and δ = 10.

with m �= n. Letting it evolve with Û (τ ), we get the state

Û (τ )|γn,m〉 =
√

N

2
(e−iλmτ 〈δ|λn〉|λm〉

− e−iλnτ 〈δ|λm〉|λn〉), (8)

which is orthogonal to the detection site |δ〉 if

λmτ ≡ λnτ (mod 2π ), (9)

in which case the system never visits |δ〉, resulting in
Pdet (∞) = 0. If no pairs of eigenvalues λm and λn satisfy
the condition (9) and 〈λ j |δ〉 �= 0 ∀ j, then the Hilbert space
is fully bright and there are no dark states [42]. Note that
when Eq. (9) holds true, we have that (I − D̂)Û (τ )|γn,m〉 =
e−iλmτ |γn,m〉, i.e., these dark states are eigenstates of the
Perron-Frobenius operator Ô and are the only ones with unit-
modulus eigenvalue [57]. In our model the condition 〈λ j |δ〉 �=
0 ∀ j is satisfied by any localized state |δ〉 [see Eq. (2)], as
our detection states, while the condition (9) can be satisfied
in two ways.

(i) When the Hamiltonian’s spectrum is degenerate,
then Eq. (9) is satisfied for all τ for each degenerate level.

Degeneracies in the spectrum (2) arise only for φ = 0 and
φ = ±π/N , and the properties of the resulting dark states
depend on the parity of N .

For even N , when φ = 0 there exist N
2 − 1 twofold de-

generate levels. In this case, all the stationary dark states
constructed from the pairs of eigenstates in each degen-
erate level are orthogonal to the initial state. Therefore,
they neither contribute to the dynamics of the system nor
affect the detection probability. When φ = ±π/N there ex-
ist N/2 twofold degenerate levels. It can be proved (see
Appendix B) that the initial state lies in the dark sub-
space spanned by the stationary dark states constructed from
these degenerate levels. As a consequence, in this case the
walker is never detected in |δ〉, yielding Pdet (±π/N ) = 0
in Fig. 2(a).

For odd N , calculations analogous to those in Appendix B
reveal that for φ = 0,±π/N the total overlap of the initial
state with the dark space is 1/2, thus explaining the minima of
the detection probability for these values of φ in Fig. 2(b). For
such values of φ, there exist (N − 1)/2 twofold degenerate
levels, each contributing a dark state that together form the
basis spanning the dark space.
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(ii) Using any nondegenerate couple of eigenvalues λm �=
λn, there may exist proper combinations of τ and φ that lead to
λmτ = λnτ + 2kπ for some k ∈ Z. Plugging the eigenvalues
(2) in the expression (9), we derive the condition relating τ

and φ under which dark states appear

τdark = kπ

2 sin
(

π (m−n)
N

)
sin

(
φ − π (m+n)

N

) , (10)

which establishes the lower bound τdark � π/2 for the pres-
ence of dark states arising from nondegenerate levels.

Such a lower bound is exactly attained, τdark = π/2, for
even N when φ = 0 (with k = 1, m = 0, and n = N/2). In all
other cases, the first dark state associated with nondegenerate
levels arises at a detection period τdark → π/2 as N → ∞,
manifesting as a dark-state line at τ → π/2 in the parameter
space (φ, τ ). This behavior follows from the fact that, as
N increases, the discrete arguments of the sine functions in
Eq. (10) become denser in the interval [0, 2π ) so that pairs
(m, n) exist for which the product of the two sine functions
is arbitrarily close to 1. In general, for finite N , the solutions
to Eq. (10) manifest as low-detection-probability curves in the
(φ, τ ) space stemming from the presence of dark states which
overlap with the initial state, as clearly illustrated in Figs. 2(a)
and 2(b), including the nearly straight line at the thresh-
old τ ∗ ≈ 1.58 � π/2. In the region τ � π/2, the dark-state
curves become denser as N increases, because the number of
dark states from nondegenerate levels is of the order N2 and
also as τ increases (see Appendix C).

In conclusion, the analysis of dark states provides an op-
erational definition of the threshold in the detection period
as τ ∗ ≡ minm,n,φ τdark, where τdark is defined in Eq. (10)
and m and n label nondegenerate energy levels. Accordingly,
τ ∗ → π/2+ as N → ∞. In the region τ < τ ∗, results qual-
itatively differ depending on N and φ. For even N , dark
states at φ = 0 do not affect the evolution of |ψ0〉, yielding
Pdet (∞) = 1, while for φ = ±π/N the initial state is dark,
yielding Pdet (∞) = 0; for odd N , the initial state has a finite
overlap with dark states at φ = 0,±π/N , yielding Pdet (∞) =
1/2. For φ �= 0,±π/N , the Hilbert space is fully bright in
this region and thus Pdet (∞) = 1 for both even and odd N
[this is not fully captured in Figs. 2(a) and 2(b) due to the
finite observation time T ]. In the region τ > τ ∗, the number
of dark states increases as N and τ increase, yielding denser
low-detection-probability curves in the (φ, τ ) space.

VI. ASYMPTOTIC DYNAMICS TIMESCALE
AND FINITE-TIME EFFECTS

While the Perron-Frobenius analysis provides useful in-
sights into the asymptotic dynamics of the system in the
long-time limit, experimental scenarios are necessarily con-
strained to finite observation times T (e.g., we assumed
T = 200 in Fig. 2) which may not correspond to such a
regime. This naturally raises the following questions: Over
what timescale tas does the asymptotic behavior emerge and
how accessible is it? How predictive is the Perron-Frobenius
analysis for the optimal parameters at finite time?

At finite observation times T , the extent to which the
Perron-Frobenius optimal parameters, i.e., φPF and τPF, which
minimize |μPF| < 1, are consistent with the numerically

FIG. 4. Comparison between the Perron-Frobenius optimal pa-
rameters φPF and τPF, obtained by minimizing |μPF|, and the
numerically optimal parameters φopt and τopt, obtained by maxi-
mizing the detection probability, as a function of odd N at finite
observation time T = 200. While the optimal phase is φopt = φPF

regardless of N , the optimal detection periods deviate from each
other as N increases: τPF → π/2 whereas τopt decreases.

optimal ones φopt and τopt, which maximize Pdet, depends on
how close T is to the asymptotic timescale tas. If T � tas,
then the asymptotic regime holds true and φopt = φPF and
τopt = τPF maximize the detection probability by minimiz-
ing the survival probability (6), being |μ j | � |μPF| < 1 ∀ j
by definition. If T � tas, then finite-time effects arise and
affect the accuracy of the predictions. To illustrate this, it is
instructive to examine how the optimal parameters vary as
a function of the system size N at fixed observation time T
(see Fig. 4). At low values of N , φPF = φopt and τPF ≈ τopt,
where minor discrepancies in the detection period arise from
either the numerical maximization of a flat curve (e.g., for
N = 13) or the emergence of finite-time effects (e.g., for
N = 25) [see also Fig. 5(a)]. As N increases, the prediction
remains accurate for the optimal phase φPF = φopt (a Hamil-
tonian parameter) but becomes progressively less accurate for
the detection period, with τPF → π/2− and τopt decreasing.
Consistently with this picture, Fig. 5 shows that for moderate
system sizes N the detection probability may not saturate to
the expected value Pdet (∞) = 1 within the available observa-
tion time T = 200, and Perron-Frobenius optimal detection
periods, which approach τ = π/2 as N increases, may yield
suboptimal results at finite times (see the optimal values τopt

in Fig. 4). The detection probability correctly saturates to the
asymptotic value for low system sizes N � 20. As is intuitive,
the larger the system size, the longer the time it takes the
excitation to reach the target and so the longer the timescale
over which the asymptotic behavior emerges and the detection
probability saturates.

The asymptotic timescale is governed by the spectral prop-
erties of the Perron-Frobenius operator (5), specifically by
the spectral gap 
 ≡ 1 − |μPF|. Therefore, the asymptotic
timescale can be estimated as tas ∼ 
−1 [58]. Considering
that tas depends on N , τ , and φ, in Fig. 6(a) we restrict our
analysis to tas as a function of τ for different N by fixing φ at
its known optimal value, since results indicate that φopt = φPF

regardless of the finite observation time (see Fig. 4). In the
small-τ limit, tas diverges due to the quantum Zeno effect,
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FIG. 5. Detection probability as a function of τ evaluated at fixed φ = φopt and T = 200 for various N : (a) small N , for which the system
reaches its asymptotic behavior within the observation time T , and (b) high N , for which T � tas. The reference value τ = π/2 is shown as a
vertical line. The parameters used are δ = N/2 and φopt = 0 for even N and δ = (N − 1)/2 and φopt = π/2N for odd N .

which prevents the walker from reaching the measurement
site. As τ increases, tas decreases monotonically, reaching a
minimum at τPF (where |μPF| is minimized), before rising
sharply. Beyond the threshold τ ∗, tas reflects the system’s
sensitiveness to small changes in τ and φ [see also Fig. 2(b)].
This trend persists with increasing N , which leads to larger tas.
Clearly, the position of the minimum of tas approaches π/2 as
N increases, since the minimum of |μPF| occurs at τPF → π/2
as N → ∞ (see Fig. 4). Minimizing |μPF| is therefore crucial,
as it reduces the timescale over which the asymptotic behavior
emerges, making it observable within finite times.

The detection probability saturates to its asymptotic value
over a timescale tas that increases with the system size N .
In practice, the experimentalist may only require the detec-
tion probability to exceed a threshold. Motivated by this, in
Fig. 6(b) we study Pdet as a function of N and total obser-
vation time T at τPF and φPF = φopt. Although suboptimal
at finite times, we adopt these parameters to complement
the analysis initiated in Fig. 4. As N increases, the obser-
vation time T required for Pdet to become non-negligible
and subsequently saturate also increases. In this regard, T =
200 considered in the present work effectively captures the
asymptotic dynamics, T � tas, for N � 20, while at N = 21,
T ∼ tas yields Pdet � 1 (see Fig. 5). Remarkably, achieving
Pdet ≈ 80% requires an observation time T nearly an order

FIG. 6. (a) Asymptotic time tas as a function of the detection
period τ for various odd N . (b) Density plot of Pdet as a function of
odd N and total observation time T , evaluated at τPF corresponding
to each N and at δ = (N − 1)/2. In both panels the phase is fixed at
φopt = π/2N .

of magnitude shorter than that needed for saturation with the
Perron-Frobenius (sub)optimal parameters.

To summarize, the Perron-Frobenius analysis yields opti-
mal parameters for maximizing detection probability in the
asymptotic regime T � tas and it remains a valuable tool
even in the finite-time regime T � tas. Finite-time effects
stem from the interplay between finite observation time T
and system size N , causing deviations from the asymptotic
behavior. Specifically, for T � tas, the chiral phase is correctly
predicted, φPF = φopt, while τopt deviates from τPF, decreas-
ing with N whereas τPF → π/2−. Therefore, whenever the
finite-time effects are moderate, τPF can still serve as an initial
guess for refining the optimization. Careful consideration is
required when these finite-time effects become particularly
pronounced. This framework is valid only if the observation
time T is sufficiently long relative to the system size N so that
excitation transport to the target site can occur. This constrains
the regime of finite-time dynamics of interest: Recalling that,
for a continuous-time quantum walk on the line, the stan-
dard deviation of the position is linear with time (ballistic
spreading), we require at least T ∝ N to have transport and,
in addition, we observe that tas(τPF) ∼ N3 (see Appendix D).

VII. CONCLUSION

In this work we have investigated how chirality and lo-
cal monitoring jointly enhance excitation transfer, modeled
as a continuous-time quantum walk on a ring. We showed
that optimizing both the chiral phase φ and the detection
period τ overcomes limitations of purely unitary dynamics
such as destructive interference and dark states. The resulting
transfer protocol is both optimal, yielding significantly higher
detection probabilities, and robust, requiring no fine-tuning of
parameters or tailored initial-state preparations. Our approach
combines two key insights: (i) the identification of dynami-
cally relevant dark states and (ii) the spectral analysis of the
nonunitary Perron-Frobenius operator to determine optimal
parameters. While this analysis is exact in the asymptotic
regime, it remains a valuable tool at finite times: It yields the
correct optimal phase and provides a useful estimate of the
optimal detection time, whose accuracy worsens as the system
departs further from the asymptotic regime. This approach,
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FIG. 7. Instantaneous transfer probability Pδ from site 0 to δ as a function of the phase φ and time t for (a) N = 20 and δ = N/2 and (b)
N = 21 and δ = (N − 1)/2.

which remains effective provided the observation time T
grows with the system size N , offers a general framework for
enhancing transport in monitored quantum systems beyond
the simple model investigated in the present work.

Beyond advancing the understanding of first-detected-
passage problems in closed loops, our results offer practical
guidelines that can be readily extended beyond quantum trans-
port to the design of efficient quantum protocols in domains
where destructive interference and dark states usually limit
performance, such as search algorithms [59,60], state transfer
[61], quantum routers [29], and potentially in quantum-walk-
based computing [62].

Finally, hitting times play a central role in the performance
of quantum protocols, as they directly affect how rapidly a
target state can be reached or detected. The recent implemen-
tation of local monitoring via midcircuit measurements, either
strong [31,63] or weak [64], demonstrates the growing experi-
mental feasibility of accessing quantum hitting-time statistics
on current quantum hardware. In parallel, restart strategies
have emerged as a new, powerful control mechanism to further
speed up hitting times in monitored quantum systems [45,65–
67]. Together, these advances underscore the relevance of our
approach for designing efficient and experimentally viable
quantum protocols.
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APPENDIX A: PURELY COHERENT TRANSPORT
UNDER UNITARY EVOLUTION

The purely coherent transport under unitary dynamics
is not efficient, as the instantaneous probability Pδ (φ, t ) =
|〈δ|Û (φ, t )|ψ0〉|2 typically remains low throughout the evolu-
tion, punctuated by narrow, sharp peaks. This is evident from
the comparison between Figs. 2 and 7: Fig. 7 shows Pδ as a
function of the phase φ and time t , revealing that its values are
consistently and significantly lower over the entire parameter
range considered than those of the detection probability Pdet

in Fig. 2.

APPENDIX B: PERRON-FROBENIUS ANALYSIS
FOR EVEN N

The Perron-Frobenius analysis in Sec. IV focused on the
case of odd N . Here we discuss the case of even N , which
needs to be considered more carefully. The main differences
between even and odd N root back to the degeneracies of the
energy spectrum in Eq. (2). For odd N , all the energy levels
but one, the highest ( j = 0), have a twofold degeneracy when
φ = 0. These degeneracies are lifted when φ �= 0. For even
N , instead, all the energy levels but two, the lowest ( j = N/2)
and the highest ( j = 0), have a twofold degeneracy when
φ = 0. Nonzero phases lift these degeneracies except when
φ = ±π/N , in which case all the energy levels, including the
lowest and the highest, have a twofold degeneracy. Following
[42], we can construct a dark state from each degenerate
level λ j as

|γ j〉 =
√

N

2
(〈δ|λ j,2〉|λ j,1〉 − 〈δ|λ j,1〉|λ j,2〉). (B1)

For φ = 0, the dark states read [42]

|γ j〉 =
√

2

N

N−1∑
k=0

sin

(
2π jk

N

)
|k〉, (B2)

with j = 1, . . . , N/2 − 1, and have no overlap with the initial
state, 〈0|γ j〉 = 0 ∀ j. As a result, these states do not contribute
to the walker’s dynamics and can be considered irrelevant
in the evolution. These dark states are eigenstates of the
Perron-Frobenius operator with unit-modulus eigenvalue [see

054142-8



OPTIMAL QUANTUM TRANSPORT ON A RING VIA … PHYSICAL REVIEW E 112, 054142 (2025)

FIG. 8. Eigenvalues of the Perron-Frobenius operator (5) on the unit circle for two representative values of the detection period (a) τ < τ ∗

and (b) τ > τ ∗ at φ = 0. (c) Density plot of the largest-modulus PF eigenvalue |μPF| as a function of φ and τ . (d) Curve showing |μPF| as
a function of τ at fixed φ = π/2N . (e) Curve showing |μPF| as a function of φ at fixed τ = 1.53. The red dot denotes the subleading PF
eigenvalue |μ̃PF|, which is the relevant one for the asymptotic dynamics at φ = 0 (the initial state has zero overlap with dark states). The other
parameters are N = 20 and δ = 10.

Figs. 8(a) and 8(b)]. Consequently, the asymptotic dynamics
relevant to excitation transfer will be governed by the sub-
leading eigenvalue, defined as μ̃PF ≡ max|μk |<1(μk ), i.e., the
largest eigenvalue in modulus strictly less than one.

For φ = −π/N , instead, the dark states read

|γ j〉 = 1√
2N

N−1∑
k=0

(ei(2π jk/N ) + e−i[2π ( j+1)k/N] )|k〉, (B3)

with j = 0, . . . , N/2 − 1, and always overlap with the initial
state, 〈0|γ j〉 = √

2/N ∀ j. The initial state turns out to be
completely dark for φ = −π/N , as it is the equal superpo-
sition of all the N/2 dark states forming a basis for the dark
subspace, |0〉 = √

2/N
∑N/2−1

j=0 |γ j〉. The case φ = π/N can
be treated analogously. Therefore, Pdet (n → ∞) = 1 if φ = 0
and Pdet (n → ∞) = 0 if φ = ±π/N [23].

The study of the largest-modulus Perron-Frobenius eigen-
value μPF is shown in Fig. 8(c). Similarly to the case of odd
N , |μPF| smoothly attains a local minimum (which we identify

as τopt in the asymptotic regime) in the interval τ < τ� and
then rapidly oscillates [Fig. 8(d)]. As for the dependence on
the phase φ, μPF shows two symmetric minima at φ �= 0, in
contrast with the numerically optimal phase φopt = 0 that we
expect for even N (see Fig. 2). On the other hand, as discussed
above, dark states built using degenerate energy levels are ir-
relevant for excitation transfer at φ = 0. At φ = 0, one should
thus consider the modulus of the subleading eigenvalue |μ̃PF|
[red dot in Fig. 8(e)], which is lower than the two local minima
of |μPF| when φ �= 0. This is reflected in the fact that the
detection probability attains a higher maximum at φ = 0 than
at the local maxima occurring at 0 < |φ| < π/N . We therefore
conclude that the optimal phase for even N is φ = 0.

APPENDIX C: DENSITY OF DARK STATES
INCREASES WITH τ

We prove that the density of dark states, i.e., the number
of dark states in a certain interval [φ, φ + 
φ] at fixed τ ,
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FIG. 9. Asymptotic timescale tas as a function of the system
size N for odd (blue circles) and even (red squares) values. A
power-law fit f (N ) = aNb shows that the scaling is nearly cubic,
tas ∼ N3, independent of the parity of N . In particular, it returns
exponents b(odd N ) = 2.999 434 ± 0.000 017 and b(even N ) = 2.9988 ±
0.0003, close to 3. Differences due to the parity of N are reflected
in the proportionality constants a(odd N ) = 0.017 385 5 ± 0.000 001 8
and a(even N ) = 0.006 562 ± 0.000 013, which differ by a factor ap-
proximately equal to 2.65.

grows with τ in the region τ > π/2. As discussed in Sec. V,
outside of the degenerate case, dark states correspond to
solutions of Eq. (10). Graphically, these solutions are the in-
tersections of two functions y1 = kπ and y2 = 2τ sin[π (m −
n)/N] sin[φ − π (m + n)/N]. On the plane (φ, y), the function
y1 represents horizontal lines at integer multiples of π ; at fixed
τ, m, n, and N , the function y2 is a sinusoidal function in φ,

with τ acting as an amplification factor, provided that m and n
satisfy sin[π (m − n)/N] �= 0. It is straightforward to see that
the number of horizontal lines y1 = kπ crossed by the func-
tion y2 grows in any interval [φ, φ + 
φ] as τ increases, as
was to be demonstrated. In other words, for larger values of τ ,
a finer tuning on φ is needed to avoid dark states, solutions of
y1 = y2. Searching for a robust transfer protocol, this further
motivates our choice of restricting to τ < τ ∗.

APPENDIX D: RELATION BETWEEN ASYMPTOTIC
TIMESCALE AND SYSTEM SIZE

Finite observation times T may not fall within the asymp-
totic timescale tas, where the Perron-Frobenius analysis holds
and is well suited to investigate the asymptotic dynamics
of the system. The asymptotic timescale clearly depends on
the system size N : Larger systems require longer times for
the excitation to reach the target state and for the dynamics
to enter the asymptotic regime. In Fig. 9 we show that the
asymptotic timescale, defined as the inverse of the spectral
gap of the Perron-Frobenius operator tas ≡ (1 − |μPF|)−1, es-
sentially scales as tas ∼ N3, independently of the parity of N .
Analogous scaling is observed when the asymptotic timescale
is defined as the inverse of the decay rate of the survival prob-
ability, tas ≡ [min j (−2 ln |μ j |)]−1 ∼ N3 [42]. The knowledge
of this scaling allows one to estimate the lower bound on the
observation time necessary for optimizing excitation transfer,
as predicted by Perron-Frobenius analysis in the asymptotic
regime.
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orthogonal to |δ〉.

[58] Analogous results and conclusions can be drawn from consid-
ering the inverse of the decay rate of the survival probability,
min j (−2 ln |μ j |) [42].

[59] A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann,
and A. J. Landahl, Quantum search by measurement, Phys. Rev.
A 66, 032314 (2002).

[60] A. M. Childs and J. Goldstone, Spatial search by quantum walk,
Phys. Rev. A 70, 022314 (2004).

[61] A. Kay, Perfect, efficient, state transfer and its application as a
constructive tool, Int. J. Quantum Inf. 08, 641 (2010).

[62] X. Qiang, S. Ma, and H. Song, Quantum walk computing: The-
ory, implementation, and application, Intell. Comput. 3, 0097
(2024).

[63] S. Tornow and K. Ziegler, Measurement-induced quantum
walks on an IBM quantum computer, Phys. Rev. Res. 5, 033089
(2023).

[64] T. Heine, E. Barkai, K. Ziegler, and S. Tornow, Quantum walks:
First hitting times with weak measurements, arXiv:2506.21168.

[65] R. Yin and E. Barkai, Restart expedites quantum walk hitting
times, Phys. Rev. Lett. 130, 050802 (2023).

[66] S. Roy, S. Gupta, and G. Morigi, Causality, localization, and
universality of monitored quantum walks with long-range hop-
ping, Phys. Rev. E 112, 044146 (2025).

[67] R. Yin, Q. Wang, S. Tornow, and E. Barkai, Restart uncertainty
relation for monitored quantum dynamics, Proc. Natl. Acad.
Sci. USA 122, e2402912121 (2025).

054142-12

https://doi.org/10.1103/PhysRevA.66.032314
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1142/S0219749910006514
https://doi.org/10.34133/icomputing.0097
https://doi.org/10.1103/PhysRevResearch.5.033089
https://arxiv.org/abs/2506.21168
https://doi.org/10.1103/PhysRevLett.130.050802
https://doi.org/10.1103/rbtb-8d27
https://doi.org/10.1073/pnas.2402912121

