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Abstract

For second harmonic generation, when restricted to one space dimension and pure amplitude modulation, we establish a
direct relation between the incident pulse-shape of the fundamental wave and the asymptotic pulse-shape of the harmonic wave.
In particular, we show that the inverse problem — i.e., to determine the input pulse-shape in order to achieve a required output
pulse-shape — is much easier to solve than the forward problem. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Second harmonic generation (SHG) has become a
standard tool in experimental optics, such that there is
practical interest to achieve optimal conditions for this
process. For cw laser radiation, SHG is a well under-
stood problem, its first experimental observation dat-
ing from almost four decades ago [1]. However, nowa-
days, in several situations one uses short-pulsed inci-
dent laser radiation [2]. Within this context, the theo-
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retical description of this phenomenon is complicated
by focussing conditions and by the walk-off of the
pulses [3,4], and it requires the solution of partial dif-
ferential equations for any specified conditions. Under
the idealized conditions of only one space dimension
and pure amplitude modulation SHG is asolved prob-
lem in the sense that the general solution is given ex-
plicitly by the Liouville equation [5,6]. In a previous
paper, we used this solution and have reduced SHG
with an arbitrary incident pulse at the fundamental fre-
quency to the problem of solving an ordinary differ-
ential equation of Schrödinger type with the incident
pulse shape playing the role of the Schrödingerpo-
tential [7]. In particular, we have shown that the pulse
shapes of both waves change during the propagation in
the medium, such that an asymmetrical incident wave
may originate a symmetrical second harmonic pulse,
and vice-versa.
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In the present letter we will establish a direct rela-
tion — a mathematical mapping — between the in-
cident fundamental pulse-shape and the asymptotic
harmonic pulse-shape which is approached in a suffi-
ciently long medium. We address the following ques-
tion: What a pulse shape must one take for the inci-
dent fundamental wave in order to get an asymptotic
harmonic wave with a required pulse shape? Surpris-
ingly this inverse problemis much easier to solve than
the forward problem. Mathematically only one differ-
entiation is required for the inverse problem while the
forward problem requires to solve a Riccati equation
(see Eq. (12) below).

This paper is outlined as follows: In Section 2 we
discuss the general solution for SHG with amplitude-
modulated pulses, following [7] with slight changes
in notation due to our present purpose. In Section 3
we derive the relation between the incident pulse and
the asymptotic second harmonic. In the following
sections, we apply our formalism to some concrete
pulse shapes (Section 4), and state our conclusions
(Section 5).

2. Basic equations and a conservation law

We will use here slowly varying complex optical
field amplitudesBj(x, t) defined in such a way that
|Bj |2 are the corresponding energy flux densities of
the fundamental wave(j = 1) and the harmonic
wave (j = 2). The connection to the electric field
amplitudesAj is given by Bj = nj√ε0cAj , with
nj denoting the refraction numbers,ε0 the vacuum
dielectricity constant, andc the vacuum velocity of
light. Then, in a second-order nonlinear medium, the
interaction between two quasi-monochromatic plane
electromagnetic waves with angular frequenciesω1
and ω2 = 2ω1, is described by the two differential
equations(
∂x + 1

v1
∂t

)
B1≡ ∂1B1=−κB∗2B1,

(1)

(
∂x + 1

v2
∂t

)
B2≡ ∂2B2= κB2

1,

where one-dimensionality in space has been assumed,
namely the transverse structure can be neglected.
We also assumed that the wave-numbers of both
carrier waves fulfill the phase-matching condition

k2 = 2k1. The star denotes complex conjugation.x, t

are laboratory space and time coordinates. Here we
do not use characteristic coordinates. The symbols
∂j ≡ ∂x+v−1

j ∂t are introduced as shorthand notations.
The coupling constantκ is expressed as

(2)κ = πχ
(2)
eff

n2
1λ1
√
ε0c

.

In Eq. (2),χ(2)eff is the effective second-order suscep-
tibility of the medium, andλ1 the vacuum wavelength
of the fundamental mode. For later use we introduce
the group velocity mismatch

(3)
1

ν
= 1

v2
− 1

v1
.

Under the restriction to purely amplitude-modulated
waves we may take the amplitudesBj as real. With
this assumption from the SHG equations (1) it is easy
to derive the conservation law

(4)∂2
(
∂1B2+ κB2

2

)= 0.

Consequently we get

(5)∂1B2+ κB2
2 = f (t − x/v2).

3. The input–output relation

Let us consider typical initial conditions for second
harmonic generation, namely

(6)B1(0, t)= b1(t), B2(0, t)= 0,

equivalent to therestricted Cauchy problemas treated
in [7]. From the evolution equations (1) it is clear that
for an infinitely long medium the ground waveB1 goes
to zero and a freely propagating harmonic waveB2 is
generated,

(7)lim
x→∞B2(x, t + x/v2)= b2(t).

Now we will see that the conservation law established
in the preceding section leads to a simple relation
connecting the input pulseb1(t) with the output pulse
b2(t).

From the definition of∂1, ∂2 together with (3) we
have

(8)∂t = ν(∂2− ∂1).
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Thus the combination of (5) with the second of
Eqs. (1) leads to

(9)∂tB2− κν
(
B2

1 +B2
2

)=−νf (t − x/v2).

Specification tox = 0 then gives

(10)f (t)= κb2
1(t)

while the limit x→∞ leads to

(11)νf (t)=−∂tb2+ κνb2
2.

Summarizing we find

(12)b2
1(t)= b2

2(t)−
1

κν
∂tb2(t).

This remarkably simple relation is connecting in-
put and output. For given inputb1,

∫∞
−∞ b

2
1(t) <∞,

we have to solve the Riccati equation with the limiting
conditionb2→ 0 for t→−∞. (The Riccati equation
is equivalent to a Schrödinger-type equation, so that
the connection to the former paper [7] can be seen.)
Surprisingly the inverse problem is much simpler to
be solved: When the outputb2 is given only one dif-
ferentiation is required in order to find the inputb1.
Note that the mappingb2(t)→ b1(t) is a local one.
That is, in order to getb1(t0) at some fixed time point
t0 we only need to know the valueb2(t0) and its deriv-
ative at the corresponding time. From the initial con-
dition (6) together with the second of the differential
equations (1) it is seen thatB2 — and henceb2 — can-
not be negative. For any positive definite, continuous
and piecewise differentiable output functionb2(t) ful-
filling

(13)b2
2(t)− (κν)−1∂tb2(t)> 0,

the inverse problem is solved by (12). As an important
consequence of the condition (13)b2(t) cannot vanish
faster than 1/|t| for t→−∞ (+∞) if ν > 0 (< 0).

For a numerical specification we may consider SHG
in LiIO 3. With values taken from [4],χ(2)eff = 2deff =
9.2× 10−12 m/V, ν = 1.2× 109 m/s, λ1 = 780 nm,
n1= 1.8 we find

κ = 2.2× 10−5 W−1/2,

(14)κν = 2.7× 104 W−1/2 m/s.

4. Examples of pulse shapes

By use of (12) — having in mind restriction (13) —
one would be able to establish a catalogue of analytical
input and related output pulse shapes. Instead, we will
provide here not more than three examples, for which
only b2(t) will be explicitly written. b2

1(t) then is
easily available, but some of the related expressions
are considerably messier. Thus it might be more
instructive for the reader to look at the three figures.

It is convenient to putκν = 1 corresponding to an
appropriate scaling. That is, one may choose a proper
unit of intensity and then measure the time in units
of tunit = 1/(κν

√
Punit ). One may also introduce a

characteristic lengthLchar= 1/(κν
√
Punit ) with the

meaning that for an energy flux densityP = Punit
the crystal length must be large compared toLchar
in order to reach the asymptotic region. When, e.g.,
we choosePunit= 10 GW/cm2 then for our specified
LiIO3 example we would arrive attunit = 3.8 ps and
Lchar= 4.5 mm.

As the first example, we take a “flat-top” second
harmonic

(15)b2(t)=
{

1/
√

1+ (t − 10)2, t < 10,
1
2[1− tanh[2(t − 20)]], t > 10,

which is approximately constant for 10< t < 19. This
yields a ground wave which also shares this property,
as can be seen in Fig. 1. Remarkable differences
between input and output do appear only in the leading
front and in the trailing edge. An important feature is
the sharp peak at the trailing edge of the fundamental
wave, which is responsible for the “flat-top” shape of
b2(t). This characteristic is not present, for instance,
in the asymptotic second harmonic originated by
a square input pulse, for which the sharp peak is
absent [7].

For a second harmonic

(16)

b2(t)=
{

2(t−10) tanh[4(t−10)]
4−(t−10)3

− 0.8(t−10)
4+(t−6)2

, t < 10,
0, t > 10,

however, the fundamental and harmonic waves may
have completely different shapes. For instance, in
Fig. 2 we show how a single-peaked second harmonic
is related to a double-peaked fundamental. Similar
double-peaked structures appear very frequently in the
temporal [8] or spectral [8,9] profile of a pulse, so that
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Fig. 1. “Flat-top” asymptotic second harmonic, given by Eq. (15) (dashed line) and corresponding initial ground wave (solid line). The energy
flux densitiesb2

j and timet are measured in adjusted unitsPunit andtunit, see the text.

Fig. 2. A double-peaked second harmonic pulse generates a single-peaked second harmonic peak with a “shoulder” as it is given by Eq. (16).

controlling such features is of practical interest. In
our third example, as shown in Fig. 3, both input and
output pulses are periodically modulated. We take

(17)b2(t)= 1+ 0.375 sint .

As a further test, one can easily verify that, for the
examples discussed in [7], the initial pulse shapes are

recovered applying the input–output relation for the
asymptotic second harmonic.

5. Conclusions

We provide an analytical relation for second-harmo-
nic generation with short pulses connecting the as-
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Fig. 3. Periodically modulated input and asymptotic output waves, where the harmonic output is given by Eq. (17). Note that the intensity of
the fundamental wave reaches zero but that of the harmonic does not.

ymptotic second harmonic and the initial pulse at
the fundamental frequency. This relation is valid for
amplitude-modulated pulses of arbitrary shapes, and
gives the corresponding input wave for a given asymp-
totic second harmonic. This relation has been obtained
in form of a local transformation: in order to com-
pute the fundamental wave at a given time, only the
second harmonic at the same (then retarded) time to-
gether with its derivative are necessary. Thus thein-
verse problem— i.e., to find the input fundamental
pulse shape from the required harmonic output pulse
shape — considerably simpler than the direct problem,
solved in a previous paper [7].
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