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Abstract. We examine the entanglement arising from the bilinear coupling of two nearly
single-mode optical beams. We consider both the case of active and passive linear devices.
The two modes are initially prepared in a pair of uncorrelated pure Gaussian states, and the
degree of entanglement is analytically evaluated in terms of the excess information entropy at
the output. A general formula is obtained and relevant cases are analysed in some detail.
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1. Introduction problems arise, and different definitions have been suggested
[23-25].
Entanglement is a peculiar feature of quantum mechanics. In this paper we focus our attention on the entanglement

Within a quantum mechanical description, if two initially arising from the bilinear coupling of two harmonic
uncorrelated systems start to interact, they can no longeroscillators, modelling two nearly single-mode optical beams.
be described as separate entities. Rather, we should admiln fact, among the different quantum-optical processes,
that the outcomes of any measurement performed on thedevices that are governed by bilinear Hamiltonians play a
system reflect some property of the two parts as a whole. special role, both from the theoretical and the experimental
This behaviour does not depend on the positions of the two point of view. On the one hand, bilinear Hamiltonians
subsystems after the interaction, which may be so far apartcorrespond to simple algebraic structures, and hence many
that no influence can propagate from one subsystem to theuseful mathematical tools can be exploited for calculations
other during the time of measurement. In fact, quantum [26-28]. On the other hand, they correspond to realistic
correlations play a role on a different level to classical ones, devices currently forming the basis of experiments performed
as they are related to the nonlocal properties of the theory. in quantum optics laboratories [29]. The present study is
In the domain of quantum optics, entangled states of motivated by the interest in how to create strong correlations
a two-mode field are produced in a number of linear and between two modes starting from available sources. Specific
nonlinear processes. Entangled photon pairs are utilizedexamples involving linear devices have been previously
in fundamental tests of quantum mechanics by Bell-type considered [15, 30], and the appearance of entangled states
correlation experiments [1-4], whereas practical applications has been demonstrated. However, no systematic approach
of entanglement are currently being developed in the fields has been presented so far. Here, we consider the general
of quantum communication [5, 6], information [7, 8] and case of bilinear coupling, and derive a formula that allows us
computation [9, 10]. to evaluate the degree of entanglement for both passive and
Quantitative measurement of the entanglement of a active devices, and for a wide class of input signals. We also
composite quantum system is one of the fundamental point out that the knowledge of the degree of entanglement
problems of quantum information theory [11-14]. Foratwo- at the output is useful in order to distinguish classical and
mode pure state the degree of entanglement can be quantifiedonclassical working regimes of linear devices, depending on
by means of the corresponding excess information entropywhether or not quantum correlations have been established.
[15-18]. This quantity has been first utilized to describe the  If a; anday with [as, a]] = 1 and fiz, a)] = 1 denote
entanglement between two squeezed modes of the radiatiorthe field operators of two nearly single-mode radiation fields,
field [15]. Subsequently, it has been successfully applied a Hamiltonian of the form
to study the entanglement in a number of systems as, for N T T
example, a two-level atom coupled to a cavity mode [19], Hy «ajaz + a1a;, @)
a multi-mode field in a passive network [20], and the gegcribes a number of passive devices, including linear
two optical beams exiting a Mach-Zehnder interferometer gytenyators, beam splitters, linear couplers and frequency

[21]. 1t should be mentioned that for a pure state the cqnyerters [30-36]. Conversely, a Hamiltonian of the form
excess information entropy represents the unique measure

of entanglement [22], whereas for general mixed states some Hy aIa;r +aiay, 2)
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corresponds to processes such as parametric downis now the marginal probability. Similarly, the information
conversion and phase-insensitive linear amplification [37— of the B-measurement regardless of the outcomedof
41]. The HamiltonianA, models active devices, and governed by the marginal probability; = Y, P;. The
describes the effective interaction taking place in a classically index of correlation between the two random variables is
pumped nonlinear crystal, the pumping mode assuring given by [49]

energy conservation, though not participating to the quantum

dynamics [42-45]. Iap =I1(A)+1(B)—I(A, B). (7)

We examine the situation in which the two modes are ) ) ]
initially uncorrelated. The input signal is thus described by !N order to describe quantum correlations a suitable
a factorized density matrign = A1 ® f, and we consider generalization of formula (7) is needed. This can be obtained
the case of both modes excited in a Gaussian state, namelPY means of von Neumann entropy of a quantum state. The
a state described by a Gaussian Wigner function. This is a€ntropy of a two-mode stageis defined as
wide class of single-mode states, whose density matrix can

be written in the general form [46,47] S[e] = —Triz{elog o} ®)
po = D@)§©)»8(¢) D' (@), (3)  Conversely,
whereD(a) = explea’ — aa] is the displacement operator, S[A1] = —Tri{41l0g 41} S[p2] = — Tra{p2log p2},
S(¢) = exp[3(£%a™?—¢2a?)] the squeezing operator, ahg )
denotes the density matrix of a chaotic (thermal) state with
N = Tr[dnata] average number of photons, that is are the single-mode entropies pf = Try{g} and p, =
ta Tri{o}, namely the state of modes 1 and 2, respectively, as
Dy = 1 N @) obtained by tracing out the other mode from the total density
1+N\1+N ' matrix. A measure of quantum correlation is given by the

The class of states described k¢ includes thermal, excess entropy 15, 16]

coherent, and squeezed states, namely the relevant examples Ie = S[p1] + S[p2] — S[o], (10)
of classical, quasiclassical, and nonclassical states available
by common quantum optical sources. In the following, we which formalizes the idea that the stronger the correlations
actually restrict our attention to the subclass of pure statesin the two-mode state, the more disordered should be the
described by (3). two modes taken separately. The quaniitys always non-

In the next section we briefly review the use of excess negative [50] and, due to additivity of entropy [51], is zero
entropy as a quantitative measure of two-mode entanglementor factorized (uncorrelated) statds = p1 ® po. If o
and derive a formula for the entropy of a generic Gaussian describes a pure state, we haf@] = 0 and thusS[51] =
state. In section 3 we consider both passive and active linears[,], so that the excess entropy reducesdo= 2S[51],
deViCGS, and illustrate the evolution of the two-mode Wigner which is maximized Wherﬁl is a chaotic state of the form
function. In sectia 4 a general formula for the entanglement (4). Using these considerations, we introduce the degree of

arising from bilinear coupling is obtained, and some relevant entanglement of the two-mode staté as the normalized
examples are discussed in detail. Section 5 closes the papegxcess entropy

by summarizing the results.

€= (S[pa] + S[p2] — S[eD,  (11)
2. Excess entropy as a measure of entanglement T[N1]+ T[N2]

) o where
The measurement of a classical random variabig always

associated with the gain of some amount of information. 1 o[ 1 . N AL .
Indeed, each realization of the experiment removes the TIN;] = 8w] = (1 +N;)logd +Nj) = N; log N,
uncertainty about which one of the possible outcorfag$
may turn out. The relevant information depends only on the
probabilities{ P, } associated with the everfig,} and is given

by the Shannon information entropy [48]

(12)

is the entropy of a thermal state with an average number of
photonsV; = Trj[,éja;aj] equal to that of each partial trace,
respectively. The degree of entanglemerdanges from zero
I(A) = — Z P log Py. (5) to unity, withe = 0 for a factorized state and = 1 for

% a maximally entangled state [15, 16], namely a pure state
whose partial traces coincide with a couple of thermal states.
For pure states the degreerepresents the unique choice
for a quantitative measure of entanglement [22], whereas
for general mixed states the notion of inseparability has
I(A,B) = — Z Pjlog Py;. (6) been introduced [52-54], anq di_fferent measures have been

7 suggested [23-25]. The point is that for mixed states the

two subsystems’ entropies may differ and the excess entropy

The information of theA-measurement regardless of the represents a combination of entanglement and classical
outcome ofB is again given by (5), wher@, = 3, Py; correlations [55].

The simultaneous measurement of two classical random
variablesA andB gives the outcomgzy, b;} with probability
{Px;}. The joint information is thus given by

300






M G A Paris

3.1. Evolution of the Wigner function in the case of the beam splitter and

For the purpose of evaluating entropies and entanglement it A;=a; coshy —a, sinhy %2 =g2 cosif y+o2 sintf y
is convenient to analyse the dynamics of linear devices in

H 2 2 2 o
terms of the two-mode Wigner function, which is defined as  Bi=b1 coshy —bzsinhy £, =0, cosif y+o3, sint y

follows: Ay=—ay sinhy+ay coshy $2 =oZ sini? y+oZ coslf y
W (x1, y1; X2, y2) = / dus / dvy / duz / dvy By=—by sinhy+b, coshy 3 =02 sintf y+o2, cosif y,
. R R R R . . . (36)
x eXp(2i(vaxy — 1y + vaxz — f2y2)} for the linear amplifier.
X TI'[@D(,U,;L + ivl)D(/J,z + ivz)]. (30)

By using (28) and (29), together with equation (30) it possible 4- Entanglement at the output
to obtain the evolute Wigner function in terms of its initial

expression. In the case of a beam splitter one has Using the results obtained in previous sections we are now

ready to evaluate the entanglement due to passive and active
Wout (X1, ¥1; X2, ¥2) = Wn(x1COSS — x5 SiNng, linear devices. As already mentioned, the input signals are
uncorrelated, and thus the input entanglemstis zero,

1 COS8 — y, SiNg, x1 SiNS + x COSS,
namely

y1 SiNd + y; C0SY), (31)

~ _ ~1 A
whereas for the case of linear amplification one obtains Slow] = S[ow] + STAn] (37)

On the other hand, the global density matriggsandoout

are connected to each other by the unitary transformations
U, or 00- Therefore,S[oin] = S[oout] and one can also

y1 sinhy + y, coshy). (32) write

Wourt(x1, y1; X2, y2) = Win(x1 coshy +xzsinhy,
y1 coshy + y, sinhy, x; sinhy + x, coshy,

Ogr initial stqte@m = p1 ® p2 corresponds to the factorized S[eout] = S[AL]+ S[AA]. (38)
Wigner function
Finally, we note that the partial traces are Gaussian states both
Win (x1, y1; X2, y2) = Wlh (x1, yl)W,ZN (x2,y2), (33) at the input and at the output, and thus their entropies can be
expressed as in section 2. Inserting the proper quantities in
where bothwl{V (x;,y;), j = 1,2 are Gaussian single-mode equation (11) we arrive at the final expression for the output
Wigner functions of the form (18). By inserting the explicit entanglement
expression oW (x1, y1; x2, y2) in (31) or (32) one obtains .
the output two-mode Wigner function for the two devices, cout = TIN{1+ TINz] = Tn] = Tn]
respectively. Inboth case®oyt(x1, y1; x2, y2) is expressed T[N:]+ T[Ne]

by a rather long formula, which we do not report here. We Remarkably, equation (39) contains only entropies of thermal

only notice thatVour(x1, y1: x2, y2) is no longer factorized,  states, which can be easily evaluated by means of (12) and
thus indicating the appearance of correlations between the(23). |n equation (39)

two interacting modes. The output states obtained by partial

(39)

traces pdyr = Tr2ldout] and p3,; = Trildout] are ni = 201,01y — 3
described by the two single-mode Wigner functions . L (40)
ny = 202,02y — 3,
Wiy (x, y1) = / dxzf dy, Wout(x1, y1; X2, y2) denote the equivalent average thermal photons of input
R R (34) signals, whereas
Wiyt (xa, y2) = /RdxlfRdyl Wout(x1, y1; X2, y2), Ni =254, %, — §

(41)

; ; ; Nj = 2%, %5, — 3,
obtained by integration over the degrees of freedom of the v 2

other mode. These two single-mode Wigner functions are 5o the corresponding thermal photons for the output partial
Stl||. of Gaussian form. By denoting output mean values and {o-as The quantities

variances by capital letters we have ) N a1t
N1 = Trizleouray a1l = Trilpoyrayail

A1 = a3 COSS + ap siné ¥2 =oZ cog s +of sins =Al+B+3f +3% — 3 (42)

: . st 2t
By = by COSS + b, Sind 2%, = 07, coS' § + 03, Sin’ s N2 = Trizdourazaz] = Tra[ pdyrazas]

. _ = AZ+B2+%2 +%2 — 1
Az = a1 Sind — ap coss %2 =02 sinfs+02 cogs 2772 T Ty 2

) 5 . ) are the total average number of photons for the output partial
By = by Siné — b, COS8 335, = of, sin*é + o3 cos s, traces. The last equality in equations (42) follows from

(35) the fact that averaging over the Wigner function gives the

302



Entanglement in quantum-optical bilinear devices

symmetrically ordered moments of field operators [59]; in -
particular, we have that
T4 ant
/dx/ dy Wi, »)a2+y2) =Tr [pw]
R R 2 [
P SN 39
= Tr[p(a’a +3)]. (43) Lo

Equation (39), together with (35) and (36), is a quite general
result that allows us to evaluate the entanglement that arises B
from the bilinear coupling of a pair of Gaussian states, both - A
in the case of passive and active devices. Here, we utilize o J S T N
(39) to analyse some relevant examples in detail. As we are 2 4 6 8 10
going to consider only pure states at the input, we will always

haveT[n}] = T[n3] = 0.

A T T T T T
4.1. Amplification and mixing of coherent signals x (b):
AN
The mixing of a pair of coherent states in a linear coupler, SR
or in a beam splitter, is the only linear process that does %m f\ N i
not lead to entanglement at the output. This can be seen O N
from equation (39), or more directly from the Sédger AN ‘\»\A\ ]
evolution of the input signal. Ifyn) = |a) ® |B) is the I S Tl ]
input state, we have I T - o]
[Your) = Ulyin) = [V7a +V1—1p) T T T T T
10 100100010" 10” 10
®|_ Vl_Ta+\/;ﬂ>v (44) ‘ ‘2
o
which shows that the output state consists of a pair of
independent coherent states. Figure 1. (a) The degree of entanglement at the output of a linear

On the other hand, the linear amplification of coherent amplifier fed by a coherent signal as a function of the gain of the
signals does lead to entanglement at the output. The inputamp“f'edr'lclgrveg Io(rfdlnrrerent)vlalrzes cf:ge Iﬂpg;llnltzenS% are
. . reporte Ho|c = 0. ull curve), |a|c = ashed)jx | =
state is pure and thus we have zero input entropy. The OUtpUI(dot-dashed), an? = 100 (dotted). If) The degree of

state is also pure, such that the two partial traces are equalentanglement as a function of the input intengit? for different
N7 = Nj = N* and the entanglement at the output can be values of the gain of the amplifie€ = 1.1 (full curve),G = 2
rewritten as (dashed)(G = 10 (dot-dashed) an@d = 100 (dotted), respectively.

2T[N*
€out = W (45) such that the relative phase pIays amajor role in determining
_ o ) _ the output entanglement. In figure 2 we report the degree
In the simple case of an initially unexcited idler mode f entanglement as a function of the relative phase for
l¥in) = |} ® |0), the equivalent thermal photons are given jirerent values of the input intensity|2 = |8]2 and the
by N* = G — 1, whereas the total numbgzr of photons in - 5 mpjification gainG. As is apparent from the plots, the
the two output modes are given by = G|«x|+ G — 1 and entanglement strongly depends on the relative phase: the

—(C— 2 i i 2 :
tNh2 Tj (G-1) (f|a| t+ 1),|respe;:t|vely.f In fltgure ]faotgve rePO”f th variationis more pronounced for more excited states, whereas
€ gegree ol entangiement as a function ot the gain ot the, , amplification gain sets the oscillation range.

amplifier for different values of the initial coherent amplitude
of the signal. Asour is an increasing function of the gain,
any input signal would, in principle, lead to a maximum 4.2. Mixing of a pair of squeezed vacuums
entangled state at the output for strong enough amplification. .
In practice, the increasing rateqfur versus the gainrapidly 't has been suggested that feeding a Mach-Zehnder
decreases with input intensity, so that highly entangled statesinterferometer with single-mode or two-mode squeezed light
are obtained only for weak input signals. For any fixed value May lead to the formation of entangled states in a wide range
ofthe gain the degree of entanglementis a decreasing functiorPf degree of entanglement [21, 60]. We argue that such an
of the input intensity (see figure H)j. This means that, effect can also be observed at the output of a beam splitter fed
in principle, for the amplification of a coherent signal the by acouple of single-mode squeezed vacuums. Indeed, apart
classical limit of uncorrelated output is recovered in the limit from a single-mode rotation, a Mach—Zehnder interferometer
of very large intensity. is equivalent to a single beam splitter.

We now consider an input signal consisting of a couple As an input state we consider a couple of squeezed
of coherent states with the same number of photons butvacuums with opposite squeezing parameter
with different phases, in formulg/y) = |a) ® |B), with

B = a exp(ip). In this case it is straightforward to show that lin) = S(r)|0) ® S(—r)|0), (47)
Nf=N;=G _ _ _ .
(46) which corresponds to a Gaussian two-mode Wigner function
N1 = N, = [|a| +vVG]? = 2|a|/G(G + 1) cosg, with zero mean and variances, = o = €’ /4 and
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