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The so-called Lindley paradox is a counterintuitive statistical effect where the Bayesian and frequentist 
approaches to hypothesis testing give radically different answers, depending on the choice of the prior 
distribution. In this paper we address the occurrence of the Lindley paradox in optical interferometry and 
discuss its implications for high-precision measurements. In particular, we focus on phase estimation by 
Mach–Zehnder interferometers and show how to mitigate the conflict between the two approaches by 
using suitable priors.
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1. Introduction

Interferometric setups are at the heart of several high-precision 
measurement schemes, ranging from gravitational wave-detectors 
to laser gyroscopes and clocks synchronization protocols. In par-
ticular, a direct detection of gravitational waves is supposed to 
come from laser-interferometric detectors [1–4], where they in-
duce a measurable variation of the optical paths of the light beams 
traveling along the arms of an interferometric setup.

Interferometers are usually employed to detect small pertur-
bations, so that detectors must be able to measure phase shifts 
with remarkable precision and any source of noise must be care-
fully removed. Indeed, recent technological advances in precision 
lasers, vacuum technology and optical systems had made it pos-
sible to greatly reduce classical noise. However, an unavoidable 
constraint to the precision with which optical signals can be mea-
sured arises from the quantum nature of the electromagnetic field. 
The so-called shot noise, results as a consequence of the uncer-
tainty relations existing for the quantum field operators.

A way to partially circumvent the effects of quantum fluctua-
tions and increase interferometric precision is to exploit the use of 
squeezed light [5–7] or other nonclassical states of light [8,9], also 
in the presence of inefficient detectors [10]. The implementation 
of squeezing-enhancement techniques in interferometric detectors 
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has been a great challenge: after a large number of experimen-
tal and theoretical studies it has now became possible to take 
advantage of squeezing [11,12] so that the next generation of in-
terferometers will be equipped with quantum technologies.

In order to effectively exploit the potential improvements of-
fered by quantum signals, the statistical analysis of the data should 
be refined as well. In this context, the key point is to improve 
the ability of discriminating whether a signal contains instrumen-
tal noise only or also a trace of a signal. This problem, which arises 
in the form of a hypothesis testing problem [13], might be conve-
niently studied by means of Bayesian inference [8,14–20]. How-
ever, a Bayesian approach may be challenging since it requires the 
full knowledge of the system under consideration in order to prop-
erly introduce a suitable prior, together with a high computational 
power. Indeed, in a Bayesian framework we have to provide ex-
plicit models of the signal induced by a perturbation to achieve, 
after specifying our prior knowledge, the odds ratio of the detec-
tion hypothesis over the null hypothesis, corresponding to absence 
of signal. In this context, it may happen that the lack of knowledge 
about the system increases the false alarm probability. In other 
words, the posterior odds may favor the alternative hypothesis, i.e. 
presence of perturbations, even if no signals are actually present 
in data. In particular, when a diffuse prior distribution is taken, 
a Bayesian approach to hypothesis testing leads to conflicting evi-
dences compared to a frequentist approach. Such a counterintuitive 
situation was studied by Jeffrey [21] together with Lindley, who 
first referred to this disagreement as a statistical paradox [22].
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The relevance of Bayesian analysis in interferometry has been 
recognized since a long time [8,23]. The interest raised for at least 
three reasons. On the one hand, common interferometric estima-
tors are known to achieve optimal performances only at a specific 
working point [5,24], thus resulting in interferometric protocols 
that do not allow the measurement of arbitrary phase shifts. Be-
sides, in order to estimate small fluctuations around the working 
point, the interferometer has to be actively stabilized by the addi-
tion of some feedback mechanism [25]. Finally, Bayesian estimators 
have been shown to achieve the asymptotic regime, where they 
saturate the Cramer–Rao bound [26], already with few measure-
ments [12,16–18], thus representing a convenient choice in any 
setting where resources are limited or the samples involved in the 
interferometric setup are fragile.

In this work we address in details the occurrence of the Lindley 
paradox [27,28] in the analysis of data coming from optical inter-
ferometry. The importance of the topic seats in the fact that often, 
e.g. in the framework of gravitational antennas, each event is of 
great relevance and should be analyzed in the most refined way. 
More generally, it is often the case that besides the estimation of 
small fluctuations, interferometric measurements are involved in 
monitoring a given physical configuration, where the information 
coming from the experimental data is exploited to statistically dis-
criminate between two hypothesis [29–33]. Here, we first consider 
homodyne detection, then classical-like Mach–Zehnder (MZ) inter-
ferometer, and finally we consider the case of squeezed-enhanced 
quantum interferometers. For the MZ interferometer we start from 
the analysis of the ideal case where the detectors are perfectly 
efficient, and a diffuse prior is assumed, and then proceed by as-
sessing the realistic case where inefficient detectors and a concen-
trated prior distribution is employed. As we will see, the Lindley 
paradox may indeed arise in optical interferometry. Here we show 
how to mitigate the conflict between the Bayesian and frequentist 
approaches by using suitable priors.

The paper is organized as follows. In Sec. 2 we introduce the 
notation and illustrate how and when the paradox can arise. In 
Sec. 3 we discuss phase estimation by homodyne detection as a 
suitable example to illustrate the statistical analysis step by step. 
In Sec. 4 we analyze in details the occurrence of the paradox in op-
tical interferometry, whereas Section 5 closes the paper with some 
concluding remarks.

2. The Lindley paradox

Let us consider a random variable X distributed according to 
a Gaussian distribution of unknown mean φ and known variance 
σ 2. Suppose that we want to test a sharp null hypothesis H0, 
corresponding to the prediction φ = φ0, against the alternative hy-
pothesis H1, corresponding to the diffuse prediction φ ≠ φ0. In 
a Bayesian framework this is done assigning a priori a probabil-
ity p (Hi) and a prior distribution πi (φ) to any hypothesis Hi
taken into account. Let us denote the priors by p (H0) = z0 and 
p (H1) = 1 − z0, with z0 ∈ [0, 1]. Besides, we take π0 (φ) to be a 
Dirac’s delta function since the null hypothesis involves a single 
parameter value. As for the probability density π1(φ), concerning 
the alternative hypothesis, we assume a normal distribution with 
variance τ 2. That being said, the posterior probability z̄0 that the 
outcome X = x provides evidence of φ = φ0, i.e. confirms the null 
hypothesis, is evaluated via Bayes’ theorem, which yields (see Ap-
pendix A):

z̄0 = p (φ = φ0|x) =
{

1 + 1 − z0

z0

p (x|φ ≠ φ0)

p (x|φ = φ0)

}−1

. (1)

In order to illustrate the occurrence of the Lindley paradox, let us 
consider the simple case where φ0 = 0 and σ = 1, where we have 
(see Appendix A for the general case)

z̄0 = p (φ = φ0|x)

=
{

1 + 1 − z0

z0

1√
1 + τ 2

exp

[
x2τ 2

2
(
1 + τ 2

)
]}−1

, (2)

which goes to 1 as τ goes to infinity, no matter the value of 
the outcome x and of the prior probability z0. In other words, 
when the prior distribution for the alternative hypothesis becomes 
non-informative (i.e. approaches a flat distribution), a Bayesian ap-
proach awards high odds to the null hypothesis even if the ob-
served value is several standard deviation away from φ0. This is 
clearly in contrast with the predictions that any frequentist ap-
proach based on sampling theory may provide, not speaking of 
common sense.

The nature of the paradox, actually the lack of any paradox, has 
been extensively analyzed [27,28] and we are not going to dis-
cuss the situation from a statistical point of view, which would 
be beyond the scope of our analysis. We limit ourselves to no-
tice that the disagreement between the two approaches is basically 
caused by the fact that the frequentist approach tests one hypothe-
sis without reference to the other, whereas Bayesian analysis assess 
them as alternative one to each other, looking for the one in better 
agreement with the observations. We also point out that the para-
dox is of great generality since the key point for its appearance 
is the use of a diffuse prior distribution. In the following sections, 
we will exhibit three situation of physical interest where the data 
analysis naturally involves the assignment of a prior, such that a 
discussion about the occurrence of the paradox is worthwhile.

3. Phase estimation by homodyne detection

Homodyne detection is a measurement scheme where the ob-
served mode of the field interferes with a reference mode, thus 
providing indirect information about its phase. The device is illus-
trated schematically in Fig. 1. The field to be measured, prepared 
in an arbitrary state ρ of a single-mode a, is mixed with the field 
produced by an intense laser, i.e. with a highly excited coherent 
state |z⟩, with z = |z| eiφ ∈ C. Two detectors measure the pho-
tocurrents ic and id , while a differential amplifier determines the 
homodyne photocurrent H , i.e. the rescaled difference photocurrent 
Ĥ = (îc − îd)/|z|. In the limit of large |z| it turns out that homodyne 
detection provides the measurement of the quadrature operator χ̂φ

given by:

χ̂φ = â†eiφ + âe−iφ
√

2
. (3)

We point out that the device works properly only if the incom-
ing fields occupy the same spatial mode, have the same frequency 
ω and are co-polarized. Besides, note that our description refers 
to ideal photodetectors with quantum efficiency equal to 1. This 
being said, we address homodyne detection as a tool to estab-
lish whether the phase of a given initial field has been perturbed 
or not, e.g. due to interaction with the environment. In particular, 
we consider a squeezed state |α,λ⟩, with α = |α| eiθ , λ = reiϕ ∈ C, 

Fig. 1. Schematic diagram of homodyne detection scheme.
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r > 0. That is, we take the impinging beam to be in a pure state 
given by:

|ψ0⟩ = |α,λ⟩ = D̂(α) Ŝ(λ) |0⟩ , (4)

where Ŝ(λ) = exp(− λ
2 â†2 + λ∗

2 â2) and D̂(α) = exp(−αâ† +α∗â) are 
unitary operators, namely the squeezing operator and the displace-
ment operator, whose action in the phase space defined by the 
observables χ̂φ and χ̂φ+ π

2
is, respectively, a hyperbolic rotation 

and a translation. Besides, we assume that the interaction with the 
environment results in a phase shift expressed by the evolution 
operator Û I = exp(−iâ†âβ), with β ∈ [0, 2π ]. The final state |ψ⟩, 
impinging on the semi-reflecting mirror, is readily obtained using 
the BCH formulas, which yield:

|ψ⟩ = Û I |ψ0⟩ = exp(−iâ†âβ) |α,λ⟩ =
∣∣∣αe−iβ ,λe−2iβ

〉
. (5)

The distribution Pα,λ(χφ) of the outcomes of repeated measure-
ments of χ̂φ performed on radiation prepared in state |ψ⟩ is a 
Gaussian with expectation value χ̄φ and variance σ 2

χ given by:

χ̄φ =
〈
ψ

∣∣χ̂φ

∣∣ψ
〉
= 1√

2

(
αe−i(φ+β) + α∗ei(φ+β)

)
, (6)

σ 2
χ =

〈
ψ

∣∣∣χ̂2
φ

∣∣∣ψ
〉
−

〈
ψ

∣∣χ̂φ

∣∣ψ
〉2 =

= 1
2

[
e2r sin2

(
φ + β − ϕ

2

)
+ e−2r cos2

(
φ + β − ϕ

2

)]
. (7)

The above equations lead us to conclude that we shall check 
whether the outcomes of measurements by means of homodyne 
detection are consistent with the null hypothesis β = β0 = 0 in or-
der to establish whether the initial state |ψ0⟩ has been perturbed 
or not. Without loss of generality, we focus on a specific exam-
ple and set θ = 0, ϕ = 0, corresponding to an input amplitude-
squeezed state. We may also fix the quadrature component to be 
measured: for the sake of simplicity we take φ = 0. In these con-
ditions, Eqs. (6), (7) become

χ̄0 (β) = |α|
√

2 cos β = χ̄0 (β) , (8)

σ 2
χ (β) = 1

2
[e2r sin2 β + e−2r cos2 β] . (9)

Let us now suppose that a run returns an outcome q = χ̄0 + t ·
σχ , with t ∈ R. In agreement with a standard sampling-theory test 
based on the value of t we shall conclude that if q is several σχ

from χ̄0 the null hypothesis is to be rejected: we have to say that 
a phase shift occurred and the state has been indeed perturbed. 
In order to provide a Bayesian assessment for H0 we set a value 
for the prior probability, say z0 = 0.9, and distribute uniformly the 
remainder probability 1 − z0 over the interval I = [−π ,π ], where 
the phase may take values. On one hand, we are allowed to set 
such a high value for z0 under the assumption that we are leading 
an experiment in optimal conditions, any source of noise being 
taken into account. On the other hand, the choice of a flat prior 
should not be surprising since we have no idea about the dynamics 
of a possible interaction: we are equally (un)expected to measure a 
small or a large value for the phase shift. Eventually, the posterior 
probability z̄0 that β = β0 = 0 is evaluated by the Bayes theorem:

z̄0 =
{

1 + 1 − z0

z0

p (q|β ≠ β0)

p (q|β = β0)

}−1

, (10)

where

p (q|β = β0) = 1
√

2πσ 2
χ (0)

exp

[

− q2

2σ 2
χ (0)

]

, (11)

Fig. 2. Schematic diagram of a Mach–Zehnder interferometer.

p (q|β ≠ β0) =
∫

I

dβ
1

√
2πσ 2

χ (β)
exp

⎡

⎢⎣−

(
q − |α|

√
2 cosβ

)2

2σ 2
χ (β)

⎤

⎥⎦ .

(12)

Note that the value of z̄0 only depends on the value q of the 
outcome: we expect that the bigger is the difference q − χ̄0, the 
smaller the posterior probability z̄0. In order to give a numerical 
estimate let us set |α| = 10 and r = 1, i.e. we consider a squeezed 
state with one hundred photons, where only about 1% of the total 
energy is employed in squeezing. Recalling that the null hypothe-
sis corresponds to the condition β = β0 = 0 we get χ̄0 (0) = 14.14
and σ 2

χ (0) = 0.07. By explicit calculations one can check that for 
|q − χ̄0 (0)| ≤ 4σχ (0) the posterior probability is still over 50%: 
a Bayesian approach leads us to conclude that no phase pertur-
bation actually occurred. That is, if 2σχ (0) ≤ |q − χ̄0 (0)| ≤ 4σχ (0)
the Bayesian approach provides conflicting evidence with respect 
to the values obtained by a sampling test: we are in presence of 
the paradox.

The key point, in the present case as well as in the situation 
illustrated by Lindley, is that the prior is taken to be flat. Notice 
that despite this assumption is somehow consistent from a physi-
cal perspective, in practice it turns out that outcomes being several 
σχ (0) from the expectation value are associated to statistical fluc-
tuations and the null hypothesis keeps on overwhelming any alter-
native. For this reason we shall rather conclude that the Bayesian 
approach is somehow misleading if a scarce information about the 
prior distributions is available, whereas a sampling-theory test bet-
ter accounts what is really happening.

Since our main goal is to address the occurrence of the Lindley 
paradox in interferometry we will not go further in the discussion 
of this case. We only notice that here we have a physical exam-
ple where the paradox unavoidably arises, the assumptions being 
consistent with the dynamics of the system. From a practical point 
of view, we notice that the characterization and the calibration of 
homodyne detectors is one of the building blocks for the robust 
implementation of quantum tomography of the radiation field [34].

4. Phase estimation with Mach–Zehnder interferometry

In the present section we consider a MZ interferometer to 
monitor a classical phase parameter via photon counting measure-
ments. A schematic diagram of the detector is shown in Fig. 2.

Two modes of the radiation field enters the interferometer 
through a first beam splitter, then a phase difference φ is in-
serted between the beams and, finally, the two fields exit through 
a second beam splitter. The number of photons in each mode is 
detected by means of two photodetectors of quantum efficiency η
that measure the photocurrents i f and ie; a differential amplifier 
eventually determines the difference photocurrent, whose possible 
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Fig. 3. Bayesian posterior probability z̄0 (d) in coherent light interferometry with diffuse prior. Left: we show z̄0(d) as a function of d for different values of |α| and fixed 
quantum efficiency η = 0.7. Right: z̄0(d) as a function of d for different values of η and fixed photon number n̄ = 100. Given the distance t = (d − d̄ π

2
)/σd between the 

outcome and the expectation value the probability z̄0 (d) varies slowly with η. (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)

values correspond to the eigenvalues of the Hermitian operator

D̂(φ) = η
(

f̂ † f̂ − ê†ê
)

(13)

which is a normalized version of the integrated photocurrent. It 
can be expressed in terms of the input fields as follows:

D̂(φ) = η
[(

â†â − b̂†b̂
)

cosφ + i
(

b̂†â − â†b̂
)

sinφ
]
. (14)

From the above equation it is clear that measurements of the dif-
ference photocurrent at the output allows one to assess variations 
of the phase difference φ. In particular, from error propagation one 
obtains the following expression for the sensitivity /φ of the de-
vice:

/φ =
√〈

D̂2(φ)
〉
−

〈
D̂(φ)

〉2
∣∣∣∣

∂

∂φ

〈
D̂(φ)

〉∣∣∣∣
−1

φ=φ0

, (15)

which depends from the initial value φ0 and the expectation value 〈
D̂(φ)

〉
. If any perturbations changes the length of the two arms 

of the interferometer, the optical paths covered by the light beams 
is altered. As a consequence, the phase difference φ will vary and 
so will do the outcomes of measurements of the operator D̂: once 
the system has been set in a proper initial working point φ0 an 
outcome φ ≠ φ0 shall be associated to a displacement. Hence, the 
data analysis consists of assessing the probability that an outcome 
d confirms the null hypothesis H0, corresponding to no phase vari-
ation, or the alternative hypothesis H1 that φ ≠ φ0. In this context, 
we discuss the possibility of coming across the Lindley paradox, 
paying particular attention to the conditions in which it can arise.

4.1. Coherent light interferometry

At first, we consider a classical-like MZ interferometer fed by 
an input state of the form |ψ⟩ = |α⟩ |0⟩ where α = |α| eiθ ∈ C. In 
this case, the outcomes d of measurements of the operator D̂ are 
distributed according to a Skellam distribution [35]:

pφ(d) = e−η|α|2
(

1 + cosφ

1 − cosφ

) d
2

I|d|
(
η |α|2 |sinφ|

)
, (16)

where Ik(z) is the modified Bessel function of the first kind. The 
mean value d̄φ and variance σ 2

d of the above distribution are given 
by

d̄φ =
〈
D̂(φ)

〉
= η |α|2 cosφ , (17)

σ 2
d = /2 D̂ = η |α|2 . (18)

This result may be easily understood recalling that the number of 
photons contained in a coherent state follows a Poissonian statis-
tics and that the Skellam distribution provides the probability den-
sity of the difference between two Poisson variates. It is easy to see 

that for the given input state |ψ⟩ the minimum value of /φ is ob-
tained for φ0 = π

2 . Therefore, we assume the interferometer to be 
set in this optimal working point (corresponding to a null mean 
value d̄ π

2
= 0).

We now suppose that a trial results in the outcome d of the dif-
ference photocurrent, that we represent as d = d̄ π

2
+ t · σd = t · σd , 

with t ∈ R. According to a standard sampling-theory test d is to 
be associated to a displacement induced by a perturbation if its 
value is several σd from 0. In this event we shall reject the null 
hypothesis H0. On the other side, in order to give a Bayesian as-
sessment to H0 we assign a probability z0 to the null hypothesis 
and distribute the remainder over the interval I = [0,π ] where 
we expect the phase to vary. Assuming to deal with rare events 
we take z0 = 0.99, i.e. we assume that almost only 1 event out of 
100 is to be associated to an incoming perturbation rather than 
to a random error. With respect to the prior distribution for the 
alternative hypothesis we initially consider a situation where no 
information about the signal is available so that a flat prior re-
sults a proper choice. At this point we can compute the posterior 
probability z̄0 given φ = φ0 = π

2 by Eq. (10), where β is to be sub-
stituted with φ and the probability densities take the following 
expressions:

p (d|φ = φ0) =
∫

I

dφ pφ (d) δ (φ − φ0)

= e−η|α|2 I|d|(η |α|2), (19)

p (d|φ ≠ φ0) =
∫

I

dφ pφ (d) . (20)

The behavior of z̄0 (d) with respect to the number of photons 
injected and the quantum efficiency of the detectors is reported in 
Fig. 3. We note that the trend is the same for different n̄ and η: 
the presence of non-unit quantum efficiency in the detection pro-
cess does not change the shape of z̄0 (d) and the same goes for 
the light intensity. In facts, the overall effect is to reduce the pos-
terior probabilities, i.e. given an outcome d and η1 < η2 we have 
z̄0,1 (d) < z̄0,2 (d), i.e. we get a lower value of z̄0 (d) when we lower 
down the efficiency of the apparatus.

That being said, for a given number of photons impinging on 
the device and efficiency of the photocounters, we can identify 
three different regions corresponding to different values of the 
outcome. In the range 0 ≤ d ≤ 2σd the posterior probability is ap-
proximately 1, in agreement with a sampling-theory approach. In 
this case the phase shift is so little that its origin is much more 
likely to be a random fluctuation rather than an actual perturba-
tion. If d ≥ 4σd the posterior probability is approximately 0: both 
the Bayesian and the Frequentist approach affirm that the phase 
shift has been induced by a perturbation. At last, z̄0 (d) falls from 
1 to 0 as the value of the outcome increases within the interval 
2σd ≤ d ≤ 4σd . Since a frequentist analysis shall provide a value of 
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Fig. 4. Posterior probability z̄0 in coherent light interferometry with wrapped nor-
mal prior. Left: z̄0(d) as function of d and σ with η = 0.7. The coherent amplitude 
is α = 10 so that n̄ = 100 and σ 2

d = 70. An actual disagreement with respect to a 
frequentist approach occurs for 0.2 ≤ σ ∩ 2σd ≤ d ≤ 4σd . Right: z̄0(d) as a function 
of d. The continuous blue line and the dot-dashed red line are obtained for η = 0.7
and σ = 1; σ = 0.5 respectively. The dashed green line refers to the case η = 0.5
and σ = 0.5. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

z̄0 below 0.05 we have that in this region we are in presence of 
the paradox.

On the other hand, one may find uneasy to say that an out-
come four times σd far from the mean value is to be associated to 
statistical fluctuations. In facts, we can describe what is happening 
for 2σd ≤ d ≤ 4σd as follows. Our measurement d of the difference 
photocount gave a random value that was manifestly inconsistent 
with the expected value in absence of interaction; however, as a 
consequence of the prior assumed we are led to conclude that it 
would be even more improbable to observe that specific outcome 
were it the result of an interaction. That is, what makes the para-
dox arise is that the prior asks us to regard at every alternative 
possibility as an improbable coincidence. For this reason, in a real 
experiment an outcome in the range 2σd ≤ d ≤ 4σd should be in-
terpreted as evidence of detection.

In approaching the most realistic description, we now discuss 
the occurrence of the paradox when a less diffuse prior is assumed. 
Here we consider a Gaussian-like distribution as a prior in order 
to account for our belief that a perturbation results in a small 
phase-shift around the expected value. In particular, we consider 
the so-called wrapped normal distribution, defined as follows:

gσ ,φ0 (φ) = 1√
2πσ 2

∞∑

k=−∞
exp

[

− (φ − φ0 + kπ)2

2σ 2

]

. (21)

The wrapped distribution is normalized on the interval I and is 
characterized by two parameters, φ0 and σ 2, which correspond to 
the expectation value and variance of a normal distribution. In re-
calling that the mean value of the outcomes is d̄ π

2
= 0 we impose 

φ0 = π
2 but we let the variance of the prior free to vary in order to 

assess the relevance of our knowledge about the system with re-
spect to the statistics. Note that since z̄0 is inversely proportional 
to the ratio p (d|φ ≠ φ0) /p (d|φ = φ0), which increases as the vari-
ance of the prior assumed for the alternative hypothesis decreases, 
we expect that the sharper is the prior considered the higher will 
be the value of z̄0. For this reason we may expect the Lindley para-
dox not to occur when the variance σ of gσ ,φ0 (φ) is taken to be 
little with respect to the one of the Skellam distribution, given by 
Eq. (17). We report in Fig. 4 the results obtained substituting equa-
tion (16) with the proper expression for the prior (21), so that:

p (d|φ ≠ φ0) =
∫

I

dφ pφ (d) gσ , π
2

(φ) . (22)

At first, we see that if the variance of the prior is taken too 
small then the posterior probability does not evolve (with refer-
ence to the plotted range for d): we get z̄0 = z0 independently 
from the outcome d. From a mathematical perspective, this is due 
to the fact that the ratio p (d|φ = φ0) /p (d|φ ≠ φ0) appearing in 

the expression of z̄0 tends to unity as p (d|φ ≠ φ0) tends to a delta 
δ (φ − φ0). In facts, we are assuming a sharp prior centered in the 
mean value both for the null hypothesis and the alternative hy-
pothesis. That is, we are somehow stating that H0 and H1 are 
equivalent as both of them, according to our prior models, lead 
to a measurement of d to be associated to the outcome d = d̄ π

2
. 

Therefore, after a trial we cannot conclude anything else but that 
it is to be associated to a measurement of the mean value. Simi-
larly, an evaluation of the posterior probability for the alternative 
hypothesis p (d|φ ≠ φ0) yields 1 − z0 = 1 − z0. This last remark 
makes it clear that we are providing too much prior information 
and Bayesian inference can only confirm what we already know, 
without the possibility of improving our knowledge about the sys-
tem. Conversely, if the prior distribution is diffuse, i.e. σ > 1, we 
recover the case of flat prior examined above, where our knowl-
edge is poor and, in turn, for 2σd ≤ d ≤ 4σd the paradox is again 
observed.

The most interesting region is 0.2 ≤ σ ≤ 1. A comparison be-
tween the values of z̄0 obtained employing a widespread prior and 
a sharper one, see the right panel of Fig. 4, shows that the latter 
distribution awards less probability to the null hypothesis, as we 
were expected to. However, the weight of the prior is not sufficient 
to avoid the paradox, which still occurs if 2σd ≤ d ≤ 4σd even for 
small values of the variance of the wrapped normal distribution. 
Fig. 4 also suggests that if the interferometer has poor detectors 
then the odds in favor of the alternative hypothesis will be lower. 
Nevertheless, in recalling that σd decreases with η it is possible to 
see that the net effect remains unchanged.

4.2. Squeezed light interferometry

Let us now consider an input state of the form |ψ⟩ = |α⟩ |λ⟩, 
where α = |α| eiθ , λ = reiϕ ∈ C, r > 0. That is, we replace the 
vacuum state |0⟩ in mode b with a squeezed-vacuum state |λ⟩, 
containing n̄ = sinh2(r) photons. The advantages gained by squeez-
ing enhancement have been widely studied in literature. Here, our 
aim is to assess the convenience of employing squeezed light from 
a statistical perspective. That is, we address the possibility of get-
ting by the Lindley paradox when the injected beam is previously 
squeezed.

Similarly to the previous case we will evaluate the posterior 
probability using a flat prior, at first, and then a peaked distribu-
tion. At the same time, we will pay attention to the contribution 
of the quantum efficiency. The difference with respect to the clas-
sical scheme seats in the distribution of the outcomes pα,λ,φ(d), 
which turns out to be difficult to be computed. However, since the 
expectation value d̄φ and the variance σ 2

d (φ) may be calculated 
exactly we employ a Gaussian distribution for the outcomes as a 
first-order approximation:

pα,λ,φ(d) = 1
√

2πσ 2
d (φ)

e−[d−η cos φ(|α|2−sinh2 r)]2/2σ 2
d (φ) , (23)

where the variance is a function of the initial working point φ0
and of the actual phase shift φ. Similarly to what happened in the 
previous case, σ 2

d takes the minimum value at φ0 = π/2, namely:

σ 2
d (φ) = 1

2
η (1 − η)(|α|2 + sinh2 r)

+ η2

{

|α|2 + 2 sinh2 r cosh2 r cos2 φ

+ sin2 φ
[

sinh2 r(1 + 2α2) − 2α2 sinh r cosh r
]}

(24)

whereas the expectation value results d̄ π
2

= 0.
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Fig. 5. Bayesian posterior probability z̄0(d) in squeezed light interferometry. Left: z̄0(d) as a function of d for efficiency η from 0.5 to 1.0 and for α = 10, r = 1, ϕ = π . Right: 
the posterior probability for given distance |d − d̄φ | = 3σd and the same values of the state parameters (while φ0 = π/2, φ = 0 in σd).

In order to test the consistency of an outcome d = d̄ π
2

+ t ·σd =
t · σd with the null hypothesis H0 we pose z0 = 0.99 and assume 
that the remainder probability 1 − z0 is uniformly distributed over 
the interval I = [0,π ]. Before computing the posterior probability 
we point out that the best sensitivity /φ is achieved for ϕ = π
and |α|2 ≫ sinh2 (r). The posterior probability z̄0 that φ = φ0 is, 
then, obtained by means of equation (10), with β equal to φ, lead-
ing to

p (d|φ = φ0) =
∫

I

dφ pα,λ,φ (d) δ (φ − φ0) (25)

p (d|φ ≠ φ0) =
∫

I

dφ pα,λ,φ (d) . (26)

The behavior obtained for z̄0 is very close to that observed for its 
classical counterpart, i.e. the dashed green line in Fig. 3. Indeed, 
we can identify a region where z̄0 tends to unity (for small values 
of d), a region where it is approximately zero (to the right) and 
a “transition area”, where the posterior probability varies between 
these two limits. What matters most is that we are again in pres-
ence of the Lindley paradox: if we test the hypothesis concerning 
the detection of a perturbation by means of the Bayes’ theorem we 
will end up in a misleading analysis. It is possible to see from the 
plot of Fig. 5 that the situation does not change in presence of non-
ideal photodetectors. In the same vein, when we consider input 
states containing a higher number of photons and such that the 
optimal conditions mentioned above are still satisfied (i.e. ϕ = π
and |α|2 ≫ sinh2 r), the posterior probability approaches zero for 
lower values of d/σd . However, the contribution gained from the 
use of higher intensity light is not sufficient to make it disappear.

At last, we take into account the case of squeezed input light 
with a Gaussian-like prior distribution in the statistical descrip-
tion. The change in the shape of p (d|φ ≠ φ0) has the usual effect 
of decreasing the value of z̄0, as it is illustrated in Fig. 5. Never-
theless, we observe that neither in this conditions we can obtain 
a consistent Bayesian statistical inference. That is, the value of the 
posterior probability does not decrease, not even taking an appre-
ciably peaked prior, until the outcome is more than several σd far 
from the expectation value.

5. Conclusions

We have addressed the occurrence of the so-called Lindley 
paradox in the analysis of data coming from homodyne detection 
and optical interferometry. We found that the Lindley paradox may 
indeed occur. In particular, we have shown that the Bayesian ap-
proach is somehow misleading if a scarce information about the 
prior distributions is available, as it happens in the evaluation of 
the effect of an external perturbation, and sampling-theory should 
be preferred. Concerning MZ interferometers, we have shown that 
Lindley paradox appears both for coherent and squeezed signals 
and is present for any value of the quantum efficiency of the in-
volved detectors. On the other hand, the disagreement between 

Bayesian and frequentist approach is less pronounced for increas-
ing noise and may be softened by using a suitable, more localized, 
priors.

Our results, besides being of fundamental interest for interfer-
ometry, are of practical significance for quantum state reconstruc-
tion, where calibration of homodyne detectors represents a crucial 
step for the implementation of quantum tomography [34].
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Appendix A. Posterior probabilities

Consider a physical system where the quantity X may be mea-
sured and assume that the outcomes from the measurement of 
X are distributed according to a normal distribution with an un-
known mean value φ and a known variance σ 2. We perform a 
measurement of X and on the basis of the outcome x we want to 
test which of the two following hypothesis is true

H0 : the mean value is equal to a given value φ = φ0 (A.1)

H1 : the mean value is not the value above φ ≠ φ0 . (A.2)

We assume to have some prior knowledge on the system, which 
may be expressed in form of some a priori probabilities p(H0) and 
p(H1) = 1 − p(H0) for the two hypothesis. The measurement of 
X is, in turn, intended to upgrade our knowledge of the system. 
Given the result x, Bayes theorem says that

p(Hk|x)p(x) = p(x|Hk)p(Hk) ,

for k = 0, 1, where p(Hk) is the a priori probability introduced 
above, p(x|Hk) is the conditional distribution of the outcomes 
given a hypothesis, p(x) = p(x|H0)p(H0) + p(x|H1)p(H1) is the 
overall distribution of the outcomes, independently which hypoth-
esis is actually true, and p(Hk|x) is the a posteriori probability of 
the hypothesis Hk , i.e. the quantity of interest here. Using the 
Bayes theorem we may evaluate the a posteriori probabilities, e.g. 
p(H0|x) is given by

p(H0|x) = p(x|H0)p(H0)

p(x)

= p(x|H0)p(H0)

p(x|H0)p(H0) + p(x|H1)p(H1)

=
[

1 + p(x|H1)p(H1)

p(x|H0)p(H0)

]−1

=
[

1 + 1 − p(H0)

p(H0)

p(x|H1)

p(x|H0)

]−1

, (A.3)

which, upon the substitutions p(H0) → z0 and p(H0|x) → z̄0, co-
incides with Eq. (1).
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Now, in order to evaluate explicitly the posterior distribution 
we assign some prior distribution πk(φ) ≡ p(φ|Hk) to the mean 
value under the two hypothesis. According to (A.1) and (A.2) we 
write

π0(φ) = δ(φ − φ0)

and assign the rest of the prior probability as a normal distribution 
with variance τ , i.e.

π1(φ) = (2πτ 2)−1/2 exp{−(φ − φ0)
2/2τ 2} .

It is now straightforward to evaluate the conditional probabili-
ties as

p(x|Hk) =
∫

dφ πk(φ) p(x|φ) ,

which leads to

p(x|H0) = (2πσ 2)−1/2 e−(φ−φ0)2/2σ 2
(A.4)

p(x|H1) = [2π(σ 2 + τ 2)]−1/2 e−(φ−φ0)2/2(σ 2+τ 2) . (A.5)

Overall, Eq. (A.3) rewrites as

p(H0|x) =
[

1 + 1 − p(H0)

p(H0)

√
σ 2

σ 2 + τ 2

× exp
(

τ 2

2σ 2

(x − φ0)
2

σ 2 + τ 2

)]−1

. (A.6)

Upon substituting φ0 = 0 and σ = 1 we arrive at Eq. (2).
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