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Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length,
under which the concepts of space and time lose their physical meaning. In quantum mechanics, the
insurgence of such a minimal length can be described by introducing a modified position-momentum
commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position
measurements has a lower bound. The value of the minimal length is not predicted by theories and must be
estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal
uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in
the deformed algebra induced by the deformed commutation relations.
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I. INTRODUCTION

The existence of a minimal length is a general feature
of many quantum gravity theories (see Refs. [1,2] and
references therein). According to these theories, the
Planck length

lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

q
≃ 1.6 × 10−35 m ð1Þ

sets an order of magnitude under which the concepts
of space and time lose their physical meaning. In turn,
this corresponds to the existence of a minimal uncertainty
in position measurements, which sets a limit to the
localizability of an object.
The uncertainty principle derived from the standard

commutation relations between position and momentum
does not predict the existence of any inferior bound to the
position uncertainty, as the latter may be arbitrarily small,
provided that the momentum uncertainty gets bigger. From
this fact originates the idea of modifying the commutation
relation between position andmomentum, in order to obtain
the prediction of a minimal position uncertainty [3–7].
In one dimension, let us consider the minimal

deformation

½x; p% ¼ iℏ
"
1þ β0

#
lPp
ℏ

$
2
%
; ð2Þ

with β0 being a positive dimensionless parameter. It is easy
to see that the following generalized uncertainty principle
holds:

ΔxΔp ≥
ℏ
2

"
1þ β0

#
lPΔp
ℏ

$
2
%
: ð3Þ

Equation (3) does indeed predict an inferior bound to
position uncertainty, given by Δx0 ¼ lP

ffiffiffiffiffi
β0

p
.

The introduction of a deformed commutator as in Eq. (2)
modifies the algebra of the Hilbert space and alters the
spectral decomposition of the Hamiltonian operator of
many quantum systems of theoretical and experimental
interest. Among them, the harmonic oscillator is of para-
mount theoretical importance, and several studies have
been focused on it in the context of deformed commutators
[5,8,9]. The energy eigenvalues can be found analytically in
an arbitrary number of dimensions and the eigenstates in
the momentum basis can be obtained [5,9].
The value of β0 in Eqs. (2) and (3), usually assumed to be

around unity [10], has to be found experimentally since
theoretical predictions are still lacking. Recently, beside
proposed tests with high-energy or neutrino experiments
[11,12], an optomechanical experimental scheme has been
proposed [13], and an upper bound to the value of β0 has
been set in Ref. [14], using micro- and nanomechanical
harmonic oscillators. Since β0 does not correspond to a
proper quantum observable, its value should be inferred
through some indirect measurements, which causes an
additional error in its estimation. In particular, if this extra
uncertainty is too big compared to the value of the
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parameter, it may be intrinsically inestimable, and no
experiment may be able to observe its presence.
The purpose of this work is to analyze the ultimate limits

to precision in the estimation of β0, exploiting tools from
local quantum estimation theory (QET) [15–18], and
presenting the results for a harmonic oscillator prepared
in various initial states. Estimation theory provides a
rigorous framework to determine the bound to the precision
achievable in an estimation procedure of experimental data.
This bound, known as the Cramér-Rao (CR) inequality
[19], is connected to the Fisher information of the prob-
ability distribution. QET is a generalization to quantum
systems: the ultimate bound to precision is found by
optimizing the Fisher information over all the quantum
measurements that can be made on a system. By providing
the tools to find the optimal measurement and state
preparation, QET allows one to go beyond standard
classical limits in precision and has been successfully
applied to a wide range of metrological problems [20,21],
in particular in quantum interferometry and quantum optics
[22], and in experiments with photons [23,24] and trapped
ions [25,26].
Remarkably, the study of the modified algebra of the

Hilbert space induced by the deformed commutators has
highlighted a shortcoming of standard QET, that in turn has
led us to a critical revision and generalization of the
standard Cramér-Rao bounds [27], which we will discuss
in the following. We also notice that a deformation of
position commutators also occurs in other models, e.g., due
to spin-induced uncertainty [28], and the corresponding
effects may be observable at different length scales.
The paper is structured as follows. In Sec. II we report

the solution of the eigenvalue problem for the harmonic
oscillator in the modified algebra, reporting explicit expres-
sions for the energy spectrum and for the eigenfunctions.
In Sec. III we review some results of local QET, reporting
the expression for the Fisher information (FI), quantum
Fisher information (QFI), and estimability of a parameter.
In Sec. IV we present the main results of our work. We
discuss the modifications to QET required for this problem,
and we show the ultimate bounds on precision in the
measure of the parameter, calculating also the performance
of the momentum operator. Analytical expansions for small
values of β0 are derived for FI and QFI relative to pure
states. We also analyze the QFI and FI for mixed states and
the thermal state. Finally, we analyze the dependence of the
results on the mass and frequency of the oscillator, in order
to find the best experimental configurations. Section V
closes the paper with some concluding remarks.

II. HARMONIC OSCILLATOR

In this section we consider the linear harmonic oscillator
in the algebra generated by x and p obeying the commu-
tation relation

½x; p% ¼ iℏð1þ βp2Þ; ð4Þ

with β ¼ l2
P=ℏ

2β0, which has the units of inverse square
momentum.
The action of position and momentum as differential

operators in the momentum representation is given by

pψðpÞ ¼ pψðpÞ; ð5Þ

xψðpÞ ¼ iℏð1þ βp2Þ∂pψðpÞ: ð6Þ

For the operators x and p to be symmetric, and thus
represent physical observables, the scalar product of the
Hilbert space must be modified:

hψ jϕi ¼
Z

þ∞

−∞
dpμβðpÞψ'ðpÞϕðpÞ ð7Þ

1 ¼
Z

þ∞

−∞
dpμβðpÞjpihpj; ð8Þ

where

μβðpÞ ¼
1

ð1þ βp2Þ
: ð9Þ

The presence of the nontrivial integration measure μβðpÞ
has a remarkable impact on the estimatibility of β, as we
will explain in the following section.
The Hamiltonian of the harmonic oscillator,

H ¼ p2

2m
þmω2 x

2

2
; ð10Þ

leads to the following stationary Schrödinger equation in
the momentum representation:

"
−ℏ2k

2

#
ð1þ βp2Þ ∂

∂p
$

2

þ p2

2m

%
ψðpÞ ¼ EψðpÞ; ð11Þ

where k ¼ mω2.
The solution of Eq. (11) has been addressed in Ref. [5]

and, in a different way, in Ref. [9]. In the former, the
solutions were found using the general theory of totally
Fuchsian equations, in terms of the hypergeometric func-
tion 2F1ða; b; c; zÞ, while in the latter it was given in terms
of the Gegenbauer polynomials CðλÞ

n ðsÞ. The solutions of
Refs. [5] and [9] in the momentum basis are, respectively,

ψnðpÞ ¼ N nð1þ β2Þ−1
2ðnþλÞ

2F1#
−n; 1 − n − 2λ; 1 − n − λ;

1

2
ð1þ ip

ffiffiffi
β

p
Þ
$

ð12Þ
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¼
ffiffiffi
4

p
β2λ−

1
2

ffiffiffi
π

p ΓðλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðλþnÞ
Γðnþ2λÞ

s

ð1þβp2Þ−λ
2CðλÞ

n

#
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

1þβp2

s $
;

ð13Þ

where λ ¼ 1
2 f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=½ðℏmωÞ2β2%

p
g and N n is a

normalization constant. The relation between these two
solutions involves transformation formulas for the hyper-
geometric functions. Besides, in Ref. [5] the normalization
constant N n of Eq. (12) was not derived explicitly. The
two solutions are compared in the Appendix, where the
normalization constant is found to be

N n ¼
ð−iÞn

ffiffiffi
π

p ffiffiffi
4

p
β2λþn−1

2

sinðπλÞΓð1 − n − λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ n

n!Γðnþ 2λÞ

s

: ð14Þ

The energy eigenvalues, according to Refs. [5,8,9], are

En ¼
k
2

"#
nþ 1

2

$
ðΔx20 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx40 þ 4a4

q
Þ þ Δx20n2

%
; ð15Þ

with Δx0 ¼ ℏ
ffiffiffi
β

p
and a ¼

ffiffiffiffiffi
ℏ
mω

q
.

III. LOCAL QUANTUM ESTIMATION THEORY

The parameter β introduced in the commutator (4) does
not correspond to a proper quantum observable and it
cannot be measured directly. In order to get information
about β, we have to resort to indirect measurements,
inferring its value by the measurements of a different
observable or a set of observables; that is, we have a
parameter estimation problem.
QET provides tools to find the optimal measurement

according to some given criterion. In this context we exploit
local QET which looks for the quantum measurement that
maximizes the so-called Fisher information, i.e., minimiz-
ing the variance of the estimator at a fixed value of the
parameter. Our aim is to evaluate the ultimate bound on
precision, i.e., the smallest value of the parameter that can
be discriminated, and to determine the optimal measure-
ment achieving these bounds.
In the following, we briefly review the main concepts

of local QET and set the notation for the rest of the paper.
We refer the reader to Ref. [18] for a more detailed review
of the subject. In the following section we also discuss
the generalization of standard QET that is required in the
problem at hand, in which the geometry of the Hilbert space
is affected by the minimal length, i.e., by the parameter to
be estimated.
In order to solve an estimation problem we have to find

an estimator, i.e., a map from the set of measurements
x1; x2;…; xn into the space of parameters β:

β̂ ¼ β̂ðx1; x2;…; xnÞ: ð16Þ

Optimal estimators are those saturating the Cramér-Rao
inequality [19]

VarðβÞ ≥ 1

MFðβÞ
; ð17Þ

which sets a lower bound on the variance VarðβÞ ¼
Eβ½ðβ̂ðxÞ − βÞ2% of any estimator. M is the number
of measurements and FðβÞ is the Fisher information,
defined by

FðβÞ ¼
Z

dxPðxjβÞð∂β lnPðxjβÞÞ2; ð18Þ

where PðxjβÞ is the probability of obtaining the value x
when the parameter has the value β, and ∂β is a shorthand
for ∂

∂β.
In quantum mechanics, we consider a quantum statis-

tical model, i.e., a family of quantum states ρβ defined on a
Hilbert space H and labeled by the parameter β which in
our problem is real and positive. We want to estimate its
value through the measurement of some observable on the
state ρβ. A quantum estimator for the parameter β is a pair,
consisting of a positive-operator-valued measurement
(POVM) and a classical estimator that accounts for the
post-processing of the sampled data. The choice of the
quantum measurement is the central problem of QET, since
different choices in general lead to different attainable
precisions.
In quantum mechanics the probability of a certain

outcome is given by the Born rule PðxjβÞ ¼ Tr½Πxρβ%,
where Πx, are the elements of the POVM we measure and
satisfy

R
dxΠx ¼ 1. The FI is then written as

FðβÞ ¼
Z

dx
½∂βTrðΠxρβÞ%2

TrðΠxρβÞ
: ð19Þ

Upon defining the symmetric logarithmic derivative
(SLD) Lβ as the self-adjoint operator satisfying the
equation

Lβρβ þ ρβLβ

2
¼

∂ρβ
∂β ; ð20Þ

we have that the FI FðβÞ of any POVM is bounded [17] by
the so-called quantum Fisher information HðβÞ:

FðβÞ ≤ HðβÞ≡ Tr½ρβLβ
2% ¼ Tr½∂βρβLβ%: ð21Þ

The Cramér-Rao inequality now takes the form
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VarðβÞ ≥ 1

MHðβÞ
; ð22Þ

which gives the ultimate bound to precision for any
unbiased estimator of β.
Equation (20) is a Lyapunov matrix equation and a

general solution exists. An explicit form for the symmetric
logarithmic derivative can be given in the basis in which the
density operator is diagonal. Upon writing

ρβ ¼
X

n

pnðβÞjψnðβÞihψnðβÞj; ð23Þ

where fjψnig is a complete set in the Hilbert space, we
have [18]

Lβ ¼ 2
X

nm

hψmj∂βρβjψni
pn þ pm

jψmihψnj; ð24Þ

where it is understood that the sum is on the indices for
which pn þ pm ≠ 0. From Eq. (24) follows the explicit
formula for the QFI,

HðβÞ ¼ 2
X

nm

jhψmj∂βρβjψnij2

pn þ pm
: ð25Þ

The expression of the QFI gets simpler when we
consider a family of pure states described by the wave
function ψβ. In standard quantum mechanics it is straight-
forward to find that the SLD is Lβ ¼ 2∂βρβ by noticing that
∂βρβ ¼ ∂βðρ2βÞ ¼ ∂βρβρβ þ ρβ∂βρβ, where ρβ is a projector
onto the pure state [18]. This yields

HðβÞ ¼ 4ðh∂βψ j∂βψiþ h∂βψ jψi2Þ: ð26Þ

From a geometrical perspective, the precision in the
estimation of the parameter β is related to the distinguish-
ability of the corresponding state ρβ from its neighbors. If we
have to discriminate between the two values β and β þ dβ,
with dβ infinitesimal, a larger “distance” between ρβ and
ρβþdβ generally corresponds to an easier discrimination by
quantum-limited measurement on the system. Among the
different definitions of distance that can be made on the
manifold of quantum states, the one that turns out to capture
the notion of estimation measure is the Bures distance
[29,30], defined as

DBðρ1; ρ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − Fðρ1; ρ2Þ%

p
; ð27Þ

whereFðρ1; ρ2Þ ¼ Tr½ð ffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

p Þ1=2% is the quantum fidel-
ity between the states ρ1 and ρ2 [31]. By evaluating the
infinitesimal Bures distance explicitly, one finds that the
Bures metric is indeed proportional to the QFI [32].
In order to quantify the performance of an estimator

and thus the estimability of a certain parameter, a relevant
figure of merit is the signal-to-noise ratio (SNR)

Rβ ≡ β2FðβÞ ≥ β2

VarðβÞ
; ð28Þ

which is larger for a better estimator. We can easily derive
an upper bound for this ratio using the Cramér-Rao
inequality, obtaining

Rβ ≤ Qβ ≡ β2HðβÞ; ð29Þ

which we refer to as the quantum signal-to-noise ratio
(QSNR). The larger the quantities RðβÞ and QðβÞ the
smaller the relative error in the estimation of the
parameter β.

IV. QUANTUM LIMITS TO PRECISION IN
PROBING DEFORMED COMMUTATORS

We investigate the value of the QFI and the performance
of a momentummeasurement through the calculation of the
FI as functions of β for different states of the harmonic
oscillator. In this way we find the estimability and the
precision available through a momentum measurement
as a function of the value of β, clarifying what values of
β could allow better estimation through experiments. In the
following, we take ℏ ¼ 1 and kB ¼ 1. The parameters
characterizing the harmonic oscillator, i.e., its mass m and
its pulsation ω are initially taken equal to 1. We discuss the
dependence of the QFI and FI on these parameters in
Sec. IV D.
In the last section we discussed the tools of QET. In the

problem at hand, however, standard QET has proven to be
inaccurate, due to the particular geometry of the Hilbert
space induced by the deformed commutators (2). Indeed
the scalar product has a nontrivial measure μβðpÞ [Eq. (9)]
that depends on the parameter β. This in turn introduces
a β-dependent measure in the sample space on which the
probability PðpjβÞ is defined, thus making the Cramér-Rao
surpassable. This situation has been addressed recently in
Ref. [27], where an additional contribution to the FI was
introduced. Let us redefine the FI as

F ðβÞ ¼ FðβÞ þ IμðβÞ; ð30Þ

where

IμðβÞ ¼
Z

dpμβðpÞPðpjβÞ½∂β log μβðpÞ%2: ð31Þ

Correspondingly, we redefine the SNR RðβÞ≡ β2F ðβÞ.
As Iμ is a positive quantity, it follows that Eq. (22) does
not give the ultimate bound to the variance of any estimator
of β. It is not known whether F in Eq. (30) can be
optimized over all possible quantum measurements so that
a new quantum Cramér-Rao bound can be found.
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A. Pure states

We first consider the estimation of β from a measurement
on the harmonic oscillator prepared in a pure state jψβi.
Equation (26), derived in Sec. III, does not hold here
because ∂βðρ2βÞ ≠ ∂βρβρβ þ ρβ∂βρβ. Nevertheless, we can
obtain a simplified expression for the QFI starting
from Eq. (25). We write ρβ ¼

P
npnjϕnihϕnj, where

jϕ0i≡ jψβi, pn ¼ δn0, and fjϕnign≠0 form a basis of the
subspace orthogonal to jψβi. We obtain

HðβÞ ¼ 2
X

n;m
δn0þδm0≠0

jδm0h∂βϕ0jϕniþ δn0hϕnj∂βϕ0ij2

δn0 þ δm0

¼ jh∂βϕ0jϕ0iþ hϕ0j∂βϕ0ij2 þ 4
X∞

n¼1

jhϕnj∂βϕ0ij2

¼ 4h∂βψβj∂βψβi − 4Imðhψβj∂βψβiÞ2: ð32Þ

Consider now a momentum measurement on the state
described by the wave function ψβðpÞ. The probability of
getting p as an outcome is given by PðpjβÞ ¼ jψβðpÞj2, so
the corresponding FI (30) is

F ðβÞ ¼
Z

dp
&
μβ

½∂βjψβj2%2

jψβj2
þ jψβj2

½∂βμβ%2

μβ

'
: ð33Þ

Notice that if the wave function ψβðpÞ is real, the
first term of Eq. (33), corresponding to FðβÞ, is equal to
the QFI (32). Thus the FI for the momentum measurement
is greater than the QFI and the standard Cramér-Rao bound
is violated.
Using Eq. (32) and performing numerical integration of

the scalar product, we calculate the QFI HðβÞ for the first
eigenstates of the harmonic oscillator. In all cases HðβÞ is a
decreasing function of β, but looking at the estimability
QðβÞ, which is the relevant quantity to consider, we have
an increasing function of the parameter. If we consider
eigenstates of higher energy, the QFI increases as can be
checked numerically.
Since the value of β is believed to be much smaller

than one, the wave functions in Eqs. (12) and (13) and
the QFI (32) can be expanded around β ¼ 0 in order to
get analytic solutions which confirm the consistency
of the numerical integrations. We obtain the following
polynomial expressions:

Hψ0
ðβÞ ¼ 9

8
−
53

8
β þ 803

32
β2 þOðβ3Þ; ð34Þ

Hψ1
ðβÞ ¼ 45

8
−
351

8
β þ 7633

32
β2 þOðβ3Þ; ð35Þ

Hψ2
ðβÞ ¼ 123

8
−
1255

8
β þ 36401

32
β2 þOðβ3Þ: ð36Þ

Figure 1 compares the analytical results with the
numerical findings at various values of β. For β ≲ 0.01,

i.e., the expected range of values for β [13], the approxi-
mation is very good with a relative error of at most 10−3.
The term IμðβÞ, for small β, reads

Iμ;ψ0
ðβÞ ¼ 3

4
− 3β þ 9β2 þOðβ3Þ; ð37Þ

Iμ;ψ1
ðβÞ ¼ 15

4
−
45

2
β þ 405

4
β2 þOðβ3Þ; ð38Þ

Iμ;ψ2
ðβÞ ¼ 39

4
−
165

2
β þ 2043

4
β2 þOðβ3Þ: ð39Þ

Notice that Iμ;ψn
ðβÞ≃ 2=3Hψn

ðβÞ ¼ Fψn
ðβÞ: the

integration-measure term of F ðβÞ gives a relevant contri-
bution to the estimability of β through a momentum
measurement.
We also studied the behavior of the QFI of the generic

superposition of the ground and first excited state, to
determine if the best estimability is attained by choosing
the first excited state. The system is thus described by

jψi ¼ cosðϕÞjψ0iþ sinðϕÞjψ1i ð40Þ

and the QFI is a function of the parameters β and ϕ.
The QFI has been calculated through numerical integration
and it is shown in Fig. 2 (left): the maximal values of the
function are obtained for ϕ → π=2 and ϕ → 3=2π, i.e.,
the first excited state is the optimal state among those of
Eq. (40). This can be seen numerically for arbitrary β and
analytically for small β, when the following expression
holds:

FIG. 1. From bottom to top, the estimability QðβÞ for the
ground state (blue) and the first (orange) and second excited state
(green) as obtained by numerical integration of the scalar product
in Eq. (32). In the inset, we show the QFI HðβÞ for the same
states. The dashed lines are obtained from the Taylor expansions
of the QFI [Eqs. (34)–(36)]. The estimability increases as we
employ more excited states. The QFI decreases with β. In the
region β ≲ 0.01 the Taylor expansion provides a very good
approximation.
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HðβÞ ¼ Hψ0
ðβÞ þ ½Hψ1

ðβÞ −Hψ0
ðβÞ% sin2 ϕ: ð41Þ

We now consider a superposition of the first three
eigenstates of the harmonic oscillator:

jψi ¼ cosϕjψ0iþ sinϕ sin θjψ1iþ sinϕ cos θjψ2i: ð42Þ

In this case, the optimal state is not jψ2i as one would
expect, given the previous result. The right panel of Fig. 2
shows the QFI for the superposition of the form of Eq. (42)
as a function of θ and ϕ. jψ2i is given by θ ¼ 0 and
ϕ ¼ π=2 but the maximum is for θ ¼ 0 and ϕ≃ 0.43π.
Thus, in general, the eigenstates of the harmonic oscillator
are not the states that give the best estimability.

B. Mixed states

When the system is prepared in a mixed state
ρβ ¼

P
mpmjψmihψnj, by expanding ∂βρ in Eq. (25) we

obtain the following formula for the QFI:

HðβÞ ¼ 2
X

nm

1

pn þ pm
j∂βpmδmn þ pnhψmj∂βψni

þ pmh∂βψmjψnij2: ð43Þ

The FI F ðβÞ for the momentum measurement (30), on
the other hand, is given by the two contributions

FðβÞ ¼
X

n

pn

Z
dpμβðpÞjψnðpÞj2∂β ln jψnðpÞj2 ð44Þ

and

Iμ ¼
X

n

pn

Z
dpμβðpÞjψnðpÞj2∂β ln μβðpÞ: ð45Þ

As an example, we consider the estimation of β from a
measurement on the harmonic oscillator prepared in a

generic statistical mixture of the ground and the first
excited state. The system is thus described by the statistical
operator

jψihψ j ¼ cosðθÞ2jψ0ihψ0jþ sinðθÞ2jψ1ihψ1j: ð46Þ

We performed numerical integration of Eqs. (43) and
(44) and the results are shown in Fig. 3. The FI is much
higher than the QFI due to the contribution of the term Iμ.
While for θ → 0 and θ → Π

2 (i.e., when the state is pure)
FðβÞ ¼ HðβÞ, for intermediate values of θ, FðβÞ does not
saturate the QFI, as we see in Fig. 3. Thus, while in general
the momentum measurement is not optimal for mixed
states, the FI is much greater than the QFI due to the
dependence of the geometry of the Hilbert space on β.

C. Thermal state

In a typical experimental setup it is generally challenging
to prepare the oscillator in a pure state. Due to the
interaction with the environment, the system will most
likely be in a thermal state characterized by a temperature
T. The density operator describing the state is then

ρT ¼ Z−1
X

n

e−EnðβÞ=T jψnihψnj; ð47Þ

where Z ¼
P

ne
−EnðβÞ=T is the partition function of the

thermal distribution. What is the maximum precision
achievable if the oscillator is in the thermal state ρT? We
focus on states with temperatures close to zero (compared
to the ground-state energy) so that only the lower eigen-
states have significant populations. Indeed, the scalar
products of the form h∂βψnjψmi that appear in Eq. (43),

FIG. 2. Left: QFI (solid blue) and FI (dashed orange) relative to
the state jψi ¼ cosðϕÞjψ0iþ sinðϕÞjψ1i as functions of ϕ, with
β ¼ 0.01. The maximal values are reached when ϕ → π=2:
among the superpositions of jψ0i and jψ1i the optimal state is
the first excited state. Right: FI as a function of the angles θ and ϕ
for a superposition of the first three eigenstates, cf. Eq. (42), for
β ¼ 10−2. We can see that the maximal QFI is attained when
θ ¼ 0 and ϕ≃ 0.43π, i.e., when the system is in a superposition
of the states jψ0i and jψ2i.

FIG. 3. Comparison of QFI (dashed blue) and FI F (solid
orange) for the statistical mixture of the ground and first excited
state [Eq. (46)] as a function of θ, with β ¼ 0.01. The two shaded
regions represent the contributions to the FI coming from FðβÞ
(bottom, green) and Iμ (top, orange), cf. Eq. (30). The FI is much
greater than the QFI due to the relevant contribution of the
integration-measure term Iμ. For θ ¼ 0 and θ ¼ Π=2 (i.e., for
pure states) FðβÞ is equal to the QFI, while for intermediate
values of θ it is slightly lower, which means that the momentum
measurement is not the optimal one (in the sense of the
standard QET).
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for high m and n, involve highly oscillating functions and
are thus hard to compute numerically to an acceptable
accuracy.
As can be seen in Fig. 4, the QFI and FI are increasing

functions of T. This is due to the fact that the population of
higher eigenstates increases with T and the QFI and FI
increase with the energy of the eigenstate. When T ≲ E0,
F ðβÞ is greater than HðβÞ, violating the quantum Cramér-
Rao bound; on the other hand, when the temperature
increases, the momentum measurement is not optimal
anymore.

D. Dependence on m and ω

In the previous section we have shown the behavior of
the QFI as a function of β assuming ω ¼ 1 and m ¼ 1.
In this section we show how the QFI depends on the mass
and frequency of the harmonic oscillator.
By looking at Eqs. (12) and (13), we notice that the

eigenstates of the harmonic oscillator depend on m and ω
only through the product ωmβ in the term λ.
As we see in Fig. 5, in the example of the ground state,

HðβÞ is an increasing function of ωm. We can analytically
obtain the limits for ωm → 0,

HðβÞ →
ωm→0

0; ð48Þ

and ωm ≫ β,

Qψ0
ðβÞ ∼ 1

8
; Qψ1

ðβÞ ∼ 1

2
; Qψ2

ðβÞ ∼ 11

8
: ð49Þ

As for the FI, we find that for large ωm the SNR is twice the
QSNR: Rψn

ðβÞ ∼ 2Qψn
ðβÞ. Equation (49) shows that the

SNR and QSNR of β do not depend on its value for large
enough ωm.

V. CONCLUSIONS

Although aminimal length at the Planck scale is predicted
by many theories of quantum gravity, due to the lack of
theoretical predictions about its value and the formidable
technological challenges required, experimental tests have
been so far inconclusive. The aim of this paper is to provide
theoretical tools to asses the best achievable precision in the
estimation of the deformation of the canonical commutation
relations induced by the minimal length. We focused on
measurements on a harmonic oscillator, a relevant testbed
both from a theoretical point of view, as it is analytically
solvable, and from an experimental point of view, since
experiments can and have been made with nanomechanical
and optomechanical oscillators.
We have shown that a measurement of the momentum is

optimal if the oscillator is in a pure state and the achievable
precision goes beyond the bounds of standard quantum
estimation theory. This is a relevant result, due to the altered
geometry of the Hilbert space, and shows the necessity of
redefining the quantities of QET in a more general way [27].
Our results indicate that the estimability improves by

preparing the oscillator in a higher-energy eigenstate.
Moreover, increasing the mass and frequency of the
oscillator allows for better precision and the temperature
is not detrimental for the probing, although the momentum
measurement ceases to be the optimal measurement as the
temperature increases above the energy of the ground state.
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FIG. 4. QFI HðβÞ (solid blue), FI F ðβÞ (dashed orange), and
FðβÞ (dotted green) as functions of T for β ¼ 0.01 (with
ℏ ¼ kB ¼ 1Þ. The FI and QFI increase with temperature, because
higher eigenstates of the oscillator are populated, but the
performance of the momentum measurement gets worse as
temperature increases. For T close to zero F ðβÞ violates the
CR bound, but at a temperature comparable with E0ðβÞ≃ 1

2 þ
β
4,

F ðβÞ gets lower than the QFI.

FIG. 5. Log-plot of the quantum estimability QðβÞ (solid lines)
and estimability RðβÞ for the momentum measurement (dashed
lines) as functions of ωm=β for the pure states (from bottom
to top) ψ0, ψ1, and ψ2. The plots do not depend on β:QðβÞ and
RðβÞ increase with the product ωm and reach the limits reported
in Eq. (49).
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APPENDIX: RELATION BETWEEN THE SOLUTIONS OF THE HARMONIC
OSCILLATOR IN THE MOMENTUM BASIS

Here we show the relation between the two solutions of the harmonic oscillator. We also find the normalization constant
N n for the solution (12), involving the hypergeometric function.
The solution of Ref. [9] is normalized. Let us start from Eq. (12) and show that it can be cast into the form of Eq. (13). We

assume that n is even, i.e., we set n ¼ 2ν, with ν ∈ N. The case with odd n is analogous. The argument of 2F1 in Eq. (12) is
complex, but we can apply Kummers’ quadratic transformation (15.8.18) from Ref. [33] to obtain

ψnðpÞ ¼ N nð1þ β2Þ−λ
2−ν

2F1

#
−ν;

1

2
− λ − ν; 1 − λ − 2ν; 1þ βp2

$
: ðA1Þ

Next, we apply Eq. (15.8.6) of Ref. [33] to invert the argument of 2F1: we end up with

ψnðpÞ ¼
N n

ffiffiffi
π

p
ð−1Þν4−λ−ν

ð1þ βp2Þλ2
secðπλÞΓð−λ − 2νþ 1Þ

Γðλþ 1
2Þ þ Γð−2λ − 2νþ 1Þ 2

F1

#
−ν; λþ ν; λþ 1

2
;

1

1þ βp2

$
: ðA2Þ

By applying Eq. (20) of Ref. [34] and by plugging n back in, we finally reach the functional form of Eq. (13):

ψnðpÞ ¼ N n
inn! sinðπλÞΓðλÞΓð1 − n − λÞ

ð−2Þnπ
ð1þ βp2Þ−λ

2CðλÞ
n

# ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βp2

1þ βp2

s $
: ðA3Þ

The same result can be obtained for odd n by applying Eq. (21) of Ref. [34].
By comparing Eqs. (A3) and (12) we obtain an expression for the normalization constant,

N n ¼
ð−iÞn

ffiffiffi
π

p ffiffiffi
4

p
β2λþn−1

2

sinðπλÞΓð1 − n − λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ n

n!Γðnþ 2λÞ

s

: ðA4Þ
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