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Abstract
Multiparameter quantum estimation theory plays a crucial role in advancing
quantum metrology. Recent studies focused on fundamental challenges such
as enhancing precision in the presence of incompatibility or sloppiness, yet
the relationship between these features remains poorly understood. In this
work, we explore the connection between sloppiness and incompatibility by
introducing an adjustable scrambling operation for parameter encoding. Using
a minimal yet versatile two-parameter qubit model, we examine the trade-
off between sloppiness and incompatibility and discuss: (1) how information
scrambling can improve estimation, and (2) how the correlations between the
parameters and the incompatibility between the symmetric logarithmic deriv-
atives impose constraints on the ultimate quantum limits to precision. Through
analytical optimization, we identify strategies to mitigate these constraints and
enhance estimation efficiency. We also compare the performance of joint para-
meter estimation to strategies involving successive separate estimation steps,
demonstrating that the ultimate precision can be achieved when sloppiness is
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minimized. Our results provide a unified perspective on the trade-offs inher-
ent to multiparameter qubit statistical models, offering practical insights for
optimizing experimental designs.

Keywords: multiparameter quantum estimation, quantum metrology,
qubit model, incompatibility, sloppiness

1. Introduction

Multiparameter quantum estimation [1–7] is an active area of research for its fundamental
interest [8, 9] and due to its wide range of applications in quantummetrology [10–12], quantum
imaging [13–16], and other fields [17–25]. Additionally, the recent finding that simultaneous
estimation ofmany parameters can yield a better precision limit than estimating each parameter
individually has accelerated the development of this field [26–29]. One of the most important
targets in quantum multiparameter metrology is improving parameter estimation precision.
The quantum Fisher information matrix (QFIM) and the accompanying quantum Cramér–Rao
bound (QCRB) are relevant tools in this endeavor [30–35].

Multiparameter quantum estimation, similarly to the single-parameter case, involves
three steps: probe state preparation, parameter encoding via system-probe interaction, and
measurement-based information extraction. However, because of the correlation between para-
meters, designing optimal estimation strategies becomes more challenging. During encoding,
a key challenge arises from sloppiness, which is a phenomenon where redundant or poorly
encoded parameters reduce the efficiency of information extraction. Sloppiness [36–44] occurs
when parameters are not independently encoded into the quantum probe state, leading to cor-
relations that obscure individual parameter estimation, which acts as an intrinsic noise source.
In contrast, stiffness refers to the desirable scenario where parameters are encoded in a way that
minimizes redundancy, allowing for efficient and independent estimation of each parameter,
thereby enhancing the overall precision of the estimation process.

Meanwhile, the measurement stage introduces a fundamental trade-off: optimizing preci-
sion for one parameter often compromises others due to the incompatibility of non-commuting
observables. For instance, when the symmetric logarithmic derivatives (SLDs) corresponding
to different parameters fail to commute, no singlemeasurement can simultaneously saturate the
QCRB for all parameters. Notably, sloppiness (from encoding dynamics) and incompatibility
(from measurement) represent distinct sources of estimation uncertainty. Understanding this
trade-off is critical for advancing multiparameter quantum metrology and achieving practical
precision enhancements.

Incompatibility in multiparameter quantum estimation has been investigated in different
systems [45–48], and sloppiness have been discussed in several metrological scenarios [36–44,
49, 50], but little emphasis has been devoted to the link between sloppiness and incompatibil-
ity. In this paper, we address a two-parameter scrambling qubit statistical model with tunable
sloppiness and present an adjustable scrambling operation to investigate how the correlations
between the parameters and the incompatibility between the SLDs influence the precision
bounds. The scrambling model generally describes how the unitary operation between the two
encodings spreads parameter information across the state in a nontrivial way, affecting both
sloppiness and incompatibility.

This work is structured as follows. Section 2 introduces the fundamentals of quantum mul-
tiparameter estimation. In section 3, to explore the interplay between sloppiness and incompat-
ibility, we present a two-parameter qubit estimation model that incorporates an information
scrambling operation. This operation allows us to tune the correlations between parameters
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and, consequently, the sloppiness of the model. We also analyze the trade-off between sloppi-
ness and incompatibility. In section 4, we optimize the relevant QCRBs and examine the role
of sloppiness in achieving these bounds. Finally, section 5 concludes the paper with a summary
of our findings. Details of calculations are provided in the appendices.

2. Multiparameter quantum estimation: precision, sloppiness and
incompatibility

In this section, we provide the theoretical framework, definitions and metrics used throughout
the paper. We consider finite dimensional systems and a family of quantum states ρλ encoding
the values of d real parameters, denoted as a vector λ= (λ1,λ2, . . . ,λd)

T. If we perform a
positive operator-valued measurement (POVM) Π with elements {Πk} satisfying Πk ⩾ 0 and∑

kΠk = I, the measurement outcome k is obtained with probability pλ(k) = Tr [ρλΠk]. The
estimator function based on the result is denoted as λ̂(k). The performance of the estimator is
assessed by the covariance matrix V(λ̂) with elements

Vµν =
∑
k

pλ (k)
[
λ̂µ (k)−Ek

(
λ̂µ

)][
λ̂ν (k)−Ek

(
λ̂ν

)]
where Ek(λ̂µ) is the expectation value of λ̂µ over the probability distribution pλ(k).

In classical multiparameter estimation, when the estimators satisfying the locally unbiased
conditions:

Eν

(
λ̂
)
= λ ∂µEk

(
λ̂ν

)
= δνµ,

where ∂µ = ∂
∂λµ

, then the CRB [51] holds

V
(
λ̂
)
⩾ 1
MF

,

whereM is the number of repeated measurements and F is the FI matrix with elements defined
by

Fµν =
∑
k

pλ (k) ∂µ logpλ (k) ∂ν logpλ (k) =
∑
k

∂µpλ (k) ∂νpλ (k)
pλ (k)

.

The CRB can be saturated in the asymptotic limit of an infinite number of repeated experiments
using Bayesian or maximum likelihood estimators [52].

Due to the non-commutativity of the operators, the quantum analogue of the FI cannot be
uniquely introduced. In fact, there exist several different definitions of quantum Fisher inform-
ation. The most celebrated and useful approaches are based on the so-called SLD operators
LS
µ [53] and right logarithmic derivative (RLD) operators LR

µ [54, 55], defined as follows

∂µρλ =
LS
µρλ + ρλLS

µ

2
, (1)

∂µρλ = ρλL
R
µ. (2)

We denote the corresponding SLD and RLD QFIM as Q and J, respectively, with elements

Qµν =
1
2
Tr

[
ρλ

{
LS
µ,L

S
ν

}]
,

Jµν = Tr
[
ρλL

R
µL

R†
ν

]
.
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For pure statistical models, ρλ = |ψλ⟩⟨ψλ| we have

Qµν = 4Re(⟨∂µψλ|∂νψλ⟩− ⟨∂µψλ|ψλ⟩⟨ψλ|∂νψλ⟩) ,
Qνµ = Qµν ,

where ∂k ≡ ∂λk .

2.1. Symmetric and right QCRBs

Using the above SLD and RLD QFIMs, Q and J, matrix inequalities for the covariance mat-
rix of any set of locally unbiased estimators may be established. Then, in order to obtain a
scalar bound and to tailor the optimization of precision according to the different applications,
a weight matrixW (a positive, real d× d matrix) may be introduced. The corresponding sym-
metric and right scalar bounds read as follows:

CS

[
W, λ̂

]
=

1
M

Tr
[
WQ−1

]
,

CR

[
W, λ̂

]
=

1
M

(
Tr

[
WRe

(
J−1)]+Tr

[∣∣W Im
(
J−1)∣∣

1

])
,

where |A|1 =
√
A†A and Re(A) and Im(A) denote the real and imaginary parts of the complex-

valued matrix A, respectively.

2.2. Holevo and Nagaoka CRBs

If the SLDs do not commute, it may happen that measurements that are optimal for different
parameters are incompatible, making the symmetric and right QCRB, as well as their scalar
counterparts, not achievable. An achievable scalar bound has been derived by Holevo [30]:

CH

[
W, λ̂

]
= min

X∈X
{Tr [WRe(Z [X])] +Tr [|W Im(Z [X])|1]} ,

where the Hermitian d× d matrix Z is defined via its elements Zµν [X] = Tr [ρλXµXν ]
with the collection of Hermitian operators X belonging to the set X = {X=

(X1, . . . ,Xd)|Tr[(∂µρλ)Xν ] = δµν }. It has been proven that Holevo CRB CH[W, λ̂] becomes
attainable by performing a collective measurement on an asymptotically large number of
copies of the state ρ

⊗
n

λ with n→∞. As such, it is typically regarded as the most fundamental
scalar bound for multiparameter quantum estimation.

Nagaoka [56] introduced a more informative bound, denoted as CN[W, λ̂], which is par-
ticularly valuable for practical experimental measurements. While not as theoretically tight
as the Holevo bound CH[W, λ̂], it can be practically achieved using separable measure-
ment strategies, making it more feasible to attain in real-world applications. The bound is
defined as:

CN

[
W, λ̂

]
=min

Π

{
Tr

[
WF−1]} , (3)

where the minimization is performed over all possible single-system (non collective) POVMs
Π. As for the other bounds, the optimal POVM generally depends on the true value of the
parameters λ.
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2.3. Sloppiness and stiffness

In statistical estimation, degeneracy is an extreme case of sloppiness. Mathematically, degen-
eracy corresponds to a singular FIM, whereas sloppiness is more concerned with the distri-
bution of the eigenvalues of the FIM. A quantum statistical model is termed sloppy if the
QFIM is singular, i.e. det[Q] = 0. This means that the true parameters describing the sys-
tem are m< n combinations of the original parameters λ1,λ2, . . . ,λn. The eigenvalues of Q
quantify the sensitivity of the probe state to perturbations along orthogonal parameter direc-
tions. A small eigenvalue implies that the state of the probe is insensitive to changes in the
corresponding parameter direction, i.e. that combination of parameters is poorly encoded. The
degree of sloppiness may be thus quantified by the determinant of QFIM:

s :=
1

det [Q]
= det

[
Q−1

]
, (4)

which measures how strongly the system depends on a combination of the components of λ
rather than on its individual components. Sloppiness may change under reparameterization. A
large sloppiness indicates that the model’s sensitivity to parameter variations is highly aniso-
tropic. A model with low sloppiness is referred to as a stiff model.

2.4. Compatibility and incompatibility

Due to the non-commutativity of the SLDs associated to different parameters, in a multipara-
meter scenario QCRB cannot always be achieved. Based on the quantum local asymptotic
normality [57–59], it has been shown that the multiparameter SLD-QCRB is attainable if and
only if the weak compatibility condition is satisfied [47], defined by

Tr
[
ρλ

[
LS
µ,L

S
ν

]]
= 0. (5)

The incompatibility matrixD, also known as mean Uhlmann curvature (MUC), is the antisym-
metric matrix defined by

Dµν :=
1
2i

Tr
[
ρλ

[
LS
µ,L

S
ν

]]
, (6)

and is useful to quantify the incompatibility between the pair of parameters λµ and λν . For a
two-parameter pure state model we have

D11 = D22 = 0,

D12 =−D21 = 4Im(⟨∂1ψλ|∂2ψλ⟩− ⟨∂1ψλ|ψλ⟩⟨ψλ|∂2ψλ⟩) .

A measure of the incompatibility of the model is given by

c :=
1
2
Tr

[
D†D

]
, (7)

which is based on the antisymmetric nature of the MUC. The definition of incompatibility
refers to the non-commutativity among different SLDs. Each SLD represents the optimal
observable for estimating a given parameter, and their failure to commute reflects a funda-
mental quantum limitation—the presence of unavoidable noise that restricts the precision
of joint estimation. If equation (5) is not met—meaning incompatibility is nonzero—then
no single measurement can simultaneously achieve optimal precision for all parameters. In
other words, when incompatibility exists, trade-offs in estimation precision are inevitable.
This measure is non-negative for all pairs of SLD operators and approaches infinity when all
SLD operators are commuting with each other. Incompatibility is affected by the parameters’
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component, and thus c is not invariant under reparameterization. However, incompatibility is
covariant in some natural scenarios in which it should not be possible to generate incompat-
ibility, such as unitary evolution. In our 2-parameter qubit estimation model, to highlight the
structural similarity with sloppiness, the incompatibility defined in equation (7) simplifies to

c := det [D] =−D2
12 . (8)

2.5. Relationship between different bounds

The relationship between the different bounds has been extensively explored widely, providing
a classification of quantum statistical models. Specifically, the models can be categorized into
four types:

• Classical When the quantum state ρλ can be expressed in a diagonal form with parameters
λ and a λ-independent unitary U, such that ρλ = UΛλU†, it can be regarded as a classical
quantum statistical model. In this scenario, the FI matrix F, the SLD QFIMQ, and the RLD
QFIM J are all identical. Consequently, we obtain CS[W, λ̂] = CR[W, λ̂] = CH[W, λ̂] =

CN[W, λ̂].
• Quasi-classical A quantum statistical model is called quasi-classical if all SLD operators

commute with each other for every parameter. Thus, the equality CS[W, λ̂] = CH[W, λ̂]
holds.

• Asymptotically classical In asymptotically classical quantum statistical models, all SLD
operators satisfy the weak compatibility condition defined in equation (5), and CS[W, λ̂] is
equal to CH[W, λ̂].

• D-invariant When a quantum statistical model is D-invariant, we have [55, 60]

CR

[
W, λ̂

]
= CH

[
W, λ̂

]
= CS

[
W, λ̂

]
+Tr

[∣∣∣√WQ−1UQ−1
√
W
∣∣∣
1

]
.

This equality illustrates that the RLD bound is achievable by performing a collective meas-
urement on an asymptotically large number of copies.

In [5] a measure has been suggest to quantify the amount of incompatibility (somehow referred
to as the quantumness of the model [4])

R := ∥iQ−1D∥∞, (9)

where ∥A∥∞ denotes the largest eigenvalue of the matrix A. It has been also shown that R is
useful in upper bounding the Holevo bound in terms of the SLD-bound, as follows:

CS

[
W, λ̂

]
⩽ CH

[
W, λ̂

]
⩽ CN

[
W, λ̂

]
⩽ (1+R)CS

[
W, λ̂

]
⩽ 2CS

[
W, λ̂

]
. (10)

In the pure-state limit, the Holevo bound is equivalent to the RLD CR bound [60]. When the
number of parameters to be estimated is n= 2, we have the relation [5]

R=

√
det [D]
det [Q]

=
√
sc, (11)

where s represents the sloppiness and c is the incompatibility of the system. For our qubit
multiparameter model, equation (10) can be further rewritten as

CS

[
W, λ̂

]
⩽ CH

[
W, λ̂

]
= CN

[
W, λ̂

]
⩽ CS

[
W, λ̂

](
1+

√
sc
)
. (12)
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Figure 1. The scrambling model considered in this paper. The model parameters λ1 and
λ2 are encoded via the unitary operationsU1 andU2, which represent rotation along the
z-axis of the Bloch sphere. To remove sloppiness and adjust correlations between the
encoded parameters, we introduce a scrambling operation, represented by the interme-
diate rotation V.

3. Information scrambling, precision, and the sloppiness-incompatibility
trade-off

To systematically investigate the interplay between sloppiness and incompatibility, we con-
sider the two-parameter qubit model illustrated in figure 1. By introducing a tunable scram-
bling operation during parameter encoding, we control correlations between parameters and
quantify their impact on estimation precision. Given the convexity of QFI [61], we consider a
pure probe state |ψ0⟩ defined as

|ψ0⟩= cos
α

2
|0⟩+ eiβ sin

α

2
|1⟩ .

The model parameters λ1 and λ2 are encoded via the unitary operations U1 and U2, which
represent rotation along the z-axis of the Bloch sphere, and are given by

Uk = e−iσ3λk ,

where σ3 is the Pauli-Z matrix. These rotations imprint λ1 and λ2 onto the probe state’s phase.
If nothing is done between the two unitaries, the output state depends only on the sum of

the two parameters (and not on the difference), the QFIM is thus singular and the model is
sloppy. To remove sloppiness in a tunable way, and adjust correlations between the encoded
parameters, we introduce an intermediate rotation V between U1 and U2:

V= e−iγσ⃗·⃗n , n⃗= (cosϕ sinθ,sinϕ sinθ,cosθ) .

Here, γ controls the rotation strength, θ and ϕ define the rotation axis n⃗, and σ⃗ is the vector
of Pauli matrices. This operation dynamically mixes the parameters, introducing correlations
that govern sloppiness. The final state after encoding becomes

|ψλ⟩= U2VU1 |ψ0⟩

=

(
e−i(λ1+λ2) cos α

2 (cosγ− i sinγ cosθ)− iei(λ1−λ2+β−ϕ) sin α
2 sinγ sinθ

−ie−i(λ1−λ2−ϕ) cos α
2 sinγ sinθ+ ei(λ1+λ2+β) sin α

2 (cosγ+ i sinγ cosθ)

)
.

Explicitly, this state depends on 7 parameters. α and β are probe state initialization’s para-
meters. α balances the superposition weights of |0⟩ and |1⟩. β is the initial phase, influencing
interference effects during the parameter encoding. λ1 and λ2 are encoding parameters, γ, θ,
and ϕ are scrambling parameters.

The rotation angle γ partly governs the strength of parameter mixing. When γ= 0, V=
I, and the parameters perfectly correlated as they combine into a single effective parameter
λ1 +λ2. This results in maximum sloppiness (detQ→ 0) because only a single function of the
parameters can be estimated. Larger γ may decrease coupling between λ1 and λ2, allowing
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U1 and U2 to imprint independent information the quantum state. The angle θ determines the
alignment of rotation axis relative to the z-axis, and ϕ controls the azimuthal orientation of
rotation axis, introducing phase-dependent correlations. The scrambling rotation V couples
λ1 and λ2, enabling control over the model’s sloppiness and the non-commutativity of their
associated SLDs.

Explicit calculations yield:

Q11 = 4sin2α,

Q12 = Q21 = 4
(
Xsin2α−Ysin2α

)
,

Q22 = 4
[
1− (Xcosα+ 2Ysinα)2

]
,

where

X= cos2 γ+ sin2 γ cos2θ,

Y= sinγ sinθ (sin f cosγ+ sinγ cosθ cos f) ,

f= 2λ1 +β−ϕ.

The measurement incompatibility matrix D has elements:

D11 = D22 = 0,

D12 =−D21 =−8Zsinα,

where

Z= sinγ sinθ (cos f cosγ− sinγ cosθ sin f) .

From these results, we are to calculate the sloppiness and incompatibility measures as follows

1/s= det [Q] = 16sin2α
[
1−X2 − 4Y2

]
= 64Z2 sin2α, (13)

c= det [D] = 64Z2 sin2α, (14)

uncovering the fundamental trade-off:

sc= 1 . (15)

This equality quantifies the competition between parameter distinguishability and incompatib-
ility in our two-parameter qubit model. In other words, sloppiness and incompatibility cannot
be minimized simultaneously. More detailed derivations are provided in appendix A. Notice
that equation (15), together with equation (11), is consistent with the observation [48] that
when the number of parameters is equal to the dimension of the probe, we have maximum
quantumness of the model, i.e. R= 1. Here, we chose a uniform weight matrix primarily
because both parameters are equally important in our setting. Notice, however, that the main
conclusion sc= 1 is independent on the choice of the weight matrix, since the quantity R is
invariant under reparameterization. In other words, the trade-off is robust against the choice
of the weight matrix since it is a general result relying on QFIM and Uhlmann matrix, and it
has no relation with optimization.

8
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4. The ultimate bounds to precision

The interplay between sloppiness and incompatibility in multiparameter quantum estimation
is not merely a theoretical relation, it also informs strategies for optimizing precision. Here, we
explore this optimization for a two-parameter qubit estimation system, revealing how suitable
parameter encoding and measurement design achieve these goals.

4.1. Hierachy of QCRBs

In our two-parameter qubit model, we assume that the two parameters are equally relevant, and
thus set W= I. We start by noticing that for a positive definite matrix, which has the property
1
n Tr[A

−1]⩾ det[A]−1/n. For n= 2, we obtain

2

Tr
[
Q−1

] ⩽
√

det [Q].

Therefore, in our qubit model, the different QCRBs with W= I satisfy

2
√
s⩽ Tr

(
Q−1

)
= CS ⩽ CH = CN ⩽ CS

(
1+

√
sc
)
= 2CS , (16)

where the dependence of the bounds on the weight matrix and the parameters has been dropped
since the weight matrix is set to the identity and the model is unitary (i.e. the bounds do not
depends on the parameters). The SLD bound is not achievable, while the larger Holevo and
Nagaoka bounds are achievable, and equivalent in this model. The upper bound remains tied
to the SLD bound.

4.2. Minimization of SLD bound

Tr[Q−1] and 1
det[Q] are monotonically decreasing functions with respect to the positive definite

matrixQ under Loewner order. Therefore, from equation (16), tominimizeCS, we need tomin-
imize the sloppiness, i.e. maximize det[Q]. Given equation (14), the task is linked to maxim-
izing the quantity Z2. Two parameter regimes achieve this: Case (a): γ = f = π

2 , θ =
π
4 or 3π

4 ,
Case (b): γ = π

4 , f = 0, θ = π
2 . This result underscores the necessity of adjusting γ,θ, f to

decouple λ1 and λ2. Detailed calculations are provided in appendix B. In both optimal Case (a)
and Case (b), the phase parameter f takes the form f = 2λ1 +β−ϕ. Here, β is another para-
meter related to the initial state besides α. Without loss of generality, we set β= 0, which
effectively fixes the initial state. As a result, we obtain f = 2λ1 −ϕ. The intermediate unitary
rotation involves three parameters: γ, ϕ, and θ. Among these, γ and θ can be fixed, while ϕ
must be chosen in a λ1-dependent manner to optimize the estimation precision. For example,
under the first optimal condition, we set γ = π/2 and θ = π/4, which gives ϕ = 2λ1 −π/2.
Similarly, under the second optimal condition, we take γ = π/4 and θ = π/2, leading to
ϕ = 2λ1. These examples also illustrate that the optimal unitary design is inherently parameter-
dependent.

Both cases yield Z2 = 1/4, saturating the upper limit of incompatibility. When combined
with an optimal probe state (α= π/2), sloppiness reaches its minimum (s= 1/16), and the
SLD bound CS attains its lowest value:

CS =
1
2
.

In our two-parameter qubit model, we achieve SLD precision by reducing sloppiness. It means
that theoretical maximum precision can only be reached when sloppiness is minimized.

9
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4.3. Minimizing the Holevo and Nagaoka bounds

For a two-parameter pure qubit estimation model, the Holevo bound CH[W, λ̂] is given by

CH

[
W, λ̂

]
= CR

[
W, λ̂

]
= CS

[
W, λ̂

]
+

√
det [W]

det [Q]
Tr

[
|ρλ

[
LS
1 , L

S
2

]
|1
]
.

Similarly, the Nagaoka bound CN[W, λ̂] for a two-parameter qubit model is given by

CN

[
W, λ̂

]
= CS

[
W, λ̂

]
+

√
det [W]

det [Q]
Tr

[∣∣ρλ [LS
1 ,L

S
2

]∣∣
1

]
.

It follows directly that the Holevo and the Nagaoka bounds are identical for a two-parameter
pure qubit [60], simplifying to

CH

[
W, λ̂

]
= CN

[
W, λ̂

]
= Tr

[
WQ−1

]
+ 2

√
det

[
WQ−1

]
.

In our model, the Holevo bound, RLD bound and Nagaoka bounds are identical and given by

CH = CR = CN = CS + 2
√
s⩾ 4

√
s.

We find that all these bounds are expressed as lower bound in terms of sloppiness. When
sloppiness achieves minimum, all quantum CR bounds reach their minima simultaneously,
reducing to:

CH = CR = CN = 1.

This, together with the minimal condition of the SLD QCRB, indicates that maximum estim-
ation precision can be achieved by minimizing sloppiness.

Holevo bound represents the asymptotically achievable precision limit with collective
measurements, performed on all the available copies, say M, of the state encoding the para-
meters. Upon performing separate measurements (each one performed on one of theM copies)
one may reach the Nagaoka bound, which is usually larger than the Holevo bound. However
in our model, these two bounds are equivalent, also indicating that our model is D-invariant.
Notice that in our model R= 1, and CH = 2CS, i.e. the quantumness R quantifies exactly the
additional uncertainty due to the incompatibility between the two SLDs.

4.4. Optimization of bounds for stepwise measurements

Stepwise measurements involve estimating parameters sequentially, rather than estimating
them jointly. Having at disposal M repeated preparations of the system, we assume to devote
M/2 of them to estimate solely λ1 (assuming λ2 unknown) and the remaining M/2 prepar-
ations to estimate λ2 (assuming λ1 known from the first step). Of course the role of the two
parameters may be exchanged, and we thus have two strategies of this kind.

The (saturable) precision bound on the estimation of λ1 from the first step is obtained from
the SLD-QCRB by choosing a weight matrix of form W= Diag(1,0), leading to

Varλ1 ⩾
2
[
Q−1

]
11

M
,

where [X]ij indicates the elements of the matrix X. In the second step, λ1 is known, and the
(achievable) bound to precision in the estimation of λ2 is given by the single-parameter QCRB

Varλ2 ⩾
2

MQ22
.

10
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The total variance for this estimation strategy is thus bounded by:

Varλ1 +Varλ2 ⩾
2
M

([
Q−1

]
11
+

1
Q22

)
≡ 1
M
K1,

where

K1 = 2

([
Q−1

]
11
+

1
Q22

)
.

Similarly, reversing the role of the two parameters, we have Varλ1 +Varλ2 ⩾ K2/M, where

K2 = 2

([
Q−1

]
22
+

1
Q11

)
.

For our model, we have

K1 = 2

(
sQ22 +

1
Q22

)
⩾ 2× 2

√
sQ22 ×

1
Q22

= 4
√
s,

K2 = 2

(
sQ11 +

1
Q11

)
⩾ 2× 2

√
sQ11 ×

1
Q11

= 4
√
s.

The equalities hold if and only if s achieves its minimum, i.e. the minimum values ofK1 andK2

are equal. Notice that if, instead of dividing the total number of repeated preparations equally
between the two estimation procedures, we had chosen an asymmetric allocation, say M1 =
γMmeasurements for estimating λ1 andM2 = (1− γ)M for estimating λ2 (or vice versa), the
bounds K1 and K2 would have been larger, specifically Kj ⩾ 2

√
s/
√
γ(1− γ), j = 1,2. The

choice γ = 1/2 is therefore optimal. When the CH has already reached its lower bound, the
relation among the precision bounds is

CH = CR = CN = 4
√
s⩽ K1 = K2,

where K1 and K2 attain the same optimal value if and only if the sloppiness is minimal.
This equality demonstrates that even when the incompatibility is maximal, stepwise meas-
urements can still achieve optimal precision. Sloppiness sets the lower bounds for both the
Holevo/Nagaoka bound as well as the bound to precision achievable by successive measure-
ments. The latter bound is identical to the Holevo bound if and only if the sloppiness is min-
imal, which offers a practical advantage in experiments. In each step, the optimal POVM is
the spectral measure of the corresponding SLD. Using equation (1), we have

L1 =

(
1 0
0 −1

)
= σ3,

L2 =

(
0 −ie−2i(λ1+λ2)

ie2i(λ1+λ2) 0

)
=cos [2(λ1 +λ2)] σ2 − sin [2(λ1 +λ2)] σ1 ,

meaning that the optimal POVM in the first step is parameter independent, while the second
step necessarily involves some adaptive measurement scheme.

11
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5. Conclusions

In this work, we have investigated a two-parameter qubit statistical model with tunable slop-
piness to explore the interplay between precision, sloppiness, and incompatibility. By intro-
ducing an adjustable scrambling operation during parameter encoding, we have demonstrated
how parameter correlations and measurement incompatibility jointly influence the precision
bounds.

First, we identified a fundamental trade-off between sloppiness and incompatibility, char-
acterized by the equality sc= 1. This result highlights the impossibility of simultaneously
minimizing both sloppiness and incompatibility, revealing a key constraint in multiparameter
quantum estimation in qubit systems. Notice that by increasing the probe’s dimension one can
reduce incompatibility while maintaining the same level of sloppiness to achieve SLD bound,
as shown in appendix C for qutrit systems. Second, we derived the conditions for optimizing
QCRBs. By tuning the parameters of the encoding strategy, we maximized the determinant of
the QFIM, thereby minimizing sloppiness.

In our system, the Holevo, Nagaoka, and RLD precision bounds for joint parameter estim-
ation are equivalent and saturable using non-collective measurements. We also compared the
performance of joint estimation strategies to those involving successive separate estimation
steps, demonstrating that the former can achieve ultimate precision when sloppiness is minim-
ized. Beyond its fundamental significance, this finding offers practical advantages for experi-
mental implementations. Furthermore, our analysis revealed that the minimal achievable preci-
sion bounds directly connect sloppiness to the ultimate metrological performance. This under-
scores the importance of designing probe states and encoding dynamics that emphasize para-
meter correlations while balancing the effects of non-commutative measurements.

Our results provide new insights into the relationship between sloppiness and incompatibil-
ity in two-parameter qubit estimation systems. In future work, we aim to extend this framework
to higher-dimensional systems, where careful preparation of the probe state may eliminate
incompatibility [48] and render the symmetric CRB achievable. This could lead to funda-
mentally different trade-offs between sloppiness, precision, and incompatibility compared to
the qubit case.
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Appendix A. QFIM and MUC

We first calculate the output state

|ψλ⟩= U2VU1 |ψ0⟩

=

(
e−i(λ1+λ2) cos α

2 (cosγ− i sinγ cosθ)− iei(λ1−λ2+β−ϕ) sin α
2 sinγ sinθ

−ie−i(λ1−λ2−ϕ) cos α
2 sinγ sinθ+ ei(λ1+λ2+β) sin α

2 (cosγ+ i sinγ cosθ)

)
.

The partial derivatives of the output state ψλ with respect to λ1 and λ2, respectively, are
given by

|∂λ1ψλ⟩=
(

−ie−i(λ1+λ2) cos α
2 (cosγ− i sinγ cosθ)+ ei(λ1−λ2+β−ϕ) sin α

2 sinγ sinθ
−e−i(λ1−λ2−ϕ) cos α

2 sinγ sinθ+ iei(λ1+λ2+β) sin α
2 (cosγ+ i sinγ cosθ)

)
,

|∂λ2ψλ⟩=
(

−ie−i(λ1+λ2) cos α
2 (cosγ− i sinγ cosθ)− ei(λ1−λ2+β−ϕ) sin α

2 sinγ sinθ)
e−i(λ1−λ2−ϕ) cos α

2 sinγ sinθ+ iei(λ1+λ2+β) sin α
2 (cosγ+ i sinγ cosθ)

)
.

which lead to

⟨∂λ1ψλ| ∂λ1ψλ⟩= ⟨∂λ2ψλ| ∂λ2ψλ⟩= 1,

⟨∂λ1ψλ| ∂λ2ψλ⟩= cos2 γ+ sin2 γ cos2θ+ 2isinαsinγ sinθ (sinγ cosθ sin f− cos fcosr) ,

⟨∂λ1ψλ| ψλ⟩= i cosα,

⟨∂λ2ψλ| ψλ⟩= i
[
cosα

(
cos2γ+ sin2γ cos2θ

)
+2sinαsinγ sinθ (sinf cosγ+ sinγ cosθ cosf)

]
,

where f = 2λ1 +β−ϕ. Then, we calculate the elements of QFIM Q and the incompatibility
matrix D. To make the computation easier, we define

X= cos2 γ+ sin2 γ cos2θ,

Y= sinγ sinθ (sin f cosγ+ sinγ cosθ cos f) ,

Z= sinγ sinθ (cos f cosγ− sinγ cosθ sin f) .

We obtain

Q11 = 4sin2α,

Q12 = Q21 = 4
[
sin2α

(
cos2 γ+ sin2 γ cos2θ

)
− sin2αsinγ sinθ (sin f cosγ+ sinγ cosθ cos f)

]
= 4

(
Xsin2α− Ysin2α

)
,

Q22 = 4

(
1−

[
cosα

(
cos2 γ+ sin2 γ cos2θ

)
+ 2sinαsinγ sinθ (sin f cosγ+ sinγ cosθ cos f)

]2)
= 4

[
1− (Xcosα+ 2Ysinα)2

]
,

D11 = D22 = 0,

D12 =−D21 = 4Im(⟨∂λ1ψλ|∂λ2ψλ⟩− ⟨∂λ1ψλ|ψλ⟩⟨ψλ|∂λ2ψλ⟩)
=−8sinαsinγ sinθ (cos f cosγ− sinγ cosθ sin f) =−8Zsinα.
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The determinant of QFIM can be expressed as:

det [Q] = Q11 ×Q22 −Q12 ×Q21 = 16sin2α
[
1−X2 − 4Y2

]
,

whereas the determinant of the incompatibility matrix is given by

det [D] = 0−D12D21 = 64Z2 sin2α.

More simplifications are required to clarify the connection between det[Q] and det[D].
Upon introducing the quantities A= sinγ cosθ, B= sinγ sinθ, we find that A2 +B2 = sin2 γ,
so cos2 γ = 1−A2 −B2. Besides, Y2 +Z2 = sin2 γ sin2 θ(cos2 γ+ sin2 γ cos2 θ) = B2(1−B2)
and X= cos2 γ+ sin2 γ(cos2 θ− sin2 θ) = 1− 2B2, such that

det [Q] = 16sin2α
[
1−

(
1− 2B2

)2 − 4F 2
]
= 64sin2α

[
B2

(
1−B2

)
−Y2

]
= 64Z2 sin2α.

Appendix B. Maximum and minimum of Z2

To find the stationary points of Z2, we calculate the partial derivatives of Z2 with respect to γ,
θ, and f, and set them to zero:

∂Z2

∂γ
= 2sin2 θ sinγ (cos f cosγ− sinγ cosθ sin f)

×
[
cos f

(
cos2 γ− sin2 γ

)
− 2sinγ cosγ cosθ sin f

]
= 0,

∂Z2

∂θ
= 2sin2 γ sinθ (cos f cosγ− sinγ cosθ sin f)

×
[
cos f cosγ cosθ− sinγ sin f

(
cos2 θ− sin2 θ

)]
= 0,

∂Z2

∂f
=−2sin2 γ sin2 θ (cos f cosγ− sinγ cosθ sin f)(cosγ sin f+ sinγ cosθ cos f) = 0.

By analyzing these conditions, we find that stationary points occur in the following cases:

Case 1: sinγ = 0. In this case, Z2 = 0, which leads to the minimum value of det[Q].
Case 2: sinθ = 0. This case also leads to Z2 = 0 and to the minimum value of det[Q].
Case 3: cosγ cos f = sinγ cosθ sin f. This case also leads to Z2 = 0 and to the minimum value

of det[Q].
Case 4: The system of equations:

cos f
(
cos2 γ− sin2 γ

)
= 2sinγ cosγ cosθ sin f,

sinγ sin f
(
cos2 θ− sin2 θ

)
= cos f cosγ cosθ,

cosγ sin f =−sinγ cosθ cos f,

leads to two solutions that correspond to the maximum value of Z2.

Those solutions are

(a): γ = f = π
2 , θ =

π
4 or 3π

4 ,
(b): f = 0,θ = π

2 ,γ = π
4 .

In both cases, the maximum value of Z2 is 1/4.
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Appendix C. Sloppiness and incompatibility with qutrit initial state

We use a model similar to that in figure 1 to study a two-parameter qutrit model. A general
qutrit state is defined as:

|ψ0⟩= cosα |0⟩+ eiκ1 sinαcosβ |1⟩+ eiκ2 sinαsinβ |2⟩ ,

where 0⩾ α, β ⩾ π
2 , 0⩾ κ1,κ2 ⩾ 2π.

In this model, the initial quantum state simplifies to:

|ψ0⟩=
1√
2
(|0⟩+ |2⟩) .

The unitary operations and rotation are expressed as

Uk = e−iJzλk , V= e−iγJ⃗·⃗n,

where J⃗ is the vector of generators of SU(3) group in qutrit system, given by

Jx =
1√
2

0 1 0
1 0 1
0 1 0

 , Jy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Jz =

1 0 0
0 0 0
0 0 −1

 ,

and

n⃗= {cosϕ sinθ,sinϕ sinθ,cosθ} .

Explicitly, the rotation operator is expressed as:

V=

 k2 −i
√
2e−iϕgk −e−i2ϕg2

−i
√
2eiϕgk |k |2 − g2 −i

√
2e−iϕgk∗

−ei2ϕg2 −i
√
2eiϕgk∗ (k∗)2

 ,

where k= cos γ
2 − i sin γ

2 cosθ and g= sin γ
2 sinθ.

The output state |ψλ⟩= U2VU1 |ψ0⟩ is expressed as:

|ψλ⟩=


1√
2
e−i(λ1+λ2)

(
k2 − e−i(2ϕ−2λ1)g2

)
−ig

(
ei(ϕ−λ1)k+ e−i(ϕ−λ1)k∗

)
1√
2

(
−ei(2ϕ−λ1+λ2)g2 + ei(λ1+λ2) (k∗)2

)
 . (C.1)

The partial derivatives of the output state |ψλ⟩ with respect to λ1 and λ2:

|∂λ1ψλ⟩=

−i 1√
2

(
e−i(λ1+λ2)k2 + ei(−2ϕ+λ1−λ2)g2

)
g
(
−ei(ϕ−λ1)k+ e−i(ϕ−λ1)k∗

)
i 1√

2

(
ei(2ϕ−λ1+λ2)g2 + ei(λ1+λ2) (k∗)2

)
 ,

|∂λ2ψλ⟩=

 −i 1√
2

(
e−i(λ1+λ2)k2 − ei(−2ϕ+λ1−λ2)g2

)
0

−i 1√
2

(
−ei(2ϕ−λ1+λ2)g2 + ei(λ1+λ2) (k∗)2

)
 .
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Under these conditions, the inner products reduce to

⟨∂λ1ψ| ∂λ1ψ⟩= 1,

⟨∂λ2ψ| ∂λ2ψ⟩= |k |2 − g2 + 4g2|k |2 − 4g2 cos2
γ

2
,

⟨∂λ1ψ| ψ⟩= 0,

⟨∂λ2ψ| ψ⟩= 0,

⟨∂λ1ψ| ∂λ2ψ⟩= |k |2 − g2.

The elements of the SLD-QFIM Q and Uhlmann curvature D simplify to:

Q11 = 4,

Q12 = Q21 = 4
(
|k |2 − g2

)
,

Q22 = 4
[(
|k |2 − g2

)2
+ 4g2|k |2 − 4g2 cos2

γ

2

]
,

D11 = D22 = D12 =−D21 = 0.

(C.2)

The determinants are:

detQ= 16sin4
γ

2
sin2 2θ, detD= 0.

The incompatibility, given by detD= 0, indicates that there is no inherent incompatibil-
ity between parameters under this initial quantum state. However, to achieve the minimal CS

bound only when sloppiness is minimized (s= 1/16), and the corresponding parameters must
be γ = π, θ = π

4 or 3π
4 .
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[16] Řehaček J, Hradil Z, Stoklasa B, Paúr M, Grover J, Krzic A and Sánchez-Soto L L 2017

Multiparameter quantum metrology of incoherent point sources: towards realistic superresol-
ution Phys. Rev. A 96 062107

[17] Vidrighin M D, Donati G, Genoni M G, Jin X-M, Kolthammer W S, KimM S, Datta A, Barbieri M
and Walmsley I A 2014 Joint estimation of phase and phase diffusion for quantum metrology
Nat. Commun. 5 3532

[18] Crowley P J D, Datta A, Barbieri M and Walmsley I A 2014 Tradeoff in simultaneous quantum-
limited phase and loss estimation in interferometry Phys. Rev. A 89 023845

[19] Pezzè L, Ciampini M A, Spagnolo N‘o, Humphreys P C, Datta A, Walmsley I A, Barbieri M,
Sciarrino F and Smerzi A 2017 Optimal measurements for simultaneous quantum estimation of
multiple phases Phys. Rev. Lett. 119 130504

[20] Gessner M, Pezzè L and Smerzi A 2018 Sensitivity bounds for multiparameter quantum metrology
Phys. Rev. Lett. 121 130503

[21] Proctor T J, Knott P A and Dunningham JA 2018Multiparameter estimation in networked quantum
sensors Phys. Rev. Lett. 120 080501

[22] Gefen T, Rotem A and Retzker A 2019 Overcoming resolution limits with quantum sensing Nat.
Commun. 10 4992

[23] Chen H and Yuan H 2019 Optimal joint estimation of multiple Rabi frequencies Phys. Rev. A
99 032122

[24] Hassani M, Scheiner S, Paris M GA andMarkham D 2025 Privacy in networks of quantum sensors
Phys. Rev. Lett. 134 030802

[25] Belliardo F, Cimini V, Polino E, Hoch F, Piccirillo B, Spagnolo N‘o, Giovannetti V and Sciarrino F
2024 Optimizing quantum-enhanced bayesian multiparameter estimation of phase and noise in
practical sensors Phys. Rev. Res. 6 023201

[26] Humphreys P C, Barbieri M, Datta A and Walmsley I A 2013 Quantum enhanced multiple phase
estimation Phys. Rev. Lett. 111 070403

[27] Yue J-D, Zhang Y-R and Fan H 2014 Quantum-enhanced metrology for multiple phase estimation
with noise Sci. Rep. 4 5933

[28] Liu J, Lu X-M, Sun Z and Wang X 2016 Quantum multiparameter metrology with generalized
entangled coherent state J. Phys. A: Math. Theor. 49 115302

[29] Gagatsos C N, Branford D and Datta A 2016 Gaussian systems for quantum-enhanced multiple
phase estimation Phys. Rev. A 94 042342

[30] Holevo A S 2011 Probabilistic and Statistical Aspects of Quantum Theory vol 1 (Springer)
[31] Helstrom C W 1969 Quantum detection and estimation theory J. Stat. Phys. 1 231–52
[32] Caves C M 1980 Quantum-mechanical radiation-pressure fluctuations in an interferometer Phys.

Rev. Lett. 45 75–79
[33] Caves C M 1981 Quantum-mechanical noise in an interferometer Phys. Rev. D 23 1693–708
[34] Braunstein S L and Caves C M 1994 Statistical distance and the geometry of quantum states Phys.

Rev. Lett. 72 3439
[35] Paris M G A 2009 Quantum estimation for quantum technology Int. J. Quantum Inf. 7 125–37
[36] Brown K S and Sethna J P 2003 Statistical mechanical approaches to models with many poorly

known parameters Phys. Rev. E 68 021904
[37] Brown K S, Hill C C, Calero G A, Myers C R, Lee K H, Sethna J P and Cerione R A 2004 The

statistical mechanics of complex signaling networks: nerve growth factor signaling Phys. Biol.
1 184

[38] Waterfall J J, Casey F P, Gutenkunst R N, Brown K S, Myers C R, Brouwer P W, Elser V and
Sethna J P 2006 Sloppy-model universality class and the Vandermonde matrix Phys. Rev. Lett.
97 150601

[39] Machta B B, Chachra R, TranstrumM K and Sethna J P 2013 Parameter space compression under-
lies emergent theories and predictive models Science 342 604–7

[40] Fiderer L J, Tufarelli T, Piano S and Adesso G 2021 General expressions for the quantum Fisher
information matrix with applications to discrete quantum imaging PRX Quantum 2 020308

17

https://doi.org/10.1103/PRXQuantum.2.010301
https://doi.org/10.1103/PRXQuantum.2.010301
https://doi.org/10.1088/2040-8978/18/7/073002
https://doi.org/10.1088/2040-8978/18/7/073002
https://doi.org/10.1080/00107514.2020.1736375
https://doi.org/10.1080/00107514.2020.1736375
https://doi.org/10.1103/PhysRevA.95.063847
https://doi.org/10.1103/PhysRevA.95.063847
https://doi.org/10.1103/PhysRevA.96.062107
https://doi.org/10.1103/PhysRevA.96.062107
https://doi.org/10.1038/ncomms4532
https://doi.org/10.1038/ncomms4532
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.120.080501
https://doi.org/10.1103/PhysRevLett.120.080501
https://doi.org/10.1038/s41467-019-12817-y
https://doi.org/10.1038/s41467-019-12817-y
https://doi.org/10.1103/PhysRevA.99.032122
https://doi.org/10.1103/PhysRevA.99.032122
https://doi.org/10.1103/PhysRevLett.134.030802
https://doi.org/10.1103/PhysRevLett.134.030802
https://doi.org/10.1103/PhysRevResearch.6.023201
https://doi.org/10.1103/PhysRevResearch.6.023201
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1038/srep05933
https://doi.org/10.1038/srep05933
https://doi.org/10.1088/1751-8113/49/11/115302
https://doi.org/10.1088/1751-8113/49/11/115302
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1007/BF01007479
https://doi.org/10.1007/BF01007479
https://doi.org/10.1103/PhysRevLett.45.75
https://doi.org/10.1103/PhysRevLett.45.75
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevE.68.021904
https://doi.org/10.1103/PhysRevE.68.021904
https://doi.org/10.1088/1478-3967/1/3/006
https://doi.org/10.1088/1478-3967/1/3/006
https://doi.org/10.1103/PhysRevLett.97.150601
https://doi.org/10.1103/PhysRevLett.97.150601
https://doi.org/10.1126/science.1238723
https://doi.org/10.1126/science.1238723
https://doi.org/10.1103/PRXQuantum.2.020308
https://doi.org/10.1103/PRXQuantum.2.020308


J. Phys. A: Math. Theor. 58 (2025) 325301 J He and M G A Paris

[41] Goldberg A Z, Romero J L, Sanz Angel S and Sánchez-Soto L L 2021 Taming singularities of the
quantum Fisher information Int. J. Quantum Inf. 19 2140004

[42] Yang Y, Belliardo F, Giovannetti V and Li F 2023 Untwining multiple parameters at the exclusive
zero-coincidence points with quantum control New J. Phys. 24 123041

[43] Frigerio M and Paris M G A 2024 Overcoming sloppiness for enhanced metrology in continuous-
variable quantum statistical models (arXiv:2410.02989)

[44] Wang J and Agarwal G S 2025 Exact quantum Fisher matrix results for distributed phases using
multiphoton polarization Greenberger-Horne-Zeilinger states Phys. Rev. A 111 012414

[45] Zhu H 2015 Information complementarity: a new paradigm for decoding quantum incompatibility
Sci. Rep. 5 14317

[46] Heinosaari T, Miyadera T and Ziman M 2016 An invitation to quantum incompatibility J. Phys. A:
Math. Theor. 49 123001

[47] Ragy S, Jarzyna M and Demkowicz-Dobrzański R 2016 Compatibility in multiparameter quantum
metrology Phys. Rev. A 94 052108

[48] Candeloro A, Pazhotan Z and Paris M G A 2024 Dimension matters: precision and incompatibility
in multi-parameter quantum estimation models Quantum Sci. Technol. 9 045045

[49] Adani M, Cavazzoni S, Teklu B, Bordone P and Paris M G A 2024 Critical metrology of minimally
accessible anisotropic spin chains Sci. Rep. 14 19933

[50] Cavazzoni S, Adani M, Bordone P and Paris M G A 2024 Characterization of partially accessible
anisotropic spin chains in the presence of anti-symmetric exchange New J. Phys. 26 053024

[51] Cramér H 1999 Mathematical Methods of Statistics vol 9 (Princeton University Press)
[52] Kay S M 1993 Statistical Signal Processing: Estimation Theory vol 1 (Prentice Hall) ch 3
[53] Helstrom C W 1967 Minimum mean-squared error of estimates in quantum statistics Phys. Lett. A

25 101–2
[54] Yuen H and Lax M 1973 Multiple-parameter quantum estimation and measurement of nonselfad-

joint observables IEEE Trans. Inf. Theory 19 740–50
[55] Fujiwara A 1994 Multi-parameter on the right pure state estimation based on the right logarithmic

derivative Technical ReportMETR94-08 (TheUniversity of Tokyo, Department ofMathematical
Engineering and Information Physics) (available at: www.keisu.t.u-tokyo.ac.jp/research/techrep/
data/1994/METR94-09.pdf)

[56] Nagaoka H 2005 A new approach to Cramér-Rao bounds for quantum state estimation Asymptotic
Theory of Quantum Statistical Inference: Selected Papers (World Scientific) pp 100–12

[57] Hayashi M and Matsumoto K 2008 Asymptotic performance of optimal state estimation in qubit
system J. Math. Phys. 49 102101
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