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Abstract

The input states of an interferometer have been optimized at fixed total photon number N and quantum efficiency 7. I show

that the phase sensitivity is bounded by A¢p ~ N~

for a coherent input signal and by A¢ ~ N~! for squeezed optimized

inputs. [ also show that in actual non-efficient interferometers only little squeezing is needed to reach the best sensitivity.

1. Introduction

For a long time interferometric detection has been
one of the most accurate measurements available in
physics. The interferometric measurements concerned
the special theory of relativity while interferometry of
gravitational waves is expected to change the cosmo-
logical view. In an interferometer any fluctuation of
some environmental parameter of interest leads to a
change in the optical path of a light beam. The fluctu-
ation itself can be measured through the detection of
the induced phase shift of the radiation field. Thus it
is possible, for example, to monitor small variations
in the refraction index of a medium or small displace-
ments induced by weak forces, as in a gravitational
antenna [1].

The radiation pressure of the involved light beam
unavoidably leads to a back-action effect on the mon-
itored parameter. This, in turn, poses the problem of
optimizing the phase sensitivity A¢ as a function of the
radiation intensity. The main problem of interferome-
try is precisely the following [2]: Once the total num-
ber of photons N impinging onto the apparatus and
the quantum efficiency 7 of the photodetectors have

been fixed, which are the optimal input states leading
to the most accurate phase shift measurements?

In a classical-like Mach-Zehnder interferometer
one of the inputs has been placed in a coherent state,
whereas the other is not excited. In this case the
phase sensitivity is bounded by the shot noise limit
A¢ ~ N~'2 which is due to quantum fluctuations
at the unused port. Caves [3] first suggested using
squeezed states to reduce quantum fluctuations, thus
beating the shot noise limit. More recently, Yurke
et al. [4] have indicated a scheme involving active
elements like four wave mixing, whereas Burnett and
Holland [5] have suggested using suitable number
states as optimal inputs. In both cases the quantum
efficiency of the photodetectors has not been consid-
ered, and the resulting phase sensitivity is bounded by
A¢ ~ N~!'. Despite the relevance of the subject, no
systematic analysis has been, to my knowledge, pre-
sented. In this paper I consider two different realistic
working regimes for a Mach-Zehnder interferometer.
In the former the signal mode is in a coherent state
whereas the previously unused port has been placed
in a suitable squeezed vacuum. In the latter, also the
signal mode is allowed to be squeezed. Input states
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which optimize the sensitivity have been found as
a function of N for any value of the quantum ef-
ficiency 1. Comparisons between the two regimes
show that for actual photodetectors (7 ~ 0.9) only a
few percent of the total energy have to be engaged in
squeezing to reach the best sensitivity.

The present results for Mach-Zehnder interferom-
eters are also valid for the Michelson interferometer
when only two bounces occur. I refer to Ref. [6] and
the references therein for the consequences of recy-
cling.

In Section 2 a fully quantum analysis of the Mach-
Zehnder interferometer is presented. In Section 3 opti-
mal input states for both considered regimes are found
and the corresponding lower bounds for the phase sen-
sitivity are evaluated. The two regimes are also com-
pared to each other concerning their performance in
realistic situations. Section 4 concludes the paper with
some remarks.

2. Mach-Zehnder interferometer

The Mach-Zehnder interferometer provides a way
of monitoring fluctuations of a fixed phase shift ¢.
The schematic diagram of the detector setup is re-
ported in Fig. 1. There are two 50-50 beam splitters
and two photocounters of quantum efficiency 7. The
mode carrying the signal is a whereas mode b is pre-
pared in a squeezed vacuum state. The two modes are
synchronous. The monitored quantity is the phase shift
¢ between the two correlated modes ¢ and d exiting
from the first beam splitter. The measured quantity is
the difference photocurrent

() =5 —h=n(ele - f1f), (1)

which can be expressed, in terms of the input modes,
in the following form,

In(¢) =n[cos d(hy — Rp) +ising(ab’ —a'h)]
+ Vi - (2)

The squared photocurrent is given by

50 = 50
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Fig. 1. Outline of the Mach-Zehnder interferometer.

I3($) =n*cos’ [ (ata)? + (b'h)? — 2atabib]
- 172 sin’ p[aab' bt + atalbb
—aa'b'b — a'abb')
+ 2n%ising cos dlataab’ + aalab’ — btbbla
—b'btba - ataa’b — atatab + btbba' + bbtbat]
+in(1=n)(a'a+b'h) + 1y . (3)
From Egs. (2) and (3) one can « evaluate the mean

value Ip(¢) and the variance AI,%( ¢) of the proba-
bility distribution of the experimental outcomes,

In(¢) =Tr{plp($)} .
AR(¢) =Te{IZ($)} —To ($) . (4)

Above p=p, ® Py represents the input density ma-
trix. The operators Vl,, and V:Qn contain combinations
of operators a, a', b and b’ which, however, lead to
vanishing expectation values when the input modes a
and b have been placed in a squeezed coherent state
) and in a squeezed vacuum |0, {3), respectively.
In formula one has

Tr{pVy} =0, i=1,2,
=la, (1), 2] ®10,8)(H, 0], (5)
with a = |a| ¥, ¢ = pe¥' and { = re?¥2.

Interferometric detection is based on the ¢-
dependence of the measured photocurrent. Any varia-
tion A¢ of ¢, in fact, leads to a variation in the mean
value of /(). From error propagation calculus one
obtains
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8Ip(¢) |~

56 |y (6)

Ad = [ARR(p)]'2

where ¢ is the working point of the interferometer,
that is, the initially fixed value of the monitored phase
shift. The sensitivity A¢ is the smallest fluctuation
of the phase ¢ around ¢y which can be found, and
depends on the value ¢y itself. Usually, to minimize
A¢, the working point is selected which maximizes
the derivative in Eq. (6). If the inputs are chosen ac-
cording to Eq. (5) the mean value of the photocurrent
is given by

In(¢) =ncos ¢(|al® + sinh? p — sinh’r) . )

The best working point is thus given by ¢g = /2
which, in turn, corresponds to a zero mean value of
the photocurrent. In this case the variance of the prob-
ability distribution is given by

K1—1%(77/2) =n>{|a*[1 + 2sinh’~
— 2sinh(2r) cos(, — 2¢p2) 1 + sinh? r
+ sinh? p + 2 sinh?® r sinh? p
- '5 sinh(2r) sinh(2p) cos(2¢n — 2¢1) }
+19(1 = n)(|a|* + sinh? p + sinh’r) . (8)

This relation shows that the sharpest distribution for
the photocurrent Ip is obtained for 2y, = 2y = i,
that is, for squeezing of the two modes parallel to each
other, and both in the direction of the signal phase. In
the following I consider for simplicity, however with-
out loss of generality, the situation in which ¢ = i, =
Yo = 0. After this assumption the phase sensitivity
Ay, turns out to be

|
a? + sinh® p — sinh’ r
x [a® e~ 4 sinh? r + sinh? p + 2 sinh? r sinh? p

Ad, =

— 2sinh(2r) sinh(2p) + o7 (a® + sinh’ p

+sinh’ )12, (9
where o2 = (1 —17) /27 represents the extra width of
the probability distribution of the photocurrent due to
the non-unit quantum efficiency of the photodetector.

3. Optimizing the states

Once the working point has been selected, the phase
sensitivity A¢, of the Mach-Zehnder interferometer
can be still optimized with respect to the input states.
The physical constraint is the total photon number N
impinging onto the apparatus, which is expressed by
the formula

N = o’ + sinh? p + sinh? r . (10)

In Eq. (10) & is the number of signal photons
whereas sinth and sinh?r denote the number of
squeezing photons of modes a and b respectively.
Optimizing the inputs thus means finding the best
partition of the total photon number N between the
signal photons and squeezing photons of the two
modes. In this section I consider and compare two
distinct working regimes at different values of the
quantum efficiency n of the photodetectors. In the
first the signal mode a has been placed in a coherent
state, i.e. p = 0, whereas in the other it is allowed to
be squeezed. In both cases mode b supplies a suitable
squeezed vacuum and the working point is fixed at

(]5() = 77/2.
3.1. Coherent-signal regime

If the input signal is in a coherent state Eq. (9)
reduces to

1
a? — sinh?r
x [ e ¥ +sinh? r + 03,(a2 +sinh? r)}1/2,

(1D)

Ag, =

whereas the energy constraint is expressed by
a® +sinh*r=N . (12)

Substituting Eq. (11) in Eq. (12) A¢, as a function
of the variable r is obtained. Taking the first derivative
with respect to r leads to the optimization equation

£ +2[N(1 +402) ~ 21" + 6(2N + )¢
—2N(4N+ 4oL +7) +1—4=0, (13)

where 1 = e?’. Eq. (13) can easily be solved numer-
ically for each value of the quantum efficiency 7. In
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Fig. 2. Optimal squeezing fraction for mode b in the coherent-signal regime and the corresponding sensitivity A¢, as a function of the

total photon number N for quantum efficiency n from 0.1 to 1.0.

Fig. 2 the optimal fraction sinh?® r/N of the total pho-
ton number N which has to be engaged in the squeez-
ing of the vacuum mode b, is reported for different
values of 7 as a function of N. The corresponding sen-
sitivity A¢,, is also reported. The fraction of squeezing
photons decreases with increasing N and decreasing
7. For large N it becomes less than 1% for any value
of 1. The best sensitivity is obviously reached for n =
I. In this case the lower bound on the phase sensitiv-
ity is given by the power law (estimates of numerical
errors are given)

1.14 £ 001
A1 = —5Teror - (4

For non-unit quantum efficiency n < 1 the sen-
sitivity decreases as A¢, = C(n)N 7" where
approximately the proportionality constant C(7n) is
unity and the exponent y(7n) decreases as y(%n) ~
0.5 + 0.05¢' 76", The precise behaviour of the ex-
ponent y(7n) of the power law as a function of 7 is
reported in Fig. 5.

3.2. Squeezed-signal regime

If the input signal is allowed to be squeezed the
phase sensitivity can be optimized also with respect
to the variable p. The method of Lagrange multipliers
reduces the problem of optimizing A¢,, given in Eq.

(9), with the constraint (10), to that of minimizing
the function
F,,(afz,p, r;A) =Ag, (a?, p,7)

+ A(a® + sink” +sinh? r) , (15)
with respect to @?, p and r, A being the Lagrange

multiplier. The variational problem (15) is equivalent
to the equations

e =14V -1y, (16a)
(N — 2sinh? r) {e =2 —e20=2r

— e [N —2sinh’ r + 1 sinh(2r) ]}

+ 2sinh(2r) [40] — 2+ 277

+e¥ % e (N —2sinh?*r)]1 =0, (16b)
a® +sinh®> p +sinh’> r =0, (16¢)

which can be solved numerically at a fixed value of
7. For unit quantum efficiency n = 1 the ideal phase
sensitivity ' is reached,

1.36 + 0.01
Ay ~ N100£001 > a7n
! An ideal experiment to detect the phase shift of an e.m. field
has to be defined in the framework of quantum estimation theory,
see Ref. [7]. The phase sensitivity of such a detection has been
obtained in Ref. [8].
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Fig. 3. Optimal squeezing fraction for the two modes in the squeezed-signal regime. Both fractions are reported as a function of the total

photon number N for quantum efficiency n from 0.1 to 0.9.

corresponding to an input configuration in which
about half of the input energy impinges onto the signal
a, while the rest of the energy is distributed, nearly
equally, between the squeezing of the two modes,

2
a s

b=
Z
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=
=
N
©
Vv
N
2

sinh® r = LN . (18)
Unfortunately, the working regime described by Egs.
(18) is not stable with respect to the quantum effi-
ciency 7). A small displacement of 77 from unity, in fact,
strongly degrades the power law given in Eq. (17).
One has Ag, = C(n)N~7" where approximately
the proportionality constant C(7n) is unity. The ex-
ponent y(7) decreases exhibiting a Lorentzian shape
versus 77. Roughly one has ¥(%) ~ 0.5+ 0.1759 +
0.0257%/(1.84 — 1.76m%). The precise behaviour of
v{(n) as a function of 7 is reported in Fig. 5. In Fig. 3
the optimal fraction of squeezing photons for the two
modes is reported, as a function of the total photon
number N, for different values of 7 less than unity.
As expected from Eq. (16a) the fraction of squeez-
ing photons suitable for mode a is, independent of
the value of 7, slightly greater than the corresponding
one for mode &. In Fig. 4 the optimal phase sensitiv-
ity A¢h, is reported as a function of the total photon
number N for different values of 7.
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Fig. 4. Optimal phase sensitivity A¢y for the squeezed-signal
regime as a function of the total photon number N for quantum
efficiency » from 0.1 to 0.9.

3.3. Comparison between the two regimes

In the coherent-signal regime the phase sensitivity
is bounded by the power law A¢ ~ N~3/% whereas
in the squeezed-signal regime the bound is given by
A¢ ~ N~'. These bounds have been obtained for
unit quantum efficiency whereas for decreasing 7 the
phase sensitivity decreases. The optimal fraction of
squeezing photons also decreases for decreasing 7.
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Fig. 5. Comparison between the phase sensitivity power law expo-
nent ¥(n) for the two working regimes. The curves are reported as
a function of the quantum efficiency # of the photodetectors, cir-
cles are for squeezed regime and squares for the coherent regime.

This is due to the extra width o, of the photocur-
rent probability distribution, which unavoidably lim-
its the benefit induced by squeezing. For any value
of the quantum efficiency 7 the number of squeezing
photons needed for the coherent-signal regime is alto-
gether much lower than the corresponding one for the
squeezed-signal regime. Also the decrease of the phase
sensitivity is different for the two considered regimes.
In Fig. 5 I report the behaviour of the exponent y(n)
of the power law A ~ N=7" for both regimes. For
vanishing 7 both working regimes show a phase sen-
sitivity which converges to the shot noise limit A¢ ~
N~Y2 For 5 up to 7 ~ 0.9 the two curves are almost
indistinguishable, whereas for 2 0.9 the phase sen-
sitivity of the squeezed-signal regime becomes defi-
nitely better than that of the coherent-signal regime.
The value 7 ~ 0.9 can thus be considered as a thresh-
old, beyond which the squeezing of the input signal
can improve the sensitivity of the interferometer.
Up-to-date photodetectors show a quantum effi-
ciency around the threshold value n ~ 0.9. Therefore
in actual interferometers the coherent-signal working
regime has to be preferred because it reaches the best
sensitivity using only a few percent of the squeezing
photons. Efforts in producing large squeezing will
become useful for interferometry only when high ef-
ficiency photodetectors (7 > 0.9) will be available.

4. Conclusions

In this paper I have found the optimal input states
for best monitoring a fixed phase shift in a Mach-
Zehnder interferometer. The input states have been
optimized with respect to both the quantum efficiency
n of the photodetectors, and the total photon number
N impinging onto the apparatus. Two distinct working
regimes have been analyzed. In the first the input signal
is in a coherent state, whereas in the other it is allowed
to be squeezed. In both cases the second port of the
interferometer has been placed in a suitable squeezed
vacuum.

I have shown that, in the limit of unit quantum effi-
ciency, the phase sensitivity is bounded by the power
law A¢ ~ N34 in the coherent-signal regime and by
A¢ ~ N~!in the squeezed-signal regime. For non-
unit quantum efficiency these sensitivities decrease. It
has been shown that for a quantum efficiency up to
7 < 0.9 the two regimes lead to the same power law
for the sensitivity, however with the coherent-signal
regime requiring much less squeezing photons. Be-
yond this threshold value the squeezing signal regime
shows a phase sensitivity definitely better than the
coherent-signal regime, thus justifying the need for a
larger number of squeezing photons.

In actual interferometric devices the quantum effi-
ciency 7 is around the threshold value %7 ~ 0.9. There-
fore the coherent-signal working regime has to be pre-
ferred, assuring the best sensitivity with a few percent
of squeezing photons. A large amount of squeezing
will improve the phase sensitivity only when high ef-
ficiency photodetectors (1 > 0.9) will be available.
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