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Abstract

Binary decision theory has been applied to the general interferometric problem. An optimal detection scheme — according
to the Neyman-Pearson criterion — has been considered for different phase-enhanced states of the radiation field, and the
corresponding bounds on the minimum detectable phase shift have been evaluated. A general bound on interferometric
precision has been also obtained in terms of photon number fluctuations of the signal mode carrying the phase information.

1. Introduction

An interferometer is an optical device devised to
detect very small variations in the optical path of a
light beam. This is usually accomplished by consider-
ing two parts of a quantum state traveling along dif-
ferent routes, accumulating different phases. In such a
general scheme the precision in measuring the phase
depends not only on the involved quantum state, but
also on the specific interferometric setup. In order to
derive a general bound on the precision of phase mea-
surement a more abstract scheme has to be considered.
Here we will consider interferometry as a binary de-
cision problem, where the two signals are only differ-
entiated by the occurrence of a phase shift. Actually,
this is more similar to a communication problem with
the phase shift playing the role of encoded informa-
tion. Nonetheless, it appears intuitively obvious that
any form of conventional interferometry cannot lead to
a better performance than this communication variety.
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An abstract outline of an interferometric detection
scheme is shown in Fig. 1. An initially prepared state
of radiation, say gy, travels along the interferometer
and it is eventually measured by some detectors, de-
noted by D. The latter is described by an operator-
valued probability measure dii(x), x € X being the
set of the possible detection outcomes. If some en-
vironmental parameter changes then also the optical
path is subjected to variation, thus leading to a phase-
shift ¢ on the signal mode.

The aim of the detection scheme d(x) is that of
discriminating between gy and its phase-shifted ver-
sion p; = exp(ifig) Poexp(—ifigp), which results if
some perturbations have occurred. An optimized in-
terferometer is able to tell the 5’s apart for ¢ as small
as possible.

This way of posing the interferometric problem nat-
urally leads to view it as a binary decision problem,
to which results and methods from quantum detection
theory can be applied [1,2]. Here, the phase-shift ¢
plays the role of a parameter, labeling one of the two
possible outputs from the interferometer, namely the
perturbed state 5;. Indeed, this approach can be useful
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Fig. 1. Abstract outline of an interferometric detection scheme.

as it does not refer to any specific detection scheme
for the final stage of the interferometer. Thus, an ul-
timate quantum limit on the interferometric precision
can be obtained for specific classes of phase-enhanced
states of the radiation field 2.

In this paper we address the interferometric prob-
lem as a binary decision one. In the next Section we
briefly review the binary decision problem as solved
by a Neyman—-Pearson optimized strategy. In Section 3
we state the binary interferometric problem. After the
illustrative example of coherent states we consider the
optimal detection scheme, according to the Neyman-
Pearson criterion, for a generic pure state of radia-
tion. A general bound of precision is thus obtained
in terms of photon number fluctuations. Two different
classes of phase-enhanced states of radiation are then
considered: squeezed states and phase-coherent states.
The corresponding bounds on the minimum detectable
phase-shift are also evaluated. Section 4 closes the pa-
per with some concluding remarks.

2. Neyman-Pearson strategy for binary decision

Our goal is to determine whether or not the initial
density matrix has been perturbed. Starting from the
outcomes of the detector D we have to infer which
is the state of the system, in order to discriminate
between the following two hypotheses:

‘Ho: No perturbation has occurred: true if we infer
po;

‘Hi: The system has been perturbed: true if we infer
pP1.
We denote by Py; the probability of wrong infer-
ence for the hypothesis H;, namely that of inferring
‘H1 when Hj is true. In hypothesis testing formulation
this is usually referred to as false alarm probability.
Conversely, we denote by Pj; the detection probabil-

2 Usually in optimizing interferometry just the opposite route has
been followed. After fixing some interferometric setup precision
has been optimized over the states of radiation [3-6].

ity, that is the probability of inferring H; when it is
actually true.

Now, which is the best measurement to discriminate
between g and 5;?

If these two states are mutually orthogonal the prob-
lem has a trivial solution. It is a matter of measuring
the observable for which gy and p, are eigenstates.
However, this is not our case, as it is well known
that no orthogonal set of phase-eigenstates is avail-
able in quantum optics. In the following we consider
nonorthogonal gy and g, and we focus our attention
on pure states jo = |¢o) (0| as input for the interfer-
ometer.

The optimization problem can be analytically
solved, for pure states, by adopting the Neyman-
Pearson criterion for binary decision [7]. It reads as
follows. First, we have to fix a value for the false
alarm probability Py;. Then, we have to find the
measurement strategy dji(x) which maximizes the
detection probability P;;. As a general definition,
each measurement strategy which maximizes the de-
tection probability Pj; for a fixed value of false alarm
probability Pp; is considered as a Neyman-Pearson
optimized detection for binary hypothesis testing. It
was shown by Helstrom [ 1] and Holevo [2] that this
very general problem could be reduced to solving the
eigenvalue problem for the operator

dp(x|A) = p1 — Apo , (N

which represents the optimized measurement scheme.
The parameter A is a Lagrange multiplier. Different
values of A correspond to different values of the false
alarm probability, namely to a different Neyman-
Pearson strategy.

Once the eigenvalue problem for dfi(x|A) has been
solved it results that only positive eigenvectors con-
tribute to the detection probability P;; [1,8]. Thus the
decision strategy is transparent: after a measurement
of the quantity d2(x|A) if the outcome is positive we
infer that the perturbation hypothesis H is true. Con-
versely, we infer the null hypothesis #y when obtain-
ing negative outcome. By expanding the eigenstates
of diu(x|A) in terms of |¢o) and |¢) the Lagrange
multiplier A can be eliminated from the expression for
the detection probability which results,

P = [VPuk+ /(1 — Po) (1 — k)12,
0 < Py <k,
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Pp=1 k<Py<l. (2)
In Eq. (2) « denotes the square modulus of the overlap
between the perturbed and unperturbed states,

= (ol )|* = | (ol exp(ifip) o) |* . (3)

The overlap depends both on the initial state and on the
phase-shift ¢. It is obvious that if the overlap is small,
it is easy to discriminate between the two states. Thus,
it is possible to obtain strategies with large detection
probability without paying the price of an also large
false alarm probability. On the contrary, if the overlap
becomes appreciable it is difficult to discriminate the
states. In the limit of complete overlap the perturbed
and the unperturbed states become indistinguishable.
The detection probability is now equal to the false
alarm probability and the decision strategy is just a
matter of guessing after each random measurement
outcome.

Choosing a value for the false alarm probability is
a matter of convenience, depending on the specific
problem to which this approach would be applied. The
maximum tolerable value for Py, increases with the
expected number of measurement outcomes, and con-
versely a very low rate detection scheme needs a very
small false alarm probability. The latter is the case of
interferometry, in the following we always will con-
sider a small value for Py,.

3. Interferometry as a binary decision problem

Once an input state for the interferometer has been
specified, the probability measure in Eq. (1) defines
the detection scheme to be performed in order to im-
plement an optimized interferometer. Optimality is in
the Neyman-Pearson sense, namely that detection (1)
maximizes the detection probability P at a fixed tol-
erable value of the false alarm probability Py;.

The interferometric strategy is thus the following:
the initial state po is prepared and left free to travel
along the interferometer. A set of measurements for
the quantity (1) is then performed and from the data
record we have to infer the state of radiation at the
output of the interferometer. From this inference we
can discriminate between the two hypotheses, namely
we are able to monitor the optical path of the light
beam.

The input state is fixed in advance, therefore the
detection probability depends only on the accepted
value for the false alarm probability and on the actual
value of the phase-shift ¢. The minimum detectable
value of the phase-shift, denoted by ¢y, is defined by
the relation

Pi(em; Po) =5 . (4)

A lower value for Py, in fact, would make the mea-
surements record useless, as no readable information
can be extracted in that case.

Let us consider customary coherent states as an il-
lustrative example. Without loss of generality we can
set the phase of the initial state to be zero, so that we
have

|l//o>—exp(-—a)z\/_—|k @eR. (5)

The photon distribution of a coherent state is Poisso-
nian with mean given by N = (a|fi|a) = a* and the
overlap can be easily evaluated to be

k= |(|tho|e”™| ) |* = exp[—2a*(1 —cosp)] . (6)

Interferometric detection is frequently involved in low
rate processes > . Therefore, we need, as a general re-
quirement, a small false alarm probability: a conve-
nient setting reads Py; < . Inserting Eq. (2) in Eq.
(4) the relation for the minimum detectable phase
shift becomes

L= [VPuk+ (1= Po) (1 - )%, (7)

that is

=\ﬁ+\/P01(1—P01) (8)
5 )

Finally, upon substituting (6) in Eq. (8) and expand-
ing for small ¢ we have

2 i
¢M_\/log<1+\/P_01(1 —Pm)>?/ﬁ’

which represents the lower bound on the minimum
detectable phase-shift for any interferometer based on

9)

3 Among applications of high sensitive interferometry one of the
most interesting regards the detection of gravitational waves. The
reader may agree that this is a prototype for a very low rate process

[9].
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coherent states. The bound in Eq. (9) is well known
and represents the lower bound on the precision also
for an interferometer based on classical states of radi-
ation. It is usually termed shot-noise limit.

Let us now consider a generic pure state at the input
of the interferometer,

o) =) cilk) . (10)
k=0

Still we consider zero initial phase, thus the coeffi-
cients {cx }ren are real numbers. For the overlap we
have

[} 2

2 : ikg
Cke

k=0
= (Zcicoskgp) (Zc s1nkqo) , (11)
k=0

and, up to second order in the phase-shift,

K=

k=1~ @*AN?, (12)

where AN? = (7#%) — (/)2 denotes the photon number
fluctuations of the considered state. By substitution in
Eq. (8) we obtain the lower bound on the minimum
detectable perturbation,

~ \/1 ~VPu(OI=Po) 1
M= 2 AN
Eq. (13) represents a quite general result. It indicates
that the minimum detectable phase-shift ¢y shows an
inverse scaling relative to the photon number fluctua-
tions rather than the photon number intensity. Eq. (13)
is not surprising, however, it is worth noticing that we
derived it in a direct way from the binary problem ap-
proach, i.e. we did not make use of any uncertainty
phase-number pseudo relation ANA¢g ~ 1. The latter,
in fact, can be derived only in a heuristic way [10]
and thus possesses only a limited validity.

Eq. (13) suggests to use states with equally prob-
able photon number excitation, namely

=Y culk),
k

Such states, in fact, show infinite photon number fluc-
tuations, thus allowing one, in principle, to monitor
an optical path with arbitrary precision. Unfortunately,

(13)

cp=z€C, Vk. (14)

the only possibility to construct states as in Eq. (14)
is given by the London phase-states [11,12]

) =D e“lk), (15)
k

which neither possess a finite mean photon number nor
are normalizable, namely they are not realistic states
of radiation.

A realistic approximation of London phase-states is
provided by the so-called phase-coherent states [13]

=P Xk (16)
k

where the complex number y = xexp(i¢) is confined
in the unit circle x < 1 to assure normalization. A
phase-coherent coherent state possesses a mean pho-
ton number given by N = x2(1 — x?)~! and goes to
a London phase-state in the limit x — 1. For a phase-
coherent state with zero initial phase the overlap reads

_ B 2% lkq, 14+ x*—2x2
K= ‘(1 X )Zx =1

—2x%cos¢q
(17)

leading to a lower bound on the minimum detectable
perturbation given by

1 — /Py (1 — P 1
(PM=\/ v Por ( 01) (18)

14+ VP (1T=Py) yN(N+1)

The ¢um scaling in Eq. (18) is much improved relative
to the shot-noise limit and shows the benefit of using
phase-coherent states.

We now proceed by considering squeezed-coherent
states at the input of the interferometer. The use of
squeezing in improving precision is quite known for
specific setups, as Mach~Zehnder or Michelson inter-
ferometers [3,14,15]. Here we obtain a more general
bound, which is independent of the measurement strat-
egy.

We consider the interferometer fed by an in-phase
squeezed-coherent state, namely a state with parallel
signal and squeezing phases. We set this value to zero,
so that the initial state is given by

o) = D(x)8(r)|0), (19)

D = exp(aa’ — @a) and § = expl 3({a™ — Za?)]
being the displacement and the squeezing operator re-
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spectively. The parameters « and ¢ are generally com-
plex, by choosing zero initial phase we can seta = x €
Rand ¢ = r € R. The quantity x represents the coher-
ent amplitude of the signal whereas r is the squeezing
parameter. The mean photon number of such a state
is given by N = x? + sinh? r. We refer to these two
terms as the signal and the squeezing photons number,
respectively.

A perturbation in the optical path acts differently
on the coherent signal relative to the squeezing part,
more precisely we have

e")a, ¢) = |ae, [eB?) . (20)
The overlap is thus expressed by
x = [{0|8T(r) DT (x) D(xe*®)S(re¥)|0)>,  (21)

which is a double Gaussian curve

.2
.o 1 exp[—x2<(1 — cos ¢)? L Sin gp)],

B 2007 20'% 20%
(22)

with variances given by

I

$1e (3 +cos2¢) + e (1 — cos29) ],
L[e* (1 —cos2¢) +e 2 (3 +cos2¢)]. (23)

a1

()
Up to second order in the phase-shift we obtain
k~1—¢’xPat=1-2¢*8(1 — B) N*, (24)

B being the fraction of the total number of photons
which is engaged in squeezing, namely sinh? r = BN.
The lower bound on minimum detectable phase-shift
is then obtained by substitution in Eg. (8),

I —vPn(l-Py) 1
= —. 25
M \/ 50— 5) N (25)
The proportionality constant is of the order of one as

a function of Py;, whereas the optimum value for the
squeezing fraction is given by 8 =1/2.

4. Some remarks

In this paper we have addressed interferometry as
a binary decision problem and have derived lower
bounds on the minimum detectable phase-shift for

some phase-enhanced states of the radiation field. We
were not concerned about any specific measurement
device and we do not discuss the feasibility of opti-
mized measurement. Actually, the optimal detection,
according to the Neyman-Pearson criterion, is gener-
ally not available at the present time. Rather, we have
attempted to derive the ultimate quantum limit on the
detectable phase-shift, which depends only on the ini-
tial quantum state at the input of the interferometer. It
is worth noticing that for squeezed states the bound in
Eq. (25) can actually be approximated by homodyne
detection [16,17] or an Mach-Zehnder interferome-
ter [2,3,14,15], however only around a fixed value for
the initial phase-shift and for a high efficiency of the
involved photodetectors.

An ultimate, state-independent, lower bound on the
interferometric precision could be obtained by a fur-
ther optimization of Eq. (11) over quantum states of
radiation, provided that some physical constraints are
satisfied. Work along this line is in progress and re-
sults will be reported elsewhere.
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