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We present examples of continuous variable (CV) states having high fidelity to a given target,
say F'>0.9 or F' > 0.99, and still showing striking differences in their physical properties,
including classical and quantum states within the set, separable and entangled ones, or nearly
Gaussian and strongly non-Gaussian ones. We also show that the phenomenon persists also
when one imposes additional constraints on the energy or the squeezing fraction of the states,
thus generally questioning the use of fidelity to assess properties of CV systems without a
tomographic set of additional constraints.
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1. Introduction

Fidelity' is a widely adopted figure of merit to compare quantum states and to assess
generation and characterization schemes of interest for quantum technology, e.g.
quantum interferometry.?™* Fidelity between the two states p; and p, is defined as
follows:

F(py, p2) = (Try/\/pipav/p1) . (1)

The Bures distance may be expressed in terms of fidelity:

Dp(p1, p2) \/2 VF(pr: p2)); (2)
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which also provides an upper and lower bounds to the trace distance’:

1
1=/ F(p1,p2) < 5llor — palli < V1= F(py,pa). (3)

Fidelity is bounded to the interval [0,1], and values above a given threshold
close to unit, say, 0.9 or 0.99 are usually considered as a sign that the two states are
close to each other, and so share nearly identical properties. The first statement is
certainly true, as it follows from the links between the fidelity and the Bures and trace
distances, whereas the second one may not be justified, or even wrong in some
cases."™ The main purpose of this paper is to continue and extend the analysis of
Ref. 9, providing examples, in continuous variable (CV) systems, where high values
of fidelity are achieved by pair of states with considerably different physical prop-
erties, as for example separable and entangled states, classical and non-classical
ones or, going beyond the Gaussian sector, states with very different values of
non-Gaussianity.

The paper is structured as follows. In Sec. 2, we deal with single-mode Gaussian
states and analyze the drawbacks of the use of fidelity in assessing their quantumness,
defined either in terms of Glauber P-functions or via the Fano factor. In Sec. 3, we
focus on two-mode states and show how high values of fidelity may be achieved by
separable and entangled states or by states with very different values of non-Gaus-
sianity. Section 4 closes the paper with some concluding remarks.

2. Single-Mode Gaussian State

Here we consider a generic single-mode Gaussian state that is a displaced squeezed
thermal state (DSTS;):

p(z,r,nr) = D(2)S(r)vy(ng)S' (r) DY (), (4)

where S(r) = exp{37(a"? — a%)} and D(z) = exp{x(a® — @)}, with 7,z € R, are the
single-mode squeezing and the displacement operators, respectively, vy (nr) is a
thermal state with mean photon number np. The covariance matrix (CM) of the
state in (4) is diagonal o = diag(a,b) with a = (np+3)e?, b= (np +31)e 2. A
suitable parametrization for DSTS; may be obtained using the coherent amplitude z,
the average photon number of the squeezed thermal kernel p(0,7,ny), ie.
N = np + ng + 2npng, with ng = sinh?r the number of squeezed photons, and the
squeezing fraction 3 =n,/N € [0,1]. The total average photon number of DSTS;
(from now on the energy) is given by (afa) = (n) = 22 + N and the thermal and
squeezing component may be expressed as:
(1-B)N

= = N
nr 1+ 23N and ng =N, (5)

respectively.
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The non-classicality of a DSTS; may be detected using the Fano factor defined as
the ratio of the variance of photon number over the mean photon number!*:
2y _ (n)2
e,

= ©)

One has R = 1 for coherent states, while a smaller value is a sufficient condition
for non-classicality, since no state endowed with a positive Glauber P-function
may be sub-Poissonian. The fidelity between two single-mode Gaussian states

pr(Tg, T, ), with k = 1,2, may be written as'"'*:

Foo — exp{—1(X; — X5)" (01 + 05) '(X; — X3)} 7
Ve = VAT s ’ “

where o; and o, are the corresponding covariance matrices, A = det[o; 4 0],
6 = 4[[i-1(det[oy] — 1), and where Xy = (z;,0). In Fig. 1 (left panel) we show
DSTS; as points in the space parametrized by N, 5 and z: the red region corresponds
to sub-Poissonian states, whereas the blue one contains states having fidelity Flyg, >

0.99 to a DSTS; target with the same value of N, that is the average photon number
of the squeezed thermal kernel, and 8 = 0.5 and x = 0.5 (dashed line in the figure).
For the sake of clarity, we report in the right panel of Fig. 1(b) a section of the

sub—-Poissonian

sub-Poiss.

N

(b)

Fig. 1. (Color online) Fidelity and sub-Poissonianity. (Left panel) The red region contains the sub-
Poissonian DSTS; whereas the blue one refers to states with fidelity Fig, > 0.99 to a target DSTS; with
the same N and fixed 8 = 0.5 and = = 0.5 (black-dashed line). (Right panel) Section of the plot of the left
panel in correspondence of x = 0.5. Note that here N is not the total energy, but the average photon
number of the squeezed thermal kernel (see text for details).
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Fig. 2. (Color online) Fidelity and non-classicality. Classicality regions for STS; (blue regions)
and regions of states having fidelity Fiyz > 0.95 (red regions) to the set of target states (black-dashed
line) as functions of N and (. The target states have fixed 8 = 0.3 (left panel) or fixed N = 0.6 (right
panel).

left panel by fixing x = 0.5. As it is apparent from the plot, this set includes both
sub-Poissonian and super-Poissonian states, independently of the nature of the target
state. Overall, this means that fidelity cannot be used to assess the sub-Poissonian
character of DSTS; even when quite strict constraints are imposed on the set of
considered states (in this case the parameter N).

The most general way to assess the quantum properties of a single-mode state is
to study whether the Glauber P-function is singular or not.'" Let us focus atten-
tion to single-mode squeezed thermal states, i.e. let us set x =0 in Eq. (4), and
analyze the relationships between non-classicality and fidelity. In the left panel of
Fig. 2 we show the region of classicality for STS; states as a function of the total
energy (n) = N and the squeezing fraction (8 together with the region of states
having a fidelity Fiyg > 0.95 to the set of non-classical states with fixed squeezing
fraction B = 0.3. The right panel of Fig. 2 displays the region of classical states
together with the region of states having a fidelity Fiyg > 0.95 to the set of states
with fixed energy N = 0.6. In both cases the areas have a non-zero overlap and
cross the non-classical boundary, such that fidelity cannot be used as unique figure
of merit in order to assess quantumness. To summarize: we have strong evidence
that fidelity should not be used in benchmarking the generation of quantum
resources, even when attention is focused on states with quite stringent physical
constraints, as fixed energy or squeezing. Only after a full tomographic recon-
struction of the state one obtains a suitable set of physical constraints to properly
decrease the volume of states having a given value of fidelity to the target or the
set of target states.'?
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3. Two-Mode States

Let us now consider two-mode squeezed thermal states, expressed by the density
operator:

p =S (r)vi(nrm) @ Vth(”T?)S;(T)v (8)

where Sy(r) = exp{r(&%l;;r — ab)}, with 7 € R, is the two-mode squeezing operator
and nq, (k= 1,2) are the mean thermal photon numbers. The states in Eq. (8) are
Gaussian, assuming their 4 x 4 CM is given by:

1AL, Co, )
=2\cs. BL )
where I, is the 2 x 2 identity matrix, 7, is the Pauli matrix and:

29(1 - )N + BN(1+ N)

A= AByN) =1+ Aiste , (10a)
B= B(pn,N) =1+ DA DL IRUER) )
_ _ (14 N)/BN@ T BN)

where now N = 2ng + (np; + npy)(1 + 2ng) is the total energy, 8 = 2ng/N is the
fraction of squeezed photons, and v = nyy/(ny + nyy) is the fraction of single-mode
thermal photons.

A way to quantify the nonclassicality of a two-mode Gaussian state is in terms of
the amount of entanglement. Entanglement may be detected and quantified in terms
of negativity of the partial transposed density matrix. In terms of the so-called

symplectic eigenvaluesl‘r’:
~ A o)+ \/ A o) —41

= 2 s

where we introduced the local symplectic invariants I; = det[A], I, = det[B], I3 =
det[C] and I, = det[o], a two-mode squeezed thermal state is separable iff d_ > L
The fidelity between two-mode Gaussian states of the type (8) reads'®'":

(VX + VX —1)2

Frno = 12
Ney det[o; + o] (12)

where X = 2/E; + 2/E; + 1 and
= det[QoyQoy] — 1 and  E, — det[o; +%Q] det[oy + %Q] 7 (13)

det[0'1+0'2] det[0'1+0'2]
2 =16, ® 6, being the two-mode symplectic matrix, with &, one of the Pauli matrices.
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F>0.99

Fig. 3. (Color online) (Left panel) Separability region of STS, (blue region) in terms of the energy
parameters NV, 3 and +y on the left together with the volume of states having Fiys, > 0.99 (red region) to a
set of entangled target STS, (black-dashed line) having the same energy N with 5= 0.2 and v = 0.5.
(Right panel) Section of the left panel plot in correspondence of v = 0.5.

In the left panel of Fig. 3(a), we show the separability region in terms of the three
parameters N, § and « and the volume of states having Fig, > 0.99 with a set of
entangled target state having the same energy N with 8 = 0.2 and v = 0.5. In order
to emphasize how the overlap is considerably large in the right panel we have plotted
a projection on the plane where it is maximized. The region of separability is crossed
by significant fraction of states over all the energy range, thus making fidelity of a
little use to assess entanglement in these kind of systems though a severe constraint
on the energy of the two states has been provided.

As a final example, let us consider the set of photon-number entangled states
(PNES), i.e. two-mode states of the form'®'%:

[4)) = Wuln,m)),

where |n,n)) = |n) ® |n). In particular, we focus attention on two specific classes
of PNES: the Gaussian two-mode squeezed vacuum states (TWB) [|¢7)) =
S5(r)]0)) and the non-Gaussian set of states resulting from the process of photon
subtraction” > applied to [ib7)), ie. [1hg)) o @ ® blir)) (PSSV), where d and b are
the annihilation field operators. In terms of the parameter y = tanhr we have:

(1-9y?)°

vn=Vi-py' and gn=4 5

(I+n)y", (14)
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Fig. 4. (Color online) (Left panel) Regions of states having fidelity larger than 0.94, 0.92, 0.9 between a
TWB and a PSSV in yellow, red and blue, respectively; in the inset the logarithmic plot of fidelity Fgy in
function of the energy, with N = Ng = N, which reaches the value of 27/32 in the limit N — oco. (Right
panel) Non-Gaussianity 65 of PSSV as a function of the Fyr to a TWB with same energy N; in the inset the
logarithmic plot of d5 in function of N.

] 5

such that the average numbers of photons are given by:

2 22 (2 - 2
zly 5 and N527y(y4; )
-y 1-y

Nr (15)
In the left panel of Fig. 4(a), we show some region plots of the fidelity between a
generic TWB and a generic PSSV

Far = |[((¥slpr))|* = (Zw%wi) :

as a function of their average number of photons. As it is apparent from the plot,
large values of fidelity, e.g. Fgr > 0.9, are compatible with a relatively large range of
energies, corresponding to considerably different physical properties (see below).
Notice that for Ny = Ng = N we have Fgp > 27/32 = 0.84 VN: the inset shows the
behavior of Fgr as a function of N.

A striking example of a property which cannot be assessed using fidelity is
obtained by considering the non-Gaussianity of PSSV. For pure states the non-
Gaussian character (quantum negentropy) of a CV states may be quantified by the
Von-Neumann entropy of its reference Gaussian state, i.e. a Gaussian state with the
same CM.?*! For PNES the non-Gaussianity 6[¢] reduces to

w2 (a D04 1) (oD (e D). o

where d_ = \/(N + 5% = 2.1+ n)Y,¥14,]%. The non-Gaussianity of PSSV is

an increasing function of their energy. In the right panel of Fig. 4 we show the
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non-Gaussianity 6z[¢g] of PSSV, renormalized to its asymptotic value (in order to
have 0 < 6p[1)] < 1) as a function of the fidelity Fgp between the PSSV and a TWB
with the same energy. As it is apparent from the plot, very large values of fidelity to a
Gaussian states are compatible with very large range of values of non-Gaussianity
(almost the whole range). The inset shows the behavior of §5[1)g] as a function of N.

From our analysis, we conclude that also for two-mode states, fidelity should be
used with caution in order to assess quantum properties, and that this remains true
also when one imposes additional constraints on the energy or the squeezing fraction
of the states. Notice that also in the case of two modes, full tomography®*>* is
imposing a suitable set of constraints to make fidelity a meaningful figure of merit to
summarize the overall quality of the reconstruction.

4. Conclusion

In this paper we have presented several examples of single- and two-mode CV states
showing that being close in the Hilbert space is by far not equivalent to share the
same physical properties, e.g. quantum resources. In addition, we have shown that
the phenomenon persists also when one imposes additional constraints on the energy
or the squeezing of the states, thus generally questioning the use of fidelity to assess
properties of CV systems. Overall, our results suggest to use fidelity only in con-
junction with a tomographic set of additional constraints.
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