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Multi-parameter statistical models may depend only on some functions of the parameters
that are fewer than the number of initial parameters themselves. Such sloppy statistical
models are characterized by a degenerate Fisher Information matrix, indicating that it
is impossible to simultaneously estimate all the parameters. In a quantum setting, once
an encoding is fixed, the same can happen for the Quantum Fisher Information matrix
computed from a sloppy quantum statistical model. In addition to sloppiness, however,
further issues of quantum incompatibility can arise. We take a fully Gaussian case-study
to investigate the topic, showing that by appropriately scrambling the quantum states in
between the encoding of two phase-shift parameters a Mach—Zehnder interferometer, not
only sloppiness can be lifted, but also the quantum incompatibility can be put identically
to zero, maintaining an enhanced scaling of precision and the covariance of the model
with respect to exact values of the parameters.

1. Introduction, Motivations and Layout

The rapidly developing field of quantum metrology and quantum sensing/ 1™ seek-
ing quantum enhancements in parameter estimation, draws inspiration from the
fragility of quantum states to improve the results of classical metrology by suppress-
ing errors below the shot noise fluctuations, typically proportional to the square
root of the number of particles involved, thus achieving greater precision than what
would be allowed by classical probes and classical measurements.

The minimal uncertainty achievable for quantum systems, quantified by the
quantum Cramér-Rao bound (CRB), is in general achievable only for single-
parameter models and adequate choice of the estimators, whereas extending it
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9 e.g. if the optimal

to multi-parameter models poses significant challenges "
measurements for the estimation of one parameter do not commute with those
for another, thus showcasing an intrinsically quantum hindrance. Fixed measure-
ments may induce parameter correlations, necessitating trade-offs in uncertainty
distributions among parameters, complicating multiparameter optimization. For
these reasons, most neat results in quantum metrology are applicable only to single-
parameter estimation. Yet, the multifaceted nature of certain systems, like biological
samples or nonhomogeneous crystals, requires a multi-parameter approach 1V

In parallel to the quantum incompatibility issues, there could also be sources of
classical indeterminacy in the independent estimation of different parameters. This
happens when the encoding of the parameter on the statistical model is such that
the resulting probability distributions only depend upon certain functions of the
parameters, that are fewer in number with respect to the initial parameters them-
selves 112 In this case, through a (possibly nonlinear) invertible reparametrization,
it will be possible to rewrite the model in terms of a smaller number of parameters.
Since the Fisher Information matrix transforms by congruence with the Jacobian of
the reparametrization functions, its eigenvalues are invariant. We may thus define
a sloppy statistical model as one whose Fisher Information matrix has some zero
eigenvalues. In a more empirically relevant form, an upper bound would be placed
to the eigenvalue for the corresponding parameter to be considered relevant to the
model, and call sloppy any model whose FI matrix has at least one eigenvalue lower
than this threshold. The same definitions straightforwardly apply also to quantum
statistical models and Quantum Fisher Information matrix, since the latter is just
a special case of a Fisher Information matrix for the optimal measurement. Indeed,
quantum statistical models exhibiting sloppiness have been recently the subject
of attention 23112 In this paper, we face the problem of estimating two consecu-
tive phase shifts acting along one arm of a Mach—Zehnder interferometer and focus
the analysis to Gaussian states and operations, a typical case for which, in the single
parameter scenario, squeezing has been shown to provide quantum enhancement in
precision, also in experimental applications 1.7 The analogue problem for qubits
and the analysis of two consecutive squeezing phases have been addressed in Refs. |9
and |14), respectively. The situation considered here is rather simple, yet it may pro-
vide good modeling of optical media with a spatially variable refractive index, which
may results from the structural characteristic of the material (e.g. layered media)
or from a possible temperature dependence L&

After a short review in Sec. [2] of the main concepts and theoretical tools of
multi-parameter quantum metrology, in Sec. [3] we introduce the model that will be
studied and we compute the diagonal elements of the quantum Fisher information
matrix for the two phase parameters: by feeding the interferometer with two iden-
tical single-mode squeezed vacuum states with a relative displacement and adding
another squeezer in between the two phases, we seek the optimal setting of the
interferometer to reach the highest Quantum Fisher Information for the two phase
parameters. We then tackle the issues of sloppiness and quantum incompatibility
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of such a model in Sec. [4] arriving at results in closed form that shine light into
the largely unexplored topic of sloppy quantum statistical models. Our goal is to
lift the sloppiness but keeping the model quantum-compatible, so as to ensure that
the symmetric logarithmic derivative Quantum Cramér—Rao bound (SLD-QCRB)
can still be saturated, at least in principle. Our results prove that concentrating
quantum resources on the optical element to be estimated is in general the best
choice to enhance precision, while the use of entanglement in the probe state is
instead better at estimating the two parameters separately.

2. Multi-Parameter Quantum Metrology

The general theoretical framework to deal with estimation problems of continuously
varying parameters is that of statistical models. In the classical case, these are
defined as families of probability density function py:X — [0,1] with respect to
some continuous or discrete variable z € X, continuously labeled by real parameters
X belonging to an open subset A C RR™. Prescribing this dependence upon the
parameters amounts to fixing the statistical model. The goal of estimation theory
is to estimate the true value of the parameters, and therefore the true probability
density function inside the family, by having a finite set of M data points sampled
from it and using some estimator @) : XM _ A ie. a function of the dataset
that gives the string of estimated parameters as the output. If this estimator is
unbiased, meaning that its expectation value coincides with the true value of the
parameters vector:

E;[0)] = X
then the covariance matrix of the parameters estimated with it:
2k (OM) = Ex[((0™); = X)) ((0M))x — A)]
is bounded by the Cramér—Rao bound:
1 -
2(OWM)) > — Z-1X* 1
(000) > = F1[, 1)

where the functional .#, known as the Fisher Information Matriz, associates a
positive-definite invertible matrix to each probability distribution in the statistical
model, computed as

zmzém@mmmmmm @)

using the short-hand notations p; = py(z) and 9; = 9,;. An asymptotically efficient
estimator, i.e. one that saturates the Cramér—Rao inequality, at least asymptoti-
cally, i.e. for M — +o00, always exists and it is provided by the maximum-likelihood
estimator and by the Bayesian estimator.

In quantum mechanics, however, this family of probability distributions can only
be obtained after specifying a measurement setup. To be able to discuss quantum
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estimation without picking a specific measurement from the start, it is useful to
consider quantum statistical models, which are maps from the open set A C R" of
real parameters to quantum states on some Hilbert space H, X p5 € T(H), where
T denotes the set of trace-class, bounded, positive-semidefinite linear operators. As
long as the map is continuous, A is open and the operators in the model are all
true quantum states (i.e. they do belong to 7'), one can always define the Quantum
Fisher Information (QFI) matrix as

Qjk(X) = Tr

p5 (3)

. LSLY + LELS]

where the Symmetric Logarithmic Derivative (SLD) operators I:f are implicitly
given by the solution of the following Lyapunov Equation:

fSa o » T8
Ljpx+pXLj (4)
B S

The Quantum Fisher Information always results in a valid Cramér-Rao bound, i.e.

O, p5 =

M 1 —1ry*
B(OM) > 72 (5)

However, this inequality is in general not saturable for multi-parameter models,
since there could be no single measurement providing a probability distribution
from which all parameters can be simultaneously estimated. This is in contrast
with the simpler case of one-parameter quantum statistical models, for which the
eigenprojectors of the single SLD operator define the best measurement, i.e. the
one providing the highest FI value, and the bound can in turn always be saturated.
Other QFI matrices can be defined by using other definitions of the Logarithmic
Derivative, but none of them provides a tight bound that can be saturated for the
multi-parameter case.

All those matrix inequalities give rise to scalar bounds by introducing a weight
matriz, i.e. a n X n semipositive matrix W, and taking the trace of Egs. and
. We have®

Tr[W Y] > Cx(W) Tr[WX] > Cgo(W),
where
Cr(W)=M'Te[WF™] Cg(W)=M'Tr[WQ 1.

In the single-parameter scenario, the bound can be achieved by a projective
measurement over the SLD eigenstates, while in the multi-parameter setting, it
is not attainable in general, as the SLDs associated with the different parame-
ters may not commute with one another. In this case, the parameters are incom-
patible, and there is no joint measurement that allows one to estimate all the
parameters with the ultimate precision. In this case, two other relevant bounds
may be introduced. The first is the so-called most informative bound, Cnii(W) =
M~ ming {Tr[WF 1]}, minimized over all possible measurements IT. The quantity
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Cumi(W) does not, in general, coincide, with Co(W) in the multiparameter case.
The so-called Holevo Cramér—Rao (HCR) bound Cy; (W ¥ corresponds to the most
informative bound of the asymptotic statistical model, i.e. the minimum FI bound
achieved by a collective measurements performed on infinitely many copies of the
statistical model®2% In turn, we have Tr[WX] > Cx(W) > Cyi(W) > Cu(W) >
Co(W). Therefore, the tightest bound, at least asymptotically and with collective
strategies on multiple copies of the unknown state, is provided by the Holevo bound.

The Holevo bound Cy (W) is usually difficult to evaluate compared to Co(W)
and therefore the following relation represents a useful tool in characterizing the a
multiparameter estimation model:

Co(W) < Cu(W) < (1+R)Co(W), (6)

where the quantumness parameter R is given by<l23

R =1iQ " Ul|oo- (7)

In the above equation, ||A|« denotes the largest eigenvalue of the matrix A, and
U(N) is the asymptotic incompatibility matrix, also referred to as Uhlmann curva-
ture, with matrix elements?L:

U = —5 T {palLu L]} (¥

where [A,B] = AB — BA is the commutator of A and B. Equation @ implies
that QFI bound may be saturated iff Z/(A) = 0, which is usually referred to as the
weak compatibility condition. The quantumness parameter R is bounded 0 <R <1
and vanishes R = 0 iff U(A) = 0. Therefore, it provides a measure of asymptotic
incompatibility between the parameters. For n = 2 we may write

[det U
R = deert 0 for n = 2 parameters. (9)

For pure Gaussian models (see [Appendix Al for conventions), as those we are

going to deal in the following, it is possible to derive a simple expression for the

Quantum Fisher Information:240
1 —
Qjk = 11& [(070,0) (07 0k)] +2(0;d") - 5" - (D). (10)

Here o = o5 is the covariance matrix and d= dt—\» is the mean-field vector of the
pure Gaussian state [1)g())) defining the model and 9; = 0,,;. Remarkably, this
expression is the same as the classical Fisher Information for a classical statistical
model consisting of Gaussian probability density functions with CM o and expec-
tation values JX' Besides Eq. for the QFI, it is possible to derive an analogous

expression for the Uhlmann curvature of a pure Gaussian quantum model”:

U (X) = iTr [Q0 (20,000;0 — Q0,000,0)] + 40id To~ Qo1 0;d.  (11)
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3. Sloppy Models in Mach—Zehnder Interferometry

A multi-parameter statistical model, be it classical or quantum, can sometimes
be not invertible in an open neighborhood around a point in parameters space,
meaning that different parameters values are assigned locally to the same state and
it is impossible to accurately recover them from the statistics. In these cases, we say
that the (classical or quantum) statistical model is sloppy. The degeneracy of the
(quantum) Fisher Information matrix signals that there is some reparametrization,
not necessarily a linear one, such that, in terms of the new parameters, one or more
of them have an almost vanishing value of the (quantum) FI and the statistical
model is effectively only dependent upon the other parameters. Of course, locally
in the parameters space any reparametrization is linear on the FI matrix because
it acts by congruence on it, but the Jacobian can depend upon the values of the
parameters.

In this framework, it should be intuitively clear that the sloppiness of a statis-
tical model is an issue about the encoding of the parameters into the set of states.
For example, imagine that we want to estimate the parameters of a CV unitary
operator acting on a single-mode field by first rotating its quadratures by an an-
gle 6 and then displacing the mean field by « € C. If we decide to encode (6, @)
on a thermal state, the dependence upon 6 will be completely lost: the obvious
option would be to change the probe state into another which does not commute
with efa’a, Clearly, if the agents determining the two parameters can be addressed
independently, we are not actually dealing with a true two-parameters model and
we could just estimate them individually with single-parameter quantum metrol-
ogy: in this section, therefore, we assume to have limited control about the single
agents.

In order to address the issue of sloppiness with some generality while still ob-
taining analytic results, we examine the fully Gaussian, two-mode sloppy model
illustrated in Fig. Our goal is to investigate the relationship between sloppi-
ness and quantum incompatibility. We consider a Mach—Zehnder interferometer fed
with two independent and equally squeezed vacuum states, whose covariance matrix
(CM) is given by

and zero mean-field vector. This is obtained by splitting the laser source on a beam
splitter (BS1) and let the two resulting beams act as pumps for two nonlinear crys-
tals. The resulting two mode state, [)&0% = f)goz ® /3;?27 is therefore the tensor product

of two single-mode squeezed vacuum states with the same squeezing parameter 7.
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[ ] % PARAMETERS
=( ENCODING
PROBE-STATE Ay Az
LASER GENERATION PHASE PHASE
SHIFT  SHIFT
Sl H— s
SCRAMBLER
FIRST
BEAM-SPLITTER
O AN
MEASUREMENT

Fig. 1. Two single-mode squeezed vacuum states, each with the same squeezing parameter r, are
injected into a Mach—Zehnder interferometer. The beam splitter has a transmissivity of cos? ¢,
and insert a relative phase 6 between the input modes. The parameters A1 and A2, which are to be
estimated, are encoded by two consecutive phase shifters on the upper arm of the interferometer.
An additional single-mode squeezer, with squeezing parameter x and squeezing angle «, is placed
between the two phase shifters to decouple them and distribute information over a larger portion
of the Hilbert space.

The first beam splitter of the interferometer (BS2) has mixing angle ¢, such that
the transmissivity is cos? ¢, and applies a relative phase 6.

A relative phase in the squeezing angle of one of the input states can be
reabsorbed in #. The parameters to be estimated are the phase shifts Ay and
Ao imprinted on the mode occupying the upper horizontal arm of the interfer-
ometer by two consecutive phase shifters. The second beam splitter, the mirrors
and everything afterwards are irrelevant as long as the Quantum Fisher Informa-
tion is concerned, as they amount to a parameter-independent unitary change of
the quantum statistical model, which is reabsorbed when considering all possible
POVMs.

When the squeezer in between the two phase shifters is absent (z = 0), the model
is sloppy since the two parameters contribute to an overall phase shift of A\; + Ay of
one mode with respect to the other, while the difference A\; — Ay cannot be retrieved
by any measurement on the two-mode output state. A realistic scenario described
by such a model that we can have in mind to ponder on it could be a continuous
medium of unknown and continuously varying refractive index that imparts a total
phase shift and we would like to estimate how different sections of it contribute to
the overall shift.

If we limit our analysis to Gaussian states, the only nontrivial decoupler
that could be inserted between the two phase shifters is a single-mode squeezer,
2% and a squeezing angle «, as in Fig.
and possibly an additional displacement. An intermediate displacement would be
in principle sufficient to partially uncouple the two parameters, but the discrimi-
nation of A\; and Ay would then be limited to the first-moments vector of the final
Gaussian state, thus resulting in uninteresting conclusions.

parametrized by a squeezing factor of e
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Overall, we can write the general output state as

Ug0.0.0(A1,A2) = Ur(A2) SE), Ur(A1)Ugs(6, ¢) (13)

P Aair 6.0.2.0.0.8) = Ug . |60 5 © 9000 (Toma) - (14)
where Ug()\) = exp[—iXafa) and
;121 ‘= exp [g (eio‘dT2 — e*io‘dz)], ﬂBS(a, @) := exp {i& (ei‘b{ﬂl; + eiid’lAﬂLd)}
(15)
and we omitted the explicit dependence of IAJ'd,,g,m’a on (A1, A2) for brevity. For

S

full generality, we also introduced the parameters {q, 5} to the initial factorized
state, which parametrize respectively the magnitude and angle of a possible relative
displacement between the two modes. Notice that the initial sloppy model is fully
covariant with respect to Ay and Mg, this means that the (degenerate) Quantum
Fisher Information (QFI) matrix does not depend on the actual values of these
parameters. In contrast, the model with the scrambler in Eq. is only covariant
with respect to Ao. Additionally, it is rather clear that A\; and « only enter in the
model through the combination v = « + 2\;, meaning that the phase « can be
exploited to improve the local estimation if the QFI around the true value of \; is
not optimal.

To compute the SLD-QFI matrix of the QSM with decoupler, we resort to the
formula in Eq. , obtaining the following entries:

Q11(r,¢,0,q,8) =2 cosh? 2r + 2¢*{cosh 2r
+ [cos 23 cos 2¢ 4 cos(23 + 0) sin 0 sin(264)?] sinh 27} (16)
Qao(r, 0,0, 2,7, q) = 2(cosh 2r cosh 2x + sinh 2r[cos 0 cos(y + 6)
+ cos 2¢ sin O sin(y + 0)] sinh 2z)?
+2q2f22(Taﬁ797¢7$7’7) (17)
Q12(r,0, ¢, 2,7, q) = 2cosh? 2r + 2[2 — sin?(2¢) sin? A] sinh?(2r) sinh? =
+ [cos B cos(y + 0) + cos(2¢) sin O sin(y + )] sinh 47 sinh 2z
+2q2f12(7‘aﬁ79u¢7m7’7)‘ (18)
In the equations for Qoo and Q15 we left implicit the term dependent on ¢ since its
expression is rather involved and uninformative, but it is reported in its entirety
in We also reparametrized with v = a + 2)1, since this is the only

combination of these parameters appearing in the expressions. The ¢g-independent
term of Qi is just 2cosh? 2r, while the g-dependent term can be maximized by

putting 8 =0 =0and ¢ =nm, or 0 =5, =% andgf)zw,wherenisa
positive integer. Its value at the maximum is
max — 9 cosh?(2r) + 2¢%"¢%. (19)
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For constant input energy (i.e. constant r) we can now maximize Qsy. For ¢ = 0,
the absolute maximum is achieved for ¢ = # = v = 0, dubbed the mazimum
configuration from now on, and yields:

e =2 cosh? 2(r + )] (20)

and it is compatible with the maximum of Qj; even for ¢ # 0, as can be seen by
studying the behavior of the function foo provided in[Appendix B| However, this re-
sult is of little relevance for at least two reasons: we had to put v = 0, which amounts
to fine-tuning « according to the true value A; of the first unknown parameter, and
we also end up with a solution corresponding to removing the initial beam-splitter
from our scheme (¢ = 0). This fact has a clear interpretation: if we want to estimate
A1 and Ay with the best possible accuracy overall and disregarding their compatibil-
ity we have to transmit all the incoming squeezing onto the upper arm of the inter-
ferometer where the phase shifters are placed. To be more explicit, we highlight that
any mode-mixing performed by the initial beam splitter will necessarily reduce the
local single-mode squeezing, while at the same time generating some amount of two-
mode squeezing. Thus, removing the beam splitter actually maximizes the squeezing
on the phase shifters while, at the same time, it partially trivializes the problem to a
single-mode one.

If we consider, instead, the other combination of parameters maximizing Q11
dubbed the optimal configuration from now on, we obtain for Qos:

Pt = Qo (r, 0= g, o= %, q= O) = 2cosh? 2r cosh? 2z. (21)

From here on, for simplicity, we will consider the optimal configuration with ¢ = 0,
while the case for ¢ # 0 is briefly discussed in ultimately, for modest
values of the relative initial displacements, the most relevant contribution switched
on by the scrambler comes from the g-independent part, while the g-dependent
term only contributes a constant correction to it without affecting the scaling with
respect to r and x, as can be seen from the expression of @J1; and from that of
fo2. As we shall see later, choosing ¢ = 0 also allows for an exact cancellation of
the quantum incompatibility between the two parameters. The ratio between Q;gt
over Qpy**:

1. opt cosh®2rcosh?2z 1 ( COSh[Q(T_x)])z <1
47 0w cosh®[2(r + )] 4 -

- - cosh[2(r + z)] (22)

the lower bound being achieved in the limit of r, z — oo, while the upper bound is
reached for either » = 0 or z = 0. Importantly, we see that the scaling of the QFI
for the parameter Ay in the optimal configuration is the same as the scaling at its
maximum, Eq. and it differs from it by at most a factor of i. Additionally,
if in the best setting with ¢ = 8§ = 0 we do not assume to know A1, so that we
can not impose v = 0 to get the overall maximum configuration, it could happen
that v = 7, such that destructive interference between the initial squeezing and the
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scramblers leads to the worst scaling of Qos:
O = Quy(r,0 = 0,0 = 0,7 = 7) = 1 + cosh[d(r — x)]. (23)

In this case, the ratio QY /Q95" evaluates to (tanh 2z tanh 2r — 1)? < 1. Thus the
optimal configuration can even be more informative than the maximum configura-
tion if we do not assume to know Aj.

4. Addressing Sloppiness and Quantum Incompatibility

Let us now make a crucial observation: The optimal configuration also makes the
estimation problem fully covariant: indeed, both Q35" in Eq. and Q95" whose
value is

Q0P = 2 cosh? 2r 4 2sinh? 2r sinh? x (24)

are now independent from both A; and A».

As a measure of the sloppiness in the various configurations, we can consider the
determinant of the full matrix Q. Its value is exponentially growing with r and z
both in the maximum and optimal configurations, but the ratio det @™**/ det Q°P"
is always bounded between 0 and 2 and it quickly goes to 0 for large values of the
initial squeezing r, whatever the value of x. This indicates that, as expected, the
optimal configuration is better able to lift the sloppiness of the model independently
of the energy introduced by the scrambler, quantified by z.

Let us now consider the quantum incompatibility of the parameters, computed
through the Uhlmann curvature. Only off-diagonal entries can be nonzero and
clearly U;, = —Uy;. In our case, we get detU = U3Z,. The value of Ujs can ac-
tually be written in a convenient closed form also for ¢ # 0:

ulZ(AZ; T, 07 (7257 T,7,4, ﬂ) - Q[COS("Y + 0) cos 2¢ sin 6
— cos O sin(y 4 0)] sinh 27 sinh 2x+
— 4q° cos? ¢sin 2(B — \z) sinh 2z. (25)

It is simple to check that UP® = 0, so that also the R parameter is zero in
the optimal configuration and the parameters can be jointly estimated via the
projection-valued measure diagonalizing simultaneously both the symmetric loga-
rithmic derivatives. Moreover, the result is true for any value of Ay and )y since,
once again, the problem becomes covariant in the optimal configuration.

5. Discussion and Conclusions

Before concluding our paper, it is worthwhile considering the physical interpretation
of the optimal configuration. Since we have ¢ = 7, the beam splitter is balanced.
Additionally, for # = 7, the input state after the beam splitter corresponds to
a twin-beam state, aside from a relative displacement and irrelevant local phases,
which can be absorbed into an immaterial redefinition of A;. In this configuration,
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the local squeezing at the phase shifters is zero, while the entanglement between
the modes is maximized. This maximal entanglement might be connected to its
effectiveness in decoupling the two parameters, A\; and A;. Entanglement plays a
role in fully exploiting the two-mode space, allowing independent encoding of \;
and As. In contrast, in the mazimum configuration, reducing the system to a single-
mode problem constrains the independent degrees of freedom to a smaller Hilbert
space on which the two phase shifters can operate. However, further investigation
with other models is necessary to draw robust and general conclusions on this
matter. Moreover, the fact that the Uhlmann curvature can be exactly put to zero
in the optimal configuration implies that the two parameters can be estimated with
a single, joint measurement, which can be directly constructed from the SLDs.

In conclusion, we have conducted a detailed analysis of a sloppy continuous-
variable quantum statistical model, specifically involving the encoding of two phase-
shift parameters within the same arm of a Mach-Zehnder interferometer. Our
results demonstrate that sloppiness can be corrected, effectively reducing quantum
incompatibility to zero while preserving enhanced scaling of precision and main-
taining the model’s covariance with respect to the exact values of the parameters.
While this may not be the general case, see, e.g. Ref. |14} it concerns the relevant ex-
ample of interferometry. Additionally, we have shown that concentrating quantum
resources on the optical element to be estimated is generally the best strategy for
enhancing precision. On the other hand, utilizing entanglement in the probe state
proves more effective for estimating the two parameters independently.

Our results demonstrate that sloppy continuous-variable quantum statistical
models can be effectively addressed, paving the way for quantum-enhanced metrol-
ogy of biological samples and nonhomogeneous media, which typically require a
multi-parameter approach.
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Appendix A. Continuous-variable systems and Gaussian states

In continuous-variable quantum mechanics, one starts from the Fock space of M
modes and associates with each mode a pair of creation and annihilation opera-
tors satisfying the commutation rules [dj,dz] = 0 with j, k € {1,..., M}. With

our conventions, the corresponding quadrature operators are given by ¢; = ai/—g&’
Dj = “;—\7;, such that [§;,pr] = ;5. Those can be listed in an ordered vector

of quadratures denoted by R = {G1,P1,---,4m, D }- Given a quantum state p
of such a system, we define its first-moments vector and its covariance matrix
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(CM) as

dy = T[pR],  [olyn = 5 (Rl + Reky) — (Ry) (), (A.1)

where (O} = Tr[ﬁé]. Let us now introduce the multi-mode displacement operator

N

D(A), defined as
D(A) := exp [-iATQR], (A.2)
where Q := @_; w; and w; is a 2 x 2 matrix acting on the subspace (¢;,p;) and

—1

equal to iog, where oy is the second Pauli matrix oo = ((2 0 ) Using this operator,

we can represent each multi-mode state p by a complex function on phase-space,
called the characteristic function of the state:

\[B)(K) = TepD(A)] (A.3)

The Fourier transform of this function is again a function on phase space, but it is
guaranteed to be real as a consequence of the self-adjointness of p, and it is known
as the Wigner function. p is then called a Gaussian state if its Wigner function is
a Gaussian function; in that case, the covariance matrix and central first moments
of the Gaussian will be exactly the CM ¢ and the first-moments vector dB of the
state.

Appendix B. Explicit Expressions for the Terms Proportional
to the Initial Displacement

The general formulas for the terms proportional to ¢? in the expressions for Qs
and le are:

fa2(r, 8,6, ¢, z,~) = sinh 2r[cos 28 cos 2¢ + cos? (2 cosh(2x)

x {2cos(26 + 6) sin O sin? ¢ + sinh(2z)[cos A cos(y + 6)

+ cos(2¢) sinOsin(y + 0)]} + sinh(2z)

x {4 cos(y + 0) sin O sin? ¢ + +2sinh(2z) cos(y — 26)

x [cosy — 2sin@sin(y + 0) sin® ¢]})] + cosh 2r

x {1 4 cos? ¢[cosh(4z) + cos(y — 2/3) sinh(4x) — 1]}, (B.1)
fi2(r, 3,6, ¢, z,~) = sinh 2r[cos 26(2 cosh? z cos? ¢ — 1)

+ 25in #{2[cos(26 + ) cosh? x — sin(2/ + 6) sinh? z]

— sinh 2z(sin(y + ) — cos(y + 0))} cos? psin ¢

+ sinh 2z cos? ¢ cos ] + cosh 2r

+ 2 cosh 27 sinh z cos? @[sinh = + cos(y — 23) coshz].  (B.2)
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Overcoming sloppiness for enhanced metrology

The first expression in the maximum configuration (§ = ¢ = = v = 0), which
maximizes the g-independent term of Qq1, becomes:

foa(r,2,0 = ¢ = B =~ =0) =¥, (B.3)
Whereas in the optimal configuration it evaluates to:
fa22 (7’, 8,0 = g, o= %, x, 'y) = —sinh(2r)[cosh(2z) sin(243) + sinh(2z) sin 7]
+ cosh(2r) cosh(2z)[cosh(2x)
+ sinh(2z) cos(y — 28)]. (B.4)

Setting 8 = v = 0 in this last expression as well, we can compute the ratio between
opt d fmax.
9o and f35™:

P(B=~=0) e*cosh(2r)cosh(2z) (14 e **)(1+e )
max = o2r+da = 1 (B.5)

which is also lower bounded by %, as was the ratio Qb / Qe for ¢ = 0.
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