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Multi-parameter statistical models may depend only on some functions of the parameters

that are fewer than the number of initial parameters themselves. Such sloppy statistical

models are characterized by a degenerate Fisher Information matrix, indicating that it
is impossible to simultaneously estimate all the parameters. In a quantum setting, once

an encoding is fixed, the same can happen for the Quantum Fisher Information matrix

computed from a sloppy quantum statistical model. In addition to sloppiness, however,
further issues of quantum incompatibility can arise. We take a fully Gaussian case-study

to investigate the topic, showing that by appropriately scrambling the quantum states in

between the encoding of two phase-shift parameters a Mach–Zehnder interferometer, not
only sloppiness can be lifted, but also the quantum incompatibility can be put identically

to zero, maintaining an enhanced scaling of precision and the covariance of the model
with respect to exact values of the parameters.

1. Introduction, Motivations and Layout

The rapidly developing field of quantum metrology and quantum sensing,1–4 seek-

ing quantum enhancements in parameter estimation, draws inspiration from the

fragility of quantum states to improve the results of classical metrology by suppress-

ing errors below the shot noise fluctuations, typically proportional to the square

root of the number of particles involved, thus achieving greater precision than what

would be allowed by classical probes and classical measurements.

The minimal uncertainty achievable for quantum systems, quantified by the

quantum Cramér–Rao bound (CRB), is in general achievable only for single-

parameter models and adequate choice of the estimators, whereas extending it
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to multi-parameter models poses significant challenges,5–9 e.g. if the optimal

measurements for the estimation of one parameter do not commute with those

for another, thus showcasing an intrinsically quantum hindrance. Fixed measure-

ments may induce parameter correlations, necessitating trade-offs in uncertainty

distributions among parameters, complicating multiparameter optimization. For

these reasons, most neat results in quantum metrology are applicable only to single-

parameter estimation. Yet, the multifaceted nature of certain systems, like biological

samples or nonhomogeneous crystals, requires a multi-parameter approach.10

In parallel to the quantum incompatibility issues, there could also be sources of

classical indeterminacy in the independent estimation of different parameters. This

happens when the encoding of the parameter on the statistical model is such that

the resulting probability distributions only depend upon certain functions of the

parameters, that are fewer in number with respect to the initial parameters them-

selves.11,12 In this case, through a (possibly nonlinear) invertible reparametrization,

it will be possible to rewrite the model in terms of a smaller number of parameters.

Since the Fisher Information matrix transforms by congruence with the Jacobian of

the reparametrization functions, its eigenvalues are invariant. We may thus define

a sloppy statistical model as one whose Fisher Information matrix has some zero

eigenvalues. In a more empirically relevant form, an upper bound would be placed

to the eigenvalue for the corresponding parameter to be considered relevant to the

model, and call sloppy any model whose FI matrix has at least one eigenvalue lower

than this threshold. The same definitions straightforwardly apply also to quantum

statistical models and Quantum Fisher Information matrix, since the latter is just

a special case of a Fisher Information matrix for the optimal measurement. Indeed,

quantum statistical models exhibiting sloppiness have been recently the subject

of attention.9,13–15 In this paper, we face the problem of estimating two consecu-

tive phase shifts acting along one arm of a Mach–Zehnder interferometer and focus

the analysis to Gaussian states and operations, a typical case for which, in the single

parameter scenario, squeezing has been shown to provide quantum enhancement in

precision, also in experimental applications.16,17 The analogue problem for qubits

and the analysis of two consecutive squeezing phases have been addressed in Refs. 9

and 14, respectively. The situation considered here is rather simple, yet it may pro-

vide good modeling of optical media with a spatially variable refractive index, which

may results from the structural characteristic of the material (e.g. layered media)

or from a possible temperature dependence.18

After a short review in Sec. 2 of the main concepts and theoretical tools of

multi-parameter quantum metrology, in Sec. 3 we introduce the model that will be

studied and we compute the diagonal elements of the quantum Fisher information

matrix for the two phase parameters: by feeding the interferometer with two iden-

tical single-mode squeezed vacuum states with a relative displacement and adding

another squeezer in between the two phases, we seek the optimal setting of the

interferometer to reach the highest Quantum Fisher Information for the two phase

parameters. We then tackle the issues of sloppiness and quantum incompatibility
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of such a model in Sec. 4, arriving at results in closed form that shine light into

the largely unexplored topic of sloppy quantum statistical models. Our goal is to

lift the sloppiness but keeping the model quantum-compatible, so as to ensure that

the symmetric logarithmic derivative Quantum Cramér–Rao bound (SLD-QCRB)

can still be saturated, at least in principle. Our results prove that concentrating

quantum resources on the optical element to be estimated is in general the best

choice to enhance precision, while the use of entanglement in the probe state is

instead better at estimating the two parameters separately.

2. Multi-Parameter Quantum Metrology

The general theoretical framework to deal with estimation problems of continuously

varying parameters is that of statistical models. In the classical case, these are

defined as families of probability density function p~λ :X → [0, 1] with respect to

some continuous or discrete variable x ∈ X, continuously labeled by real parameters
~λ belonging to an open subset Λ ⊆ Rn. Prescribing this dependence upon the

parameters amounts to fixing the statistical model. The goal of estimation theory

is to estimate the true value of the parameters, and therefore the true probability

density function inside the family, by having a finite set of M data points sampled

from it and using some estimator Θ(M) :XM → Λ, i.e. a function of the dataset

that gives the string of estimated parameters as the output. If this estimator is

unbiased, meaning that its expectation value coincides with the true value of the

parameters vector:

E~λ[Θ(M)] = ~λ

then the covariance matrix of the parameters estimated with it:

Σjk(Θ(M)) = E~λ[((Θ(M))j − λj)((Θ(M))k − λk)]

is bounded by the Cramér–Rao bound :

Σ(Θ(M)) ≥ 1

M
F−1[~λ∗], (1)

where the functional F , known as the Fisher Information Matrix, associates a

positive-definite invertible matrix to each probability distribution in the statistical

model, computed as

Fjk[~λ] =

∫
X

p~λ ∂j [log p~λ] ∂k[log p~λ]dx (2)

using the short-hand notations p~λ ≡ p~λ(x) and ∂j ≡ ∂λj
. An asymptotically efficient

estimator, i.e. one that saturates the Cramér–Rao inequality, at least asymptoti-

cally, i.e. for M → +∞, always exists and it is provided by the maximum-likelihood

estimator and by the Bayesian estimator.

In quantum mechanics, however, this family of probability distributions can only

be obtained after specifying a measurement setup. To be able to discuss quantum
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estimation without picking a specific measurement from the start, it is useful to

consider quantum statistical models, which are maps from the open set Λ ⊆ Rn of

real parameters to quantum states on some Hilbert spaceH, ~λ 7→ ρ̂~λ ∈ T (H), where

T denotes the set of trace-class, bounded, positive-semidefinite linear operators. As

long as the map is continuous, Λ is open and the operators in the model are all

true quantum states (i.e. they do belong to T ), one can always define the Quantum

Fisher Information (QFI) matrix as

Qjk(~λ) = Tr

[
ρ̂~λ

L̂Sj L̂Sk + L̂Sk L̂Sj
2

]
, (3)

where the Symmetric Logarithmic Derivative (SLD) operators L̂Sj are implicitly

given by the solution of the following Lyapunov Equation:

∂λj
ρ̂~λ =

L̂Sj ρ̂~λ + ρ̂~λL̂Sj
2

. (4)

The Quantum Fisher Information always results in a valid Cramér–Rao bound, i.e.

Σ(Θ(M)) ≥ 1

M
Q−1[~λ∗]. (5)

However, this inequality is in general not saturable for multi-parameter models,

since there could be no single measurement providing a probability distribution

from which all parameters can be simultaneously estimated. This is in contrast

with the simpler case of one-parameter quantum statistical models, for which the

eigenprojectors of the single SLD operator define the best measurement, i.e. the

one providing the highest FI value, and the bound can in turn always be saturated.

Other QFI matrices can be defined by using other definitions of the Logarithmic

Derivative, but none of them provides a tight bound that can be saturated for the

multi-parameter case.

All those matrix inequalities give rise to scalar bounds by introducing a weight

matrix, i.e. a n × n semipositive matrix W, and taking the trace of Eqs. (1) and

(5). We have8

Tr[WΣ] ≥ CF (W) Tr[WΣ] ≥ CQ(W),

where

CF (W) = M−1Tr[WF−1] CQ(W) = M−1Tr[WQ−1].

In the single-parameter scenario, the bound (5) can be achieved by a projective

measurement over the SLD eigenstates, while in the multi-parameter setting, it

is not attainable in general, as the SLDs associated with the different parame-

ters may not commute with one another. In this case, the parameters are incom-

patible, and there is no joint measurement that allows one to estimate all the

parameters with the ultimate precision. In this case, two other relevant bounds

may be introduced. The first is the so-called most informative bound, CMI(W) =

M−1 minΠ{Tr[WF−1]}, minimized over all possible measurements Π. The quantity
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CMI(W) does not, in general, coincide, with CQ(W) in the multiparameter case.

The so-called Holevo Cramér–Rao (HCR) bound CH(W)19 corresponds to the most

informative bound of the asymptotic statistical model, i.e. the minimum FI bound

achieved by a collective measurements performed on infinitely many copies of the

statistical model.8,20 In turn, we have Tr[WΣ] ≥ CF (W) ≥ CMI(W) ≥ CH(W) ≥
CQ(W). Therefore, the tightest bound, at least asymptotically and with collective

strategies on multiple copies of the unknown state, is provided by the Holevo bound.

The Holevo bound CH(W) is usually difficult to evaluate compared to CQ(W)

and therefore the following relation represents a useful tool in characterizing the a

multiparameter estimation model:

CQ(W) ≤ CH(W) ≤ (1 +R)CQ(W), (6)

where the quantumness parameter R is given by21–23

R = ‖iQ−1U‖∞. (7)

In the above equation, ‖A‖∞ denotes the largest eigenvalue of the matrix A, and

U(λ) is the asymptotic incompatibility matrix, also referred to as Uhlmann curva-

ture, with matrix elements21:

Uµν = − i
2

Tr {ρλ[Lµ, Lν ]} , (8)

where [A,B] = AB − BA is the commutator of A and B. Equation (6) implies

that QFI bound may be saturated iff U(λ) = 0, which is usually referred to as the

weak compatibility condition. The quantumness parameter R is bounded 0 ≤ R ≤ 1

and vanishes R = 0 iff U(λ) = 0. Therefore, it provides a measure of asymptotic

incompatibility between the parameters. For n = 2 we may write

R =

√
detU
detQ

for n = 2 parameters. (9)

For pure Gaussian models (see Appendix A for conventions), as those we are

going to deal in the following, it is possible to derive a simple expression for the

Quantum Fisher Information:24–30

Qjk =
1

4
Tr
[(
σ−1∂jσ

) (
σ−1∂kσ

)]
+ 2(∂j ~d

T ) · σ−1 · (∂k ~d). (10)

Here σ ≡ σ~λ is the covariance matrix and ~d ≡ ~d~λ is the mean-field vector of the

pure Gaussian state |ψG(~λ)〉 defining the model and ∂j ≡ ∂λj
. Remarkably, this

expression is the same as the classical Fisher Information for a classical statistical

model consisting of Gaussian probability density functions with CM σ~λ and expec-

tation values ~d~λ. Besides Eq. (10) for the QFI, it is possible to derive an analogous

expression for the Uhlmann curvature of a pure Gaussian quantum model27:

Ujk(~λ) =
1

4
Tr [Ωσ (Ω∂iσΩ∂jσ − Ω∂jσΩ∂iσ)] + 4∂i~d

Tσ−1Ωσ−1∂j ~d. (11)
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3. Sloppy Models in Mach–Zehnder Interferometry

A multi-parameter statistical model, be it classical or quantum, can sometimes

be not invertible in an open neighborhood around a point in parameters space,

meaning that different parameters values are assigned locally to the same state and

it is impossible to accurately recover them from the statistics. In these cases, we say

that the (classical or quantum) statistical model is sloppy. The degeneracy of the

(quantum) Fisher Information matrix signals that there is some reparametrization,

not necessarily a linear one, such that, in terms of the new parameters, one or more

of them have an almost vanishing value of the (quantum) FI and the statistical

model is effectively only dependent upon the other parameters. Of course, locally

in the parameters space any reparametrization is linear on the FI matrix because

it acts by congruence on it, but the Jacobian can depend upon the values of the

parameters.

In this framework, it should be intuitively clear that the sloppiness of a statis-

tical model is an issue about the encoding of the parameters into the set of states.

For example, imagine that we want to estimate the parameters of a CV unitary

operator acting on a single-mode field by first rotating its quadratures by an an-

gle θ and then displacing the mean field by α ∈ C. If we decide to encode (θ, α)

on a thermal state, the dependence upon θ will be completely lost: the obvious

option would be to change the probe state into another which does not commute

with eiθâ
†â. Clearly, if the agents determining the two parameters can be addressed

independently, we are not actually dealing with a true two-parameters model and

we could just estimate them individually with single-parameter quantum metrol-

ogy: in this section, therefore, we assume to have limited control about the single

agents.

In order to address the issue of sloppiness with some generality while still ob-

taining analytic results, we examine the fully Gaussian, two-mode sloppy model

illustrated in Fig. 1. Our goal is to investigate the relationship between sloppi-

ness and quantum incompatibility. We consider a Mach–Zehnder interferometer fed

with two independent and equally squeezed vacuum states, whose covariance matrix

(CM) is given by

σ
(1)
0 =

1

2


e2r 0 0 0

0 e−2r 0 0

0 0 e2r 0

0 0 0 e−2r

 (12)

and zero mean-field vector. This is obtained by splitting the laser source on a beam

splitter (BS1) and let the two resulting beams act as pumps for two nonlinear crys-

tals. The resulting two mode state, ρ̂
(0)
1,2 = ρ̂

(0)
1;r ⊗ ρ̂

(0)
2;r, is therefore the tensor product

of two single-mode squeezed vacuum states with the same squeezing parameter r.
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Fig. 1. Two single-mode squeezed vacuum states, each with the same squeezing parameter r, are

injected into a Mach–Zehnder interferometer. The beam splitter has a transmissivity of cos2 φ,
and insert a relative phase θ between the input modes. The parameters λ1 and λ2, which are to be

estimated, are encoded by two consecutive phase shifters on the upper arm of the interferometer.

An additional single-mode squeezer, with squeezing parameter x and squeezing angle α, is placed
between the two phase shifters to decouple them and distribute information over a larger portion

of the Hilbert space.

The first beam splitter of the interferometer (BS2) has mixing angle φ, such that

the transmissivity is cos2 φ, and applies a relative phase θ.

A relative phase in the squeezing angle of one of the input states can be

reabsorbed in θ. The parameters to be estimated are the phase shifts λ1 and

λ2 imprinted on the mode occupying the upper horizontal arm of the interfer-

ometer by two consecutive phase shifters. The second beam splitter, the mirrors

and everything afterwards are irrelevant as long as the Quantum Fisher Informa-

tion is concerned, as they amount to a parameter-independent unitary change of

the quantum statistical model, which is reabsorbed when considering all possible

POVMs.

When the squeezer in between the two phase shifters is absent (x = 0), the model

is sloppy since the two parameters contribute to an overall phase shift of λ1 +λ2 of

one mode with respect to the other, while the difference λ1−λ2 cannot be retrieved

by any measurement on the two-mode output state. A realistic scenario described

by such a model that we can have in mind to ponder on it could be a continuous

medium of unknown and continuously varying refractive index that imparts a total

phase shift and we would like to estimate how different sections of it contribute to

the overall shift.

If we limit our analysis to Gaussian states, the only nontrivial decoupler

that could be inserted between the two phase shifters is a single-mode squeezer,

parametrized by a squeezing factor of e−2x and a squeezing angle α, as in Fig. 1,

and possibly an additional displacement. An intermediate displacement would be

in principle sufficient to partially uncouple the two parameters, but the discrimi-

nation of λ1 and λ2 would then be limited to the first-moments vector of the final

Gaussian state, thus resulting in uninteresting conclusions.
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Overall, we can write the general output state as

Ûφ,θ,x,α(λ1, λ2) := ÛR(λ2) Ŝ(1)
x,α ÛR(λ1)ÛBS(θ, φ) (13)

ρ̂(λ1, λ2; r, φ, θ, x, α, q, β) = Ûφ,θ,x,α

[
ρ̂

(0)
1;r,q,β ⊗ ρ̂

(0)
2;r,0,0

] (
Ûφ,θ,x,α

)†
, (14)

where ÛR(λ) = exp[−iλâ†â] and

Ŝ(1)
x,α := exp

[x
2

(
eiαâ†2 − e−iαâ2

)]
, ÛBS(θ, φ) := exp

[
iθ
(
eiφâ†b̂+ e−iφb̂†â

)]
(15)

and we omitted the explicit dependence of Ûφ,θ,x,α on (λ1, λ2) for brevity. For

full generality, we also introduced the parameters {q, β} to the initial factorized

state, which parametrize respectively the magnitude and angle of a possible relative

displacement between the two modes. Notice that the initial sloppy model is fully

covariant with respect to λ1 and λ2, this means that the (degenerate) Quantum

Fisher Information (QFI) matrix does not depend on the actual values of these

parameters. In contrast, the model with the scrambler in Eq. (13) is only covariant

with respect to λ2. Additionally, it is rather clear that λ1 and α only enter in the

model through the combination γ = α + 2λ1, meaning that the phase α can be

exploited to improve the local estimation if the QFI around the true value of λ1 is

not optimal.

To compute the SLD-QFI matrix of the QSM with decoupler, we resort to the

formula in Eq. (10), obtaining the following entries:

Q11(r, φ, θ, q, β) = 2 cosh2 2r + 2q2{cosh 2r

+ [cos 2β cos 2φ+ cos(2β + θ) sin θ sin(2φ)2] sinh 2r} (16)

Q22(r, θ, φ, x, γ, q) = 2(cosh 2r cosh 2x+ sinh 2r[cos θ cos(γ + θ)

+ cos 2φ sin θ sin(γ + θ)] sinh 2x)2

+ 2q2f22(r, β, θ, φ, x, γ) (17)

Q12(r, θ, φ, x, γ, q) = 2 cosh2 2r + 2[2− sin2(2φ) sin2 θ] sinh2(2r) sinh2 x

+ [cos θ cos(γ + θ) + cos(2φ) sin θ sin(γ + θ)] sinh 4r sinh 2x

+ 2q2f12(r, β, θ, φ, x, γ). (18)

In the equations for Q22 and Q12 we left implicit the term dependent on q since its

expression is rather involved and uninformative, but it is reported in its entirety

in Appendix B. We also reparametrized with γ = α + 2λ1, since this is the only

combination of these parameters appearing in the expressions. The q-independent

term of Q11 is just 2 cosh2 2r, while the q-dependent term can be maximized by

putting β = θ = 0 and φ = nπ, or θ = π
2 , β = −π4 and φ = (2n+1)π

4 , where n is a

positive integer. Its value at the maximum is

Qmax
11 = 2 cosh2(2r) + 2e2rq2. (19)
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For constant input energy (i.e. constant r) we can now maximize Q22. For q = 0,

the absolute maximum is achieved for φ = θ = γ = 0, dubbed the maximum

configuration from now on, and yields:

Qmax
22 = 2 cosh2[2(r + x)] (20)

and it is compatible with the maximum of Q11 even for q 6= 0, as can be seen by

studying the behavior of the function f22 provided in Appendix B. However, this re-

sult is of little relevance for at least two reasons: we had to put γ = 0, which amounts

to fine-tuning α according to the true value λ1 of the first unknown parameter, and

we also end up with a solution corresponding to removing the initial beam-splitter

from our scheme (φ = 0). This fact has a clear interpretation: if we want to estimate

λ1 and λ2 with the best possible accuracy overall and disregarding their compatibil-

ity we have to transmit all the incoming squeezing onto the upper arm of the inter-

ferometer where the phase shifters are placed. To be more explicit, we highlight that

any mode-mixing performed by the initial beam splitter will necessarily reduce the

local single-mode squeezing, while at the same time generating some amount of two-

mode squeezing. Thus, removing the beam splitter actually maximizes the squeezing

on the phase shifters while, at the same time, it partially trivializes the problem to a

single-mode one.

If we consider, instead, the other combination of parameters maximizing Q11,

dubbed the optimal configuration from now on, we obtain for Q22:

Qopt
22 := Q22

(
r, θ =

π

2
, φ =

π

4
, q = 0

)
= 2 cosh2 2r cosh2 2x. (21)

From here on, for simplicity, we will consider the optimal configuration with q = 0,

while the case for q 6= 0 is briefly discussed in Appendix B; ultimately, for modest

values of the relative initial displacements, the most relevant contribution switched

on by the scrambler comes from the q-independent part, while the q-dependent

term only contributes a constant correction to it without affecting the scaling with

respect to r and x, as can be seen from the expression of Q11 and from that of

f22. As we shall see later, choosing q = 0 also allows for an exact cancellation of

the quantum incompatibility between the two parameters. The ratio between Qopt
22

over Qmax
22 :

1

4
≤ Q

opt
22

Qmax
22

=
cosh2 2r cosh2 2x

cosh2 [2(r + x)]
=

1

4

(
1 +

cosh[2(r − x)]

cosh[2(r + x)]

)2

≤ 1 (22)

the lower bound being achieved in the limit of r, x→∞, while the upper bound is

reached for either r = 0 or x = 0. Importantly, we see that the scaling of the QFI

for the parameter λ2 in the optimal configuration is the same as the scaling at its

maximum, Eq. (20) and it differs from it by at most a factor of 1
4 . Additionally,

if in the best setting with φ = θ = 0 we do not assume to know λ1, so that we

can not impose γ = 0 to get the overall maximum configuration, it could happen

that γ = π, such that destructive interference between the initial squeezing and the
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scramblers leads to the worst scaling of Q22:

Qinf
22 = Q22(r, θ = 0, φ = 0, γ = π) = 1 + cosh[4(r − x)]. (23)

In this case, the ratio Qinf
22 /Q

opt
22 evaluates to (tanh 2x tanh 2r − 1)2 ≤ 1. Thus the

optimal configuration can even be more informative than the maximum configura-

tion if we do not assume to know λ1.

4. Addressing Sloppiness and Quantum Incompatibility

Let us now make a crucial observation: The optimal configuration also makes the

estimation problem fully covariant : indeed, both Qopt
22 in Eq. (21) and Qopt

12 , whose

value is

Qopt
12 = 2 cosh2 2r + 2 sinh2 2r sinh2 x (24)

are now independent from both λ1 and λ2.

As a measure of the sloppiness in the various configurations, we can consider the

determinant of the full matrix Q. Its value is exponentially growing with r and x

both in the maximum and optimal configurations, but the ratio detQmax/detQopt

is always bounded between 0 and 2 and it quickly goes to 0 for large values of the

initial squeezing r, whatever the value of x. This indicates that, as expected, the

optimal configuration is better able to lift the sloppiness of the model independently

of the energy introduced by the scrambler, quantified by x.

Let us now consider the quantum incompatibility of the parameters, computed

through the Uhlmann curvature. Only off-diagonal entries can be nonzero and

clearly Ujk = −Ukj . In our case, we get detU = U2
12. The value of U12 can ac-

tually be written in a convenient closed form also for q 6= 0:

U12(λ2; r, θ, φ, x, γ, q, β) = 2[cos(γ + θ) cos 2φ sin θ

− cos θ sin(γ + θ)] sinh 2r sinh 2x+

− 4q2 cos2 φ sin 2(β − λ2) sinh 2x. (25)

It is simple to check that Uopt
12 = 0, so that also the R parameter is zero in

the optimal configuration and the parameters can be jointly estimated via the

projection-valued measure diagonalizing simultaneously both the symmetric loga-

rithmic derivatives. Moreover, the result is true for any value of λ1 and λ2 since,

once again, the problem becomes covariant in the optimal configuration.

5. Discussion and Conclusions

Before concluding our paper, it is worthwhile considering the physical interpretation

of the optimal configuration. Since we have φ = π
4 , the beam splitter is balanced.

Additionally, for θ = π
2 , the input state after the beam splitter corresponds to

a twin-beam state, aside from a relative displacement and irrelevant local phases,

which can be absorbed into an immaterial redefinition of λ1. In this configuration,
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the local squeezing at the phase shifters is zero, while the entanglement between

the modes is maximized. This maximal entanglement might be connected to its

effectiveness in decoupling the two parameters, λ1 and λ2. Entanglement plays a

role in fully exploiting the two-mode space, allowing independent encoding of λ1

and λ2. In contrast, in the maximum configuration, reducing the system to a single-

mode problem constrains the independent degrees of freedom to a smaller Hilbert

space on which the two phase shifters can operate. However, further investigation

with other models is necessary to draw robust and general conclusions on this

matter. Moreover, the fact that the Uhlmann curvature can be exactly put to zero

in the optimal configuration implies that the two parameters can be estimated with

a single, joint measurement, which can be directly constructed from the SLDs.

In conclusion, we have conducted a detailed analysis of a sloppy continuous-

variable quantum statistical model, specifically involving the encoding of two phase-

shift parameters within the same arm of a Mach–Zehnder interferometer. Our

results demonstrate that sloppiness can be corrected, effectively reducing quantum

incompatibility to zero while preserving enhanced scaling of precision and main-

taining the model’s covariance with respect to the exact values of the parameters.

While this may not be the general case, see, e.g. Ref. 14, it concerns the relevant ex-

ample of interferometry. Additionally, we have shown that concentrating quantum

resources on the optical element to be estimated is generally the best strategy for

enhancing precision. On the other hand, utilizing entanglement in the probe state

proves more effective for estimating the two parameters independently.

Our results demonstrate that sloppy continuous-variable quantum statistical

models can be effectively addressed, paving the way for quantum-enhanced metrol-

ogy of biological samples and nonhomogeneous media, which typically require a

multi-parameter approach.
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Appendix A. Continuous-variable systems and Gaussian states

In continuous-variable quantum mechanics, one starts from the Fock space of M

modes and associates with each mode a pair of creation and annihilation opera-

tors satisfying the commutation rules [âj , â
†
k] = δjk with j, k ∈ {1, . . . ,M}. With

our conventions, the corresponding quadrature operators are given by q̂j = â†+â√
2

,

p̂j = â†−â
i
√

2
, such that [q̂j , p̂k] = iδjk. Those can be listed in an ordered vector

of quadratures denoted by R̂ = {q̂1, p̂1, . . . , q̂M , p̂M}. Given a quantum state ρ̂

of such a system, we define its first-moments vector and its covariance matrix
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(CM) as

~d0 = Tr[ρ̂R̂], [σ]jk =
1

2
〈R̂jR̂k + R̂kR̂j〉 − 〈R̂j〉〈R̂k〉, (A.1)

where 〈Ô〉 = Tr[ρ̂Ô]. Let us now introduce the multi-mode displacement operator

D̂(~Λ), defined as

D̂(~Λ) := exp [−i~ΛTΩR̂], (A.2)

where Ω :=
⊕n

j=1 ωj and ωj is a 2× 2 matrix acting on the subspace (q̂j , p̂j) and

equal to iσ2, where σ2 is the second Pauli matrix σ2 =
(

0 −i
i 0

)
. Using this operator,

we can represent each multi-mode state ρ̂ by a complex function on phase-space,

called the characteristic function of the state:

χ[ρ̂](~Λ) := Tr[ρ̂D̂(~Λ)]. (A.3)

The Fourier transform of this function is again a function on phase space, but it is

guaranteed to be real as a consequence of the self-adjointness of ρ̂, and it is known

as the Wigner function. ρ̂ is then called a Gaussian state if its Wigner function is

a Gaussian function; in that case, the covariance matrix and central first moments

of the Gaussian will be exactly the CM σ and the first-moments vector ~d0 of the

state.

Appendix B. Explicit Expressions for the Terms Proportional

to the Initial Displacement

The general formulas for the terms proportional to q2 in the expressions for Q22

and Q12 are:

f22(r, β, θ, φ, x, γ) = sinh 2r[cos 2β cos 2φ+ cos2 φ(2 cosh(2x)

×{2 cos(2β + θ) sin θ sin2 φ+ sinh(2x)[cos θ cos(γ + θ)

+ cos(2φ) sin θ sin(γ + θ)]}+ sinh(2x)

×{4 cos(γ + θ) sin θ sin2 φ+ +2 sinh(2x) cos(γ − 2β)

× [cos γ − 2 sin θ sin(γ + θ) sin2 φ]})] + cosh 2r

×{1 + cos2 φ[cosh(4x) + cos(γ − 2β) sinh(4x)− 1]}, (B.1)

f12(r, β, θ, φ, x, γ) = sinh 2r[cos 2β(2 cosh2 x cos2 φ− 1)

+ 2 sin θ{2[cos(2β + θ) cosh2 x− sin(2β + θ) sinh2 x]

− sinh 2x(sin(γ + θ)− cos(γ + θ))} cos2 φ sin2 φ

+ sinh 2x cos2 φ cos γ] + cosh 2r

+ 2 cosh 2r sinhx cos2 φ[sinhx+ cos(γ − 2β) coshx]. (B.2)
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The first expression in the maximum configuration (θ = φ = β = γ = 0), which

maximizes the q-independent term of Q11, becomes:

f22(r, x, θ = φ = β = γ = 0) = e2r+4x. (B.3)

Whereas in the optimal configuration it evaluates to:

f22

(
r, β, θ =

π

2
, φ =

π

4
, x, γ

)
= − sinh(2r)[cosh(2x) sin(2β) + sinh(2x) sin γ]

+ cosh(2r) cosh(2x)[cosh(2x)

+ sinh(2x) cos(γ − 2β)]. (B.4)

Setting β = γ = 0 in this last expression as well, we can compute the ratio between

fopt
22 and fmax

22 :

fopt
22 (β = γ = 0)

fmax
22

=
e2x cosh(2r) cosh(2x)

e2r+4x
=

(1 + e−4x)(1 + e−4r)

4
(B.5)

which is also lower bounded by 1
4 , as was the ratio Qopt

22 /Qmax
22 for q = 0.
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