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Abstract. We examine the entanglement arising from the bilinear coupling of two nearly
single-mode optical beams. We consider both the case of active and passive linear devices.
The two modes are initially prepared in a pair of uncorrelated pure Gaussian states, and the
degree of entanglement is analytically evaluated in terms of the excess information entropy at
the output. A general formula is obtained and relevant cases are analysed in some detail.
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1. Introduction

Entanglement is a peculiar feature of quantum mechanics.
Within a quantum mechanical description, if two initially
uncorrelated systems start to interact, they can no longer
be described as separate entities. Rather, we should admit
that the outcomes of any measurement performed on the
system reflect some property of the two parts as a whole.
This behaviour does not depend on the positions of the two
subsystems after the interaction, which may be so far apart
that no influence can propagate from one subsystem to the
other during the time of measurement. In fact, quantum
correlations play a role on a different level to classical ones,
as they are related to the nonlocal properties of the theory.

In the domain of quantum optics, entangled states of
a two-mode field are produced in a number of linear and
nonlinear processes. Entangled photon pairs are utilized
in fundamental tests of quantum mechanics by Bell-type
correlation experiments [1–4], whereas practical applications
of entanglement are currently being developed in the fields
of quantum communication [5, 6], information [7, 8] and
computation [9,10].

Quantitative measurement of the entanglement of a
composite quantum system is one of the fundamental
problems of quantum information theory [11–14]. For a two-
mode pure state the degree of entanglement can be quantified
by means of the corresponding excess information entropy
[15–18]. This quantity has been first utilized to describe the
entanglement between two squeezed modes of the radiation
field [15]. Subsequently, it has been successfully applied
to study the entanglement in a number of systems as, for
example, a two-level atom coupled to a cavity mode [19],
a multi-mode field in a passive network [20], and the
two optical beams exiting a Mach–Zehnder interferometer
[21]. It should be mentioned that for a pure state the
excess information entropy represents the unique measure
of entanglement [22], whereas for general mixed states some

problems arise, and different definitions have been suggested
[23–25].

In this paper we focus our attention on the entanglement
arising from the bilinear coupling of two harmonic
oscillators, modelling two nearly single-mode optical beams.
In fact, among the different quantum-optical processes,
devices that are governed by bilinear Hamiltonians play a
special role, both from the theoretical and the experimental
point of view. On the one hand, bilinear Hamiltonians
correspond to simple algebraic structures, and hence many
useful mathematical tools can be exploited for calculations
[26–28]. On the other hand, they correspond to realistic
devices currently forming the basis of experiments performed
in quantum optics laboratories [29]. The present study is
motivated by the interest in how to create strong correlations
between two modes starting from available sources. Specific
examples involving linear devices have been previously
considered [15, 30], and the appearance of entangled states
has been demonstrated. However, no systematic approach
has been presented so far. Here, we consider the general
case of bilinear coupling, and derive a formula that allows us
to evaluate the degree of entanglement for both passive and
active devices, and for a wide class of input signals. We also
point out that the knowledge of the degree of entanglement
at the output is useful in order to distinguish classical and
nonclassical working regimes of linear devices, depending on
whether or not quantum correlations have been established.

If a1 anda2 with [a1, a
†
1] = 1 and [a2, a

†
2] = 1 denote

the field operators of two nearly single-mode radiation fields,
a Hamiltonian of the form

ĤL ∝ a†
1a2 + a1a

†
2, (1)

describes a number of passive devices, including linear
attenuators, beam splitters, linear couplers and frequency
converters [30–36]. Conversely, a Hamiltonian of the form

ĤA ∝ a†
1a

†
2 + a1a2, (2)
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corresponds to processes such as parametric down-
conversion and phase-insensitive linear amplification [37–
41]. The HamiltonianĤA models active devices, and
describes the effective interaction taking place in a classically
pumped nonlinear crystal, the pumping mode assuring
energy conservation, though not participating to the quantum
dynamics [42–45].

We examine the situation in which the two modes are
initially uncorrelated. The input signal is thus described by
a factorized density matrix̂%IN = ρ̂1 ⊗ ρ̂2, and we consider
the case of both modes excited in a Gaussian state, namely
a state described by a Gaussian Wigner function. This is a
wide class of single-mode states, whose density matrix can
be written in the general form [46,47]

ρ̂G = D̂(α)Ŝ(ζ )ν̂Ŝ†(ζ )D̂†(α), (3)

whereD̂(α) = exp[αa† − ᾱa] is the displacement operator,
S(ζ ) = exp[12(ζ

2a†2− ζ̄ 2a2)] the squeezing operator, andν̂N

denotes the density matrix of a chaotic (thermal) state with
N = Tr[ν̂Na

†a] average number of photons, that is

ν̂N = 1

1 +N

(
N

1 +N

)a†a

. (4)

The class of states described bŷρG includes thermal,
coherent, and squeezed states, namely the relevant examples
of classical, quasiclassical, and nonclassical states available
by common quantum optical sources. In the following, we
actually restrict our attention to the subclass of pure states
described by (3).

In the next section we briefly review the use of excess
entropy as a quantitative measure of two-mode entanglement
and derive a formula for the entropy of a generic Gaussian
state. In section 3 we consider both passive and active linear
devices, and illustrate the evolution of the two-mode Wigner
function. In section 4 a general formula for the entanglement
arising from bilinear coupling is obtained, and some relevant
examples are discussed in detail. Section 5 closes the paper
by summarizing the results.

2. Excess entropy as a measure of entanglement

The measurement of a classical random variableA is always
associated with the gain of some amount of information.
Indeed, each realization of the experiment removes the
uncertainty about which one of the possible outcomes{ak}
may turn out. The relevant information depends only on the
probabilities{Pk} associated with the events{ak} and is given
by the Shannon information entropy [48]

I (A) = −
∑
k

Pk logPk. (5)

The simultaneous measurement of two classical random
variablesA andB gives the outcome{ak, bj }with probability
{Pkj }. The joint information is thus given by

I (A,B) = −
∑
kj

Pkj logPkj . (6)

The information of theA-measurement regardless of the
outcome ofB is again given by (5), wherePk =

∑
j Pkj

is now the marginal probability. Similarly, the information
of the B-measurement regardless of the outcome ofA is
governed by the marginal probabilityPj =

∑
k Pkj . The

index of correlation between the two random variables is
given by [49]

IAB = I (A) + I (B)− I (A,B). (7)

In order to describe quantum correlations a suitable
generalization of formula (7) is needed. This can be obtained
by means of von Neumann entropy of a quantum state. The
entropy of a two-mode statê% is defined as

S[%̂] = −Tr12{%̂ log %̂}. (8)

Conversely,

S[ρ̂1] = −Tr1{ρ̂1 log ρ̂1} S[ρ̂2] = −Tr2{ρ̂2 log ρ̂2},
(9)

are the single-mode entropies ofρ̂1 = Tr2{%̂} and ρ̂2 =
Tr1{%̂}, namely the state of modes 1 and 2, respectively, as
obtained by tracing out the other mode from the total density
matrix. A measure of quantum correlation is given by the
excess entropy [15,16]

Ie = S[ρ̂1] + S[ρ̂2] − S[%̂], (10)

which formalizes the idea that the stronger the correlations
in the two-mode state, the more disordered should be the
two modes taken separately. The quantityIe is always non-
negative [50] and, due to additivity of entropy [51], is zero
for factorized (uncorrelated) stateŝ% = ρ̂1 ⊗ ρ̂2. If %̂
describes a pure state, we haveS[%̂] = 0 and thusS[ρ̂1] =
S[ρ̂2], so that the excess entropy reduces toIe = 2S[ρ̂1],
which is maximized when̂ρ1 is a chaotic state of the form
(4). Using these considerations, we introduce the degree of
entanglementε of the two-mode statê% as the normalized
excess entropy

ε = 1

T [N1] + T [N2]
(S[ρ̂1] + S[ρ̂2] − S[%̂]), (11)

where

T [Nj ] ≡ S[ν̂Nj ] = (1 +Nj) log(1 +Nj)−Nj logNj,

(12)

is the entropy of a thermal state with an average number of
photonsNj = Trj [ρ̂j a

†
j aj ] equal to that of each partial trace,

respectively. The degree of entanglementε ranges from zero
to unity, with ε = 0 for a factorized state andε = 1 for
a maximally entangled state [15, 16], namely a pure state
whose partial traces coincide with a couple of thermal states.
For pure states the degreeε represents the unique choice
for a quantitative measure of entanglement [22], whereas
for general mixed states the notion of inseparability has
been introduced [52–54], and different measures have been
suggested [23–25]. The point is that for mixed states the
two subsystems’ entropies may differ and the excess entropy
represents a combination of entanglement and classical
correlations [55].
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3.1. Evolution of the Wigner function

For the purpose of evaluating entropies and entanglement it
is convenient to analyse the dynamics of linear devices in
terms of the two-mode Wigner function, which is defined as
follows:

W(x1, y1; x2, y2) =
∫
R

dµ1

∫
R

dν1

∫
R

dµ2

∫
R

dν2

× exp{2i(ν1x1− µ1y1 + ν2x2 − µ2y2)}
×Tr[%̂D̂(µ1 + iν1)D̂(µ2 + iν2)]. (30)

By using (28) and (29), together with equation (30) it possible
to obtain the evolute Wigner function in terms of its initial
expression. In the case of a beam splitter one has

WOUT(x1, y1; x2, y2) = WIN(x1 cosδ − x2 sinδ,

y1 cosδ − y2 sinδ, x1 sinδ + x2 cosδ,

y1 sinδ + y2 cosδ), (31)

whereas for the case of linear amplification one obtains

WOUT(x1, y1; x2, y2) = WIN(x1 coshγ + x2 sinhγ,

y1 coshγ + y2 sinhγ, x1 sinhγ + x2 coshγ,

y1 sinhγ + y2 coshγ ). (32)

Our initial state%̂IN = ρ̂1⊗ ρ̂2 corresponds to the factorized
Wigner function

WIN(x1, y1; x2, y2) = W 1
IN(x1, y1)W

2
IN(x2, y2), (33)

where bothWj

IN(xj , yj ), j = 1, 2 are Gaussian single-mode
Wigner functions of the form (18). By inserting the explicit
expression ofWIN(x1, y1; x2, y2) in (31) or (32) one obtains
the output two-mode Wigner function for the two devices,
respectively. In both cases,WOUT(x1, y1; x2, y2) is expressed
by a rather long formula, which we do not report here. We
only notice thatWOUT(x1, y1; x2, y2) is no longer factorized,
thus indicating the appearance of correlations between the
two interacting modes. The output states obtained by partial
traces ρ̂1

OUT = Tr2[%̂OUT] and ρ̂2
OUT = Tr1[%̂OUT] are

described by the two single-mode Wigner functions

W 1
OUT(x1, y1) =

∫
R

dx2

∫
R

dy2WOUT(x1, y1; x2, y2)

W 2
OUT(x2, y2) =

∫
R

dx1

∫
R

dy1WOUT(x1, y1; x2, y2),

(34)

obtained by integration over the degrees of freedom of the
other mode. These two single-mode Wigner functions are
still of Gaussian form. By denoting output mean values and
variances by capital letters we have

A1 = a1 cosδ + a2 sinδ 62
1x = σ 2

1x cos2 δ + σ 2
2x sin2 δ

B1 = b1 cosδ + b2 sinδ 62
1y = σ 2

1y cos2 δ + σ 2
2y sin2 δ

A2 = a1 sinδ − a2 cosδ 62
2x = σ 2

1x sin2 δ + σ 2
2x cos2 δ

B2 = b1 sinδ − b2 cosδ 62
2y = σ 2

1y sin2 δ + σ 2
2y cos2 δ,

(35)

in the case of the beam splitter and

A1=a1 coshγ−a2 sinhγ 62
1x=σ 2

1x cosh2 γ+σ 2
2x sinh2 γ

B1=b1 coshγ−b2 sinhγ 62
1y=σ 2

1y cosh2 γ+σ 2
2y sinh2 γ

A2=−a1 sinhγ+a2 coshγ 62
2x=σ 2

1x sinh2 γ+σ 2
2x cosh2 γ

B2=−b1 sinhγ+b2 coshγ 62
2y=σ 2

1y sinh2 γ+σ 2
2y cosh2 γ,

(36)
for the linear amplifier.

4. Entanglement at the output

Using the results obtained in previous sections we are now
ready to evaluate the entanglement due to passive and active
linear devices. As already mentioned, the input signals are
uncorrelated, and thus the input entanglementεIN is zero,
namely

S[%̂IN ] = S[ρ̂1
IN] + S[ρ̂2

IN]. (37)

On the other hand, the global density matrices%̂IN and%̂OUT

are connected to each other by the unitary transformations
Ûτ or ÛG. Therefore,S[%̂IN ] = S[%̂OUT] and one can also
write

S[%̂OUT] = S[ρ̂1
IN] + S[ρ̂2

IN]. (38)

Finally, we note that the partial traces are Gaussian states both
at the input and at the output, and thus their entropies can be
expressed as in section 2. Inserting the proper quantities in
equation (11) we arrive at the final expression for the output
entanglement

εOUT = T [N∗1 ] + T [N∗2 ] − T [n∗1] − T [n∗2]

T [N1] + T [N2]
. (39)

Remarkably, equation (39) contains only entropies of thermal
states, which can be easily evaluated by means of (12) and
(23). In equation (39)

n∗1 = 2σ1xσ1y − 1
2

n∗2 = 2σ2xσ2y − 1
2,

(40)

denote the equivalent average thermal photons of input
signals, whereas

N∗1 = 261x61y − 1
2

N∗2 = 262x62y − 1
2,

(41)

are the corresponding thermal photons for the output partial
traces. The quantities

N1 = Tr12[%̂OUTa
†
1a1] = Tr1[ρ̂1

OUTa
†
1a1]

= A2
1 +B2

1 +62
1x +62

1y − 1
2 (42)

N2 = Tr12[%̂OUTa
†
2a2] = Tr2[ρ̂2

OUTa
†
2a2]

= A2
2 +B2

2 +62
2x +62

2y − 1
2,

are the total average number of photons for the output partial
traces. The last equality in equations (42) follows from
the fact that averaging over the Wigner function gives the
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symmetrically ordered moments of field operators [59]; in
particular, we have that∫
R

dx
∫
R

dy W(x, y)(x2 + y2) = Tr

[
ρ̂
a†a + aa†

2

]
= Tr[ρ̂(a†a + 1

2)]. (43)

Equation (39), together with (35) and (36), is a quite general
result that allows us to evaluate the entanglement that arises
from the bilinear coupling of a pair of Gaussian states, both
in the case of passive and active devices. Here, we utilize
(39) to analyse some relevant examples in detail. As we are
going to consider only pure states at the input, we will always
haveT [n∗1] = T [n∗2] = 0.

4.1. Amplification and mixing of coherent signals

The mixing of a pair of coherent states in a linear coupler,
or in a beam splitter, is the only linear process that does
not lead to entanglement at the output. This can be seen
from equation (39), or more directly from the Schrödinger
evolution of the input signal. If|ψIN〉 = |α〉 ⊗ |β〉 is the
input state, we have

|ψOUT〉 = Ûτ |ψIN〉 = |
√
τα +
√

1− τβ〉
⊗| − √1− τα +

√
τβ〉, (44)

which shows that the output state consists of a pair of
independent coherent states.

On the other hand, the linear amplification of coherent
signals does lead to entanglement at the output. The input
state is pure and thus we have zero input entropy. The output
state is also pure, such that the two partial traces are equal,
N∗1 = N∗2 = N∗ and the entanglement at the output can be
rewritten as

εOUT = 2T [N∗]
T [N1] + T [N2]

. (45)

In the simple case of an initially unexcited idler mode
|ψIN〉 = |α〉 ⊗ |0〉, the equivalent thermal photons are given
by N∗ = G − 1, whereas the total number of photons in
the two output modes are given byN1 = G|α|2 +G− 1 and
N2 = (G−1)(|α|2+1), respectively. In figure 1(a) we report
the degree of entanglement as a function of the gain of the
amplifier for different values of the initial coherent amplitude
of the signal. AsεOUT is an increasing function of the gain,
any input signal would, in principle, lead to a maximum
entangled state at the output for strong enough amplification.
In practice, the increasing rate ofεOUT versus the gain rapidly
decreases with input intensity, so that highly entangled states
are obtained only for weak input signals. For any fixed value
of the gain the degree of entanglement is a decreasing function
of the input intensity (see figure 1(b)). This means that,
in principle, for the amplification of a coherent signal the
classical limit of uncorrelated output is recovered in the limit
of very large intensity.

We now consider an input signal consisting of a couple
of coherent states with the same number of photons but
with different phases, in formula|ψIN〉 = |α〉 ⊗ |β〉, with
β = α exp(iφ). In this case it is straightforward to show that

N∗1 = N∗2 = G
N1 = N2 = [|α| +

√
G]2 − 2|α|

√
G(G + 1) cosφ,

(46)

Figure 1. (a) The degree of entanglement at the output of a linear
amplifier fed by a coherent signal as a function of the gain of the
amplifier. Curves for different values of the input intensity are
reported:|α|2 = 0.1 (full curve),|α|2 = 1 (dashed),|α|2 = 10
(dot-dashed), and|α|2 = 100 (dotted). (b) The degree of
entanglement as a function of the input intensity|α|2 for different
values of the gain of the amplifier.G = 1.1 (full curve),G = 2
(dashed),G = 10 (dot-dashed) andG = 100 (dotted), respectively.

such that the relative phase plays a major role in determining
the output entanglement. In figure 2 we report the degree
of entanglement as a function of the relative phase for
different values of the input intensity|α|2 = |β|2 and the
amplification gainG. As is apparent from the plots, the
entanglement strongly depends on the relative phase: the
variation is more pronounced for more excited states, whereas
the amplification gain sets the oscillation range.

4.2. Mixing of a pair of squeezed vacuums

It has been suggested that feeding a Mach–Zehnder
interferometer with single-mode or two-mode squeezed light
may lead to the formation of entangled states in a wide range
of degree of entanglement [21, 60]. We argue that such an
effect can also be observed at the output of a beam splitter fed
by a couple of single-mode squeezed vacuums. Indeed, apart
from a single-mode rotation, a Mach–Zehnder interferometer
is equivalent to a single beam splitter.

As an input state we consider a couple of squeezed
vacuums with opposite squeezing parameter

|ψIN〉 = Ŝ(r)|0〉 ⊗ Ŝ(−r)|0〉, (47)

which corresponds to a Gaussian two-mode Wigner function
with zero mean and variancesσ 2

1x = σ 2
2y = e2r/4 and
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both for passive and active devices, as well as for different
kinds of input signals.

The mixing of coherent states in a beam splitter is the
only bilinear process not leading to entanglement at the
output. On the other hand, the linear amplification of a
coherent signal does produce entanglement. In this case the
degree of entanglement is a decreasing function of the input
intensity, and therefore the classical limit of uncorrelated
output signals can be recovered in the very large intensity
regime. In the case of an amplification process with excited
idler mode the output entanglement strongly depends on the
relative phase between the two modes.

Finally, the mixing of a pair of squeezed vacuums at a
beam splitter has also been analysed. It has been shown that
the output state ranges from a totally disentangled state to a
maximally entangled state depending on the transmissivity
of the beam splitter.

As a concluding remark, we point out that for
the Gaussian input states considered here the degree of
entanglement at the output of a linear device is always
a measurable quantity. The parameters involved in the
expression of the output entanglement, in fact, are just the
mean values and the variances of the single-mode Wigner
functionsW 1

OUT(x1, y1) andW 2
OUT(x2, y2) which, in turn,

correspond to the real and the imaginary part of the complex
field amplitudes and to the fluctuations of a couple of field
quadratures. More precisely, as regards the mean values we
have

〈aj 〉 = Trj [ρ
j

OUTaj ] j = 1, 2

Aj = Re〈aj 〉 Bj = Im 〈aj 〉,
(51)

whereas the variances62
jx and 62

jy are obtained as the

extreme values maxφ〈1̂x2
φ〉 and minφ〈1̂x2

φ〉, with the
maximization/minimization procedure needed to individuate
the principal axis of squeezing. Remarkably, all these
quantities can be jointly reconstructed by the measurements
of the two single-modeQ-functions〈α|ρjOUT|α〉, j = 1, 2,
which can be accomplished by means of heterodyne [61,62],
eight-port homodyne [63–65] or six-port homodyne [66,67]
detection schemes.
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37
[48] Jumarie G 1990Relative Information(Berlin: Springer)
[49] Kullback S 1959Information Theory and Statistics(New

York: Wiley)
[50] Araki H and Lieb E H 1970Commun. Math. Phys.18160
[51] Wehrl A 1978Rev. Mod. Phys.50221
[52] Popescu S 1994Phys. Rev. Lett.72797
[53] Popescu S 1995Phys. Rev. Lett.742619
[54] Gisin N 1996Phys. Lett.A 210151
[55] Bennett C H 1998Phys. Scr.T76 210
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