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We revisit the problem of finding the Naimark extension of a probability operator-valued
measure (POVM), i.e. its implementation as a projective measurement in a larger Hilbert space.
In particular, we suggest an iterative method to build the projective measurement from the sole
requirements of orthogonality and positivity. Our method improves existing ones, as it may be
employed also to extend POVMs containing elements with rank larger than one. It is also more
effective in terms of computational steps.
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1. Introduction

Any (generalized) measurement performed on a physical system is described by a
probability operator-valued measure (POVM) acting on the Hilbert space of the
ensures that any POVM may be implemented as a
projective measurement in a larger Hilbert space, which is usually referred to as the
Naimark extension of the POVM. As a matter of fact, there are infinite Naimark
extensions and the theorem also ensures that a canonical extension exists, i.e. an

1-5

system. Naimark theorem

implementation as an indirect measurement, where the system under investigation is
coupled to an independently prepared probe system® and then only the probe is
subject to a (projective) measurement.”’

The problem of finding the Naimark extensions of a POVM is indeed a central one
in quantum technology. On the one hand, it provides a concrete model to realize
the measurement,'®!" and thus to assess entanglement cost'* and/or implementa-
tions on different platforms.'*™'® On the other hand, it permits to evaluate the post-

measurement state and thus to investigate the tradeoff between information
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gain and measurement disturbance,'’™%

as well as any procedure aimed at
quantum control.?’
Let us consider a set of operators {II,,} that constitute a POVM for the physical
system S described by the Hilbert space Hg, i.e.
M
m, =Ig, M, =TI, TI,>0. (1)
m=1
The elements of the set are not necessarily projectors, IL, I1,,, # I1,,6,, ,,,. The Naimark
theorem states that it is possible to eztend each POVM elements to a larger (product)
Hilbert space H, ® Hg (see Appendix A) such that the extended measurement
operators are projectors in the product space. In particular, it is possible to define the
auxiliary Hilbert space H 4 such that the system Hilbert space H g is isomorphic to a
subspace in H 4 ® Hg, where the density operator p defined on Hg corresponds to the
density operator |e;)(e;| ® p defined on H 4 ® Hg. The state |e;) may be chosen as the
state corresponding to the first vector of the canonical basis of H 4. Naimark theorem
states that we can find projectors {E,,}

EmEn = E'Iﬂ,é’ﬂl,NJ ETTL = E:n,a Em 2 07 (2)

each of them corresponding to a POVM element II,, in the following sense. The
distributions of the mth outcome, as obtained from {FE,,} and {II,,} on the states
ler){e1] ® p and p, respectively, are the same, i.e.

Tra[IL,p] = Tras((le1){e:]| ® p) Ey). (3)
At the operatorial level, this is expressed by the following set of relations
IL,, = Tra[(lex)(e1| ® Is) E,p], (4)

which, solved for the F,, given the II,,, provide the desired Naimark extension of
the POVM.

As it was originally suggested by Helstrom® the projectors {E,,} may be built by
placing a copy of II,, in the upper-left block position of the matrix representation of
{E,,} (corresponding to the element 1 in the matrix e; - e7). At the same time, no
explicit recipes had been provided on how to find the remaining blocks. The aim of
this paper is to describe an iterative method for effectively building those blocks upon
exploiting the sole requirements of orthogonality and positivity.

The problem has been addressed before,?”?® and constructive methods to find the
projective measurement have been suggested. In short, these methods amount to set
up and solve a linear problem which gives the coefficients of the projectors in the
canonical basis of the enlarged Hilbert space H, ® Hg. However, the focus has been
on solving the problem for rank-1 POVM elements. Our iterative method is also
based on solving a linear problem, shows two main advantages compared to existing

techniques. On the one hand, it is more efficient in terms of computational steps and,
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on the other hand, it may be applied also to POVMs containing elements with rank
greater than one.

The paper is structured as follows. In the next section, we introduce the iterative
method, first illustrating the basic idea and then, in Secs. 2.1 and 2.2, describing in
details its two building blocks, i.e. the constrained building of an idempotent matrix
and the constrained building of a matrix orthogonal to a given one. In Sec. 2.3, we
put everything together and illustrate the overall algorithm to build the Naimark
extension of a generic rank-n POVM. In Sec. 3, we illustrate few examples of
application, whereas Sec. 4 closes the paper with some concluding remarks.

2. An Iterative Method to Build the Naimark Extension
of Rank-n POV Ms

In the following, we will write projectors as matrices of suitable sizes composed
by blocks. The first step in building the projectors E,, is analogue to the original
Helstrom recipe, i.e. we define the upper-left block in the matrix of F,, equal to II,,.
The algorithm then builds the projectors one at a time, upon defining their blocks
iteratively. As we will see soon, initially the blocks of the first projector are mostly
zero, and the building of the following projectors populates other blocks. In this sense,
the amount of nonzero rows and columns grows during the building of the projectors,
and the size of the necessary auxiliary Hilbert space H 4 is obtained only at the end of
the procedure.

The algorithm initially builds the blocks of E; in order to satisfy the constraints
(2) on itself, i.e.

E,-Ey=E, E1:EL (Ey, >0), (5)

where the third condition (positivity) actually follows from the first two, idempo-
tency and hermiticity. Then, we build some blocks of E, in order to satisfy the
orthogonality with F,

E, -E,=0 (6)
and then imposing the other constraints
Ey-Ey=Ey, Ey=Ej, (E,>0), (7)

we define the remaining blocks. As we will see, this second step do not modify the
previously defined blocks of Fj.

Analogously, the algorithm builds F5 (if any) imposing its orthogonality with
E,, F,, and then imposing that Fs3 - F3 = E3. The generalization is straightforward,
the element FE,, is built in order to satisfy at first the orthogonality with the previ-
ously built projectors, and then imposing the condition FE,, - F,, = E,,. The algo-
rithm is thus an iterative one, since it employs the projectors already found, until all
the elements are built.
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The algorithm requires basically two steps repeated several times: building a
matrix with some assigned blocks such that it is orthogonal to another matrix, and
the completion of the matrix in order to make it idempotent, that is, satisfying

Em . Em = Em-

These steps are analyzed in some details in the following two sections, whereas the
overall algorithm is summarized in Sec. 2.3.

2.1. Building an idempotent matrix

At first, let us consider the problem of building an idempotent matrix when some of
its blocks are assigned. This is the case of the evaluation of E|, which has the block IT;
in the upper-left position. If II; is already idempotent, we can just put II; in the
corner and set the remaining blocks to zero. If this is not the case, we can define the
blocks around II; such that F; - F; = F|, possibly employing the minimum amounts
of blocks, and setting the others to zero. In what follows, we ignore the subscripts that
refers to the mth element. The general problem becomes to find the adjacent blocks of
the upper-left corner in order to make the matrix E idempotent.

As we will see in the following, it is enough to assume the following matrix
structure for £

I A 0
At B 0
E=1909 00 .. (8)

with IT a given block, while A, B are blocks to find (AT and B > 0 have been used so
that £ = ET). In the case II1? = II, we can omit A, B since the matrix is already
idempotent. Otherwise, we have to add the blocks A, AT, B and the matrix E grows
in sizes. The constraint

soe (0D o

gives the following equations:

2+ AAT =11, (10)
IIA+ AB = A, (11)
ATA+B?=B. (12)
Equation (10) can be solved exploiting the singular value decomposition (SVD)

for T =VAVT and A= USWT. Setting U=V, W =1,5 = /A(I — A) leads to
A=V,/A(I — A). Assuming for the moment a full rank matrix II, with eigenvalues
strictly included in the range (0,1), Eq. (11) allows us to find B =1 — A.
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Finally, Eq. (12) is verified with the above solutions, and the blocks of E can
be built as

I A0 .. VAV VAT —A) 0
At B 0 ... VAT =NVt I—A 0
E=9 00 ..|= 0 0 0 (13)

A different route may be also employed upon exploiting positivity of the elements
of the POVM. Indeed, for positive semi-definite II, we have the Choleski decompo-
sition IT = YY'? (with Y having no particular properties), which is generally less
demanding than the SVD in terms of computational time. Note that if II is not
full rank, the decomposition is still available, with Y being a rectangular matrix with
the same rank.

With this decomposition, Eq. (10) is solved by

A=YVI-Y'Y, AT=vVI-YiYY" (14)

and B=1-Y'Y follows. Finally, Eq. (12) is verified by re-writing ATA =
VB(I — B)VB.

For rectangular Y, Eq. (14) still holds upon defining Y ~! as the Penrose inverse of
Y, that is, the rectangular matrix satisfying Y ~'Y = I on the support of Y. In
addition, the decomposition E = ZZ1 is also readily available from Y,

Yyt YVI-YY 0

VI-YIYYt I1-Yviy 0

0 0 0o ... (15)
Y

VI—YTY

= -(Y* VI-Y'Y 0 ...):ZZT. (16)

2.2. Building a matrixz orthogonal to a given one

In this section, we consider the problem of building a matrix (with some assigned
blocks) such that it is orthogonal to a given one. This occurs in building, e.g. Es,
which has the upper-left block equal to II, and must verify E; - E5 = 0. If we have
II, - II, = 0, it is enough to set the blocks adjacent to II, equal to zero. In the most
general case, this does not hold, and to satisfy the orthogonality condition, we have to
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explicitly determine the blocks around II,. The expression

I vy Yi/I-Ym <H2 A)—o an
1L = . ) : . )
VI-vimy]  1-vin AL B

where II; = YlYlT, provides the constraints
Y Y, T, + v/ T - Y[ YA =0, (18)

VY[ A+Y\/JI-Y]ViB=0, (19)

VI-Yiviy/A+a-viv)B=0. (20)

Equation (18) allows us to find A = I, Yj4\/I — YITYl, whereas Eq. (19) provides

-1
the expression B = (« /T — Yi"}g) YT, Y;1/T — Y|'Y;. The third Eq. (20), is in-

deed verified by these solutions.
At this stage, upon imposing the orthogonality with F,, we found that E5 has the

II, 1L, Y;\/I-Y]V, %
E2: _(\/I_Yl‘yrl) Y1§H2 (\/I_YJYl) YJHQYE\/I—YI‘—Y'I *

* * *

structure

(21)

where the blocks indicated by * are left unused and may be exploited to impose other
conditions on E,. If a decomposition II, = XX is available, the big block just de-
fined in (21) has a simple decomposition,

XXt — XXV /I-Y{"W,
—1 - -1
—<\/1—Y1'Y1) vixxt (MI-Y{}Q) YiIXXTy\/I-Y]Y,

X
= —\ -1, S xt —XWMI—YW)—Y.YT. 22
—(«/I—Yﬂiﬁ) vix ( ' L 20y (22)

Note that the blocks just defined depend on II; (via its decomposition) and upon IT,.
If we have to impose the orthogonality of matrix F,, with E;, only the nonzero blocks
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in E| would be involved. Thus, the solution would be the same substituting II,, =
Xijn in place of IT, = X2X;r.

2.3. The algorithm

The algorithm builds the projectors one at a time, using the previously built pro-
jectors. For each projector E,,, two steps are performed: first the orthogonal con-
struction of Sec. 2.2, which defines some blocks of E,, such that the projector is
orthogonal to all the projectors previously evaluated. In the second step, leveraging
the idempotent construction illustrated in Sec. 2.1, some other blocks are defined so
that E2, = E,,. Before applying the orthogonal or idempotent construction, it is
checked whether F,, is already orthogonal to the other projectors or idempotent.
If this is the case, the step is simply skipped.

The algorithm starts building F; with the idempotent construction, as the or-
thogonal one is not necessary. II; is copied in the upper-left block of E; and the

solution (15) is evaluated with Y = Y7, Y1Y1T = II;, where Y] has been obtained for

instance from the SVD of II; = V; A, V', giving ¥; = Viy/A,. If 11, is full rank, the
projector E; has a nonzero 2 x 2 blocks in the upper-left corner. The remaining
blocks are zero. The matrix representation reads

Y, vi\JI-Yiv

B = # I-Yiv

0 ‘ 0

with # the off-diagonal element such that £, = F I The projector E, is then built
using the two steps. The block II, is copied in the upper-left corner, a decomposition
I, =X él)X gl)T is evaluated (by SVD if needed) and the three blocks around are
defined as in (21) leveraging on the decomposition IT; = YlYf previously evaluated.
At this point, the big block just defined has a decomposition Y2Y2T as in (22), and if

not idempotent, the adjacent blocks need to be evaluated accordingly employing the
idempotent construction of Eq. (15).

Ya Yy

11, ~ILY; (w /1 — an)
Ey = L Ll YT
W <\/I—Y1TY1> VLY, <\/I—Y1TY1>

# I—-Y,Y,
Note that in this case in the original matrix F, the 4 x 4 blocks in the upper left
corner are defined, for a total of 4D rows and 4D columns (if II;, IT, are full rank),

-1
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with D being the dimension of the system Hilbert space. In the evaluation of Fs, the
same orthogonal and idempotent construction are repeated, with the difference that
the first must be repeated twice to get the orthogonality with F; ed E5. As usual, first
the block IT; = X él)X :(;1)T is copied in the upper left corner. The first blocks around 115
are evaluated with (21).

The newly defined big block has decomposition X §2>X :(,)Z)T obtained from (22)
where X = X él), Yo=X §2>. The orthogonal construction (21) is repeated to get the
orthogonality with F,, employing the block X §2)X §2>T and the term Y5 previously
defined in the idempotent construction of E,. A new bigger block is obtained with
decomposition Y3Y3:r as in (22).

The idempotent construction is then used employing ¥ =Y; as in Eq. (15).
Finally, we get the matrix (note that not all the blocks have the same size)

Y?;Y;
X@ x @t
-1
FE3 = II3 —II3 YlRl _X(Q)X(Q)T Y- R*l Y3 R3
4 R1—1Y1T Il; YlRl—l 3 3 2419
# Ry 'Y XP X VoR,!
# Y]V,

with Ry = /I —Y,Y], Ry=1/I-Y,)Y,, Ry=1/I—Y,Y;. Note that the

expression of Fs3; depends upon the decompositions YlYf,YgY; of the upper-left
blocks of the preceding projectors. This holds for each projector E,,.
The method used to evaluate F5 may be iterated for any subsequent projector.

First, the block II,,, = X f%)X 5,1” is copied in the upper left corner. The adjacent
blocks are defined imposing the orthogonality with F;, following the orthogonal
construction. The just defined block has decomposition X ,(,%)X ,(,%ﬁ, and the orthog-
onal construction is repeated using Y,,, which is the term used in the idempotent

construction of E,,n < m. At the end of each orthogonal constructions, the newly
defined big block is decomposed as X 5,7;,>X ffiﬁ,i < m, and the orthogonal construction

is repeated until i reach m. The term X" =Y, is then used in the idempotent
construction to get the final block structure of E,,.
At this stage, upon following the procedure leading to E,,, a recursive construc-

tion may be also obtained for its decomposition F,, = Z,,Z ! For further details,
see Appendix B. If all the II,, are full rank and with eigenvalues in the range [0, 1],
then the size of the projectors grows exponentially. In fact, the projector F, has in
this case 2 x 2 nonzero blocks, for a total of two-dimensional 2D rows and 2D col-
umns; the projector F, populates 4 x 4 blocks, the projector F3 has 8 x 8 nonzero
blocks, and so on. An exception occurs if some of the blocks already satisfy the
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orthogonality conditions. For instance, if I1, is already orthogonal to II;, there is no
need to use the adjacent blocks to obtain its orthogonality. This is also the case if the
block is idempotent, since the adjacent blocks may left unused.

3. Examples

Here, we apply our procedure to obtain the Naimark extension of POVMs already
presented in the literature. In this way, we are able to show the main features of the
algorithm, and its advantages compared to existing ones.

3.1. Three elements POVM

Helstrom considered the example a three-elements POVM {II;,II,, 115},
I, + 11, 4 II; = Lg, defined by IT;, = 2[4;.) (4], k = 1,2, 3, where"

1 1 1 e—im/3 1 ein/3
|¢1>\/§<1>7 |¢2>\/§< gin/3 >7 |¢3>—\/§<6m/3>. (23)
ie.

1/1 1 1 1 6_2“’/3 1 1 62i71'/3
I, = I, = I == . (24
173 (1 1)’ 273 <62m/3 1 )’ 373 (ezm/:; 1 (24)

The extension originally obtained by Helstrom was based on a 2D auxiliary Hilbert
space with basis |v;) = (1,0)7, |v,) = (0,1)7, and it is given by EJ = |&.) (&,
k=1,...,4, where
161) = v/2/3[v1) ) + /1/3] o) 1b3), 25
1€2) = V/2/3|vi) [vb2) — \/1/3[v2)|43),
€3) = V/2/3vn)|v3) + V/1/3|va) [ih3),
1€4) = [v2)[13),

, 1 _ eiﬂ/B
b = — . 29
|w3> \/§ 6_7-“/3 ( )
The iterative algorithm in this case is particularly efficient since the orthogonality

construction gives also idempotent matrices. Overall, a 2D auxiliary Hilbert space is
still required, but only the upper left 3-by-3 corner has nonzero coefficients.

26

27

)
)
)
28)

(
(
(
(

1110 1 e ¥ F 0
111 110 1 L ~-&
B = L B=c| 0L T 0 (g
311 110 T 0
00 00 0 0 0 0

1750029-9
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2i

1 eT e 3T 0
1 672‘% 1 e%— 0
ES = g 2im 2im (31)
es e 3 1 0
0 0 0 0

The correctness of both solutions is verified by checking the properties of orthogo-
nality, idempotence, and the upper left corner equal to the original POVM.

The extension proposed by Helstrom gives 4-by-4 matrices with no zero
coefficients, and therefore differs for the block adjacent to the left upper corner. Here,
we report the matrix expression of E4! for comparison with F, in Eq. (30)

2i 2i

S
5

o1 S 22
V2 V2
Ef == , . (32)
3le ¥ e ¥ 1 1 i
hat et
v2oov2 2 2
2im 2im
es es 1 &
——e3 —
V2 V2 2
3.2. Four elements POVM
Helstrom also considered a four-elements POVM {II,, IT,, I13, I1, }, with*
I 1 1 e i1 L A
.= —|U =— =1,2,3
k 2|¢k><wk|a ‘wk> \/5 67:(]“71)% ; 3 &y 9y T
ie.
1/1 1 1/1 —i 1 1 -1 1/1 =2
H —_ H — — H: = — H = — .
! 4(1 1)’ ? 4(@ 1)’ s 4(-1 1)’ * 4(—i 1>
(33)

Again, the iterative algorithm easily finds the extension since the orthogonal con-
struction directly gives idempotent matrices, without the need of the idempotent
construction.

1 1 V2 0 1 —i  —e T e f

1f 1 1 v2 o0 1 i 1 —eT  ef
El:Z , Ey== . . (34)

V2 V2 2 0 —e1 —e 1 1 -1

0 0 0 0 eF e & -1 1

1750029-10
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1 -1 0 V2 1 i e —ef
im 3im
1 -1 1 0 —iv2 1 —1 1 —e~ 1 e
E3 - — \/_ s E4 = —
4 0 00 0 4 _e-5 _e2 1 1

—iv2 iv/2 0 2 F e 1 1

3.3. Rank-2 POV Ms

In a more recent paper, rank-2 POVM elements have been introduced to describe
generalized measurements involving sets of Pauli quantum observables chosen at
random, the so-called quantum roulettes.”’ More precisely, quantum roulettes are
generalized measurements obtained by selecting the observable ¢, with a probability
{7} in the set of nondegenerate and isospectral observables {o;}. The POVM ele-
ments are defined as linear combination of the projectors associated with the
observables outcomes.

In Ref. 29, the canonical Naimark extension is sought, i.e. the implementation of
the generalized measurement in a larger Hilbert space using a projective indirect
measurement on the ancillary system after its coupling with the system. In this
scenario, Eq. (3) is rewritten as

Tra[IL,p] = Tras[(lwa)(wal © p)UT (P, @ Ls)U],

where |w,) is the ancillary state, U describes the coupled evolution between the
systems, and P,, is the projective measurement in the ancillary system. A first ex-
ample of POVM is that of a roulette obtained from the Pauli operators {0, 03} with
probabilities {z,1 — z}, 2z € (0, 1), giving the elements

1 — 1 —
le— 2 o o 5 H_lz— z i .
2 z z 2\ —2 2—z

The solution proposed uses the ancillary state |w,) = LQ (|0) + e™|1)), the
projectors
1 2 - 2 —
P= M R .
2 2(2—2) z
and the unitary
F 0 0 0
0 0 if* 0 2—2z z
U= = ; .
o i o0 ol ! \/V22+Z\/22
0 0 0 f

1750029-11
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On the other hand, upon applying the iterative algorithm gives these solutions
straightaway,

1-Z2 z V(-2 0
2 V2
z z 0 (1—-2)z
2 2 /2
El = ’ E—l = I[AS - Ela
(1-2)z 0 z _z
/2 2 2
0 (1-2)z _z L7
V2 2 2

which is equivalent to the canonical one up to a rotation in the ancillary state.
The paper presents also another example with rank-2 diagonal POVM elements,

1
s+Hfo0
H1: 1 )
0 ——
5~/

M, =1-1I,.

The proposed extension employs the ancillary state |wy) = |e;), the projectors of
the observable o3, i.e. P = |e;){eq|, P_; = |es){es|, and the unitary

1 1
S+ f 0 0 i =—1r
2
1 1
0 \/§—f ig+f 0
U: 9
1 1
0 - - 0
i 2+f 5 f
1 1
z_ 0 0 z
i3 f \/2+f

which gives

U (P, @ 1)U

%+f 0 0 5@@
0 l—f li\/1—4f2 0
_ 2 2 (36)
0 _gm Loy 0

1750029-12
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In this case, the iterative algorithm is particularly easy to apply since we have di-
agonal POVM elements, and it gives the solution

1 1
S+ f 0 —\/1—4f? 0

2

JIZifE 0 S+

which is equivalent to (36) since in both cases, we can see II; in the upper left bock.

N |~

4. Conclusions

In this paper, we have addressed the problem of finding the Naimark extension of a
probability operator-valued measure, i.e. its implementation as a projective mea-
surement in a larger Hilbert space. As a matter of fact, the extension of a POVM is
not unique and we have exploited this degree of freedom to introduce an iterative
method to build the projective measurement from the sole requirements of orthog-
onality and positivity. Our method improves existing ones, as it is more effective in
terms of computational steps needed to determine the POVM extension. Even more
importantly, our method may be employed also to extend POVMs containing
elements with rank larger than one.

Since a Naimark extension provides a concrete model to realize the generalized
measurement, we foresee applications of our method to assess technological solutions
on different platforms and to investigate the tradeoff between information gain and
measurement disturbance in generalized measurements.
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Appendix A. Kronecker Product Convention

The product space is usually defined as Hg ® H 4, with the system Hilbert space Hg
on the left. However, given the definition of Kronecker product

allB A alnB
A® B= : . : ,

amlB e amnB
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the opposite convention, i.e. describing the composite system by the Hilbert space
H 4 ® Hg, makes it easier to graphically visualize the product matrix. For instance,
for a matrix given by the product of the first element of the canonical basis only one
block is nonzero

B O --- 0
00 - 0
(e1-e1)®B=
00 -0

The standard convention would make the notation more cumbersome.

Appendix B. Building the Decomposition of E,,

The procedure explained in Sec. 2.3 suggests a recursive construction to directly

obtain the decomposition F,, = Z,,Z ! In order to evaluate Zm, We initially need a

decomposition II,,, = X fi)X ﬁ,{”, obtained for instance from its SVD. Then, the or-

thogonal construction (22) is applied with X = Xg,?, Y, =Y, toevaluate Y, = XS,QH).

This step is repeated for i = 1 to m. The last block calculated, X ﬁ,rln ), is defined as Y,,
and used in the idempotent construction (16) employing Y =Y, to get Z = Z,,,.

This construction can be summarized by the following matrix (in general
rectangular)

x5
—1 XS,?)

T T 1 ) .

<\/IY1Y1> v x\) X

-1 x4
- (« - Y§Y2> v, x P
X =v,
Zin = ( T YTY-) Tyix (B.1)

1
T T m—1
_< I— Ym—lyml) YIIL—lX'Sn )

I-Y}Y,

m

Note that to obtain the term Z,, the decomposition X,, of II,, is used, as well as
all the terms Y}, Y5, ..., Y,,_; used in the preceding idempotent constructions. This is

-1
an efficient procedure, since the terms such as (\ [T — YfY;) Y;,i < m are used in
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the later evaluation of the projectors, without the need to evaluate them at each
iteration. Note that also in this procedure we should check whether the matrices

X ,S,Z;)X S,ZIL)T are orthogonal to E; or if Y, Y is idempotent. In this cases, there is no need
to perform the orthogonal or idempotent construction of the algorithm.
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