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Abstract

An interaction scheme involving a parametric amplifier and beam splitters is suggested for the generation of two identical
squeezed states in two initially unexcited spatial modes of the radiation field.

1. Introduction

As it was shown by Wootters and Zurek [ 1], the lin-
ear structure underlying quantum mechanics prohibits
duplication of a generic state vector. That is, starting
from a physical state described by |¢) @ |¢) @ |A),
where |¢f;) is the initial state of an idler mode and |A)
the state of apparatus and environment, there are no
physical interactions leading to an outgoing state de-
scribed by |¢) ® |¢) ® |B). Actually, what would be
really violated by duplication is the unitarity of quan-
tum mechanics [2] which forbids duplication of states
not belonging to an orthogonal set. In quantum op-
tics this means that, among customary representations,
only number states could, in principle, be duplicated
[34].

The above no-cloning theorem is a precise and in-
disputable statement. However, it does not prevent one
to devise some interaction scheme which creates two
identical states starting from the vacuum state. In for-
mula,

10) ®10) 2 ) @ ). (1)
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Indeed, we are going here to present an interaction
scheme for generating two identical squeezed states in
two different, initially unexcited, spatial modes of the
radiation field. This will be an intriguing and concrete
example in order to clarify the meaning of the no-
cloning theorem. The latter, in fact, definitely does not
forbid the synthesis of identical states. It deals with the
duplication of a fixed initial state explicitly preventing
its cloning not accompanied by its destruction.

From a more practical point of view, the synthesis of
two identical copies of a squeezed state is welcome as
it provides the basis for a high-sensitive interferomet-
ric scheme recently suggested in Ref. [5]. Moreover,
it allows the direct sampling of the Wigner function
by a modified eight-port homodyne detection scheme
[6-9]. In both cases it is crucial to have at one’s dis-
posal two identical squeezed states at the same time,
such that a repeated serial production cannot be help-
ful. As we will see, here the two identical squeezed
states are jointly produced from a common classical
source, thus they are also phase-matched.

In the next section we describe the present interac-
tion scheme in details, whereas some concluding re-
marks are given in Section 3.

0375-9601 /97 /$17.00 Copyright © 1997 Published by Elsevier Science B.V. All rights reserved.

PII S0375-9601(96)00870-5



M.G.A. Paris / Physics Letters A 225 (1997) 28-32 29

N ) .

’ Pt

BS, BS; )
N, Lo BS,

Fig. 1. Schematic diagram of the interaction scheme for generating
two identical squeezed states. The gray box represents a parametric
amplifier along with its classical pump. BS| and BS; are balanced
beam splitters whereas BS3 and BSy are nearly-unit transmissivity
beam splitters. LO denotes a local oscillator, namely a very intense
laser beam.

2. From the vacuum to two identical squeezed
states

A schematic diagram of the interaction scheme we
will deal with is depicted in Fig. 1. At the first stage
a parametric amplifier is employed for exciting the
vacuum to a two-mode squeezed vacuum. The two
modes are then impinged on a beam splitter which,
for a particular choice of transmissivity, disentangles
the squeezing leading to a two-single-mode squeezed
vacuum. Finally, these two states can be displaced by
means of a nearly-unit transmissivity beam splitter.

2.1. Parametric amplifier

A three-wave mixing device consists of a nonlinear
medium showing second order susceptibility ‘. The
interaction Hamiltonian can be written as

A, x yP(a'blc + abety, (2)

where the resonance condition w. = w, + wy is as-
sumed. We consider a and b as two different spatial
modes of the field at the same frequency w, = @), = w.
Within the parametric approximation, namely by con-
sidering ¢ as an undepleted classical pump, we can
substitute the boson operator with the corresponding
classical amplitude ¢ — |y|e'?~, such that the evolu-
tion operator in the interaction picture can be written
as

LA/({) = exp ({afbf -g—“ab) , (3)
with

{ =ightlyle'r. (4)

In Eq. (4), g denotes the coupling constant, At the
interaction time, whereas v is the classical amplitude
of the pump. The optical device described by Eq. (3)
is known as a parametric amplifier and received both
theoretical and experimental attention [10,11].

By means of the following two-boson Schwinger
realization of the SU(1, 1) algebra [12],

(K., K_1=2K;, [Ks,Ryl=+Ky,

K, =d'bt, K_=uab,

Ky=3(b'b+aa+1), (5)
the evolution operator in Eq. (3) can be written as a

SU(1,1) displacement operator. The SU(1,1) Baker-
Haussdorff formula reads

exp (K. — ZK_) = exp (BoR.) exp (1£3)

X exp (-Bok—) ’ (6)
where
Bo = éta"hlzl, B =1log(1 —|Bol*) . 7

By means of Eq. (6) the action of the parametric
amplifier on the electromagnetic vacuum can be easily
evaluated,

0()[00) = /1= Bol> > Biln.m) . (8)

The state in Eq. (8) is a two-mode entangled state. It
is usually termed two-mode squeezed vacuum.

2.2, Beam splitter

The beam splitter represents the most simple optical
device to couple two modes of the field. It is realized
by a linear medium showing only first order y(!) sus-
ceptibility. The interaction Hamiltonian is written as

A < xV(a'b+aby, (9)

whereas the evolution operator (in the interaction pic-
ture) is expressed as

V(A) =exp (Aa'b — Aabl) | (10)

]_
A = iarctan TT, (11)
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where 7 represents the transmissivity of the beam split-
ter. The evolution operator (10) has the form of a
SU(2) displacement operator when using the follow-
ing Schwinger two-boson representation of SU(2) al-
gebra [12],

[Jo.J-1=20, (B Jel=4]e, Ji=abl,
J_=d'b, 5L=L0'b-da). (12)

The Baker-Haussdorff formula reads
V() = exp(Boa'b) exp[ 381 (a'a— b'b)]

x exp(—pBoab') , (13)
where

1—17

Bi=—logr, PBo=i (14)
It is worth noticing that the special case of a balanced
beam splitter, namely 7 = 1/2, corresponds to the evo-
lution operator f/( imr/4). We also notice that a beam
splitter is a passive device, i.e. no energy is added to
the interacting modes. Therefore, the vacuum state is
invariant under the action of ¥ (A) for any value of A,

V(1)[00) = 00) . (15)

2.3. Disentangling squeezing

We now want to analyze the combined action, on
the vacuum, of the parametric amplifier and the first of

the beam splitters in Fig. 1. This will be a two-mode .

state given by

W) = V(X U(£)]00). (16)

Taking advantage of the vacuum invariance (15), we
write Eq. (16) as

[Wap) = VDTV (A)]00), (17)

and proceed with the evaluation of V(1) U()V1(A).
The latter can be written as

o < pn
V(A)U(;>VT(A)=§"AHG !
o AAB\ —Ayn
ZZSE—:T_L’ (18)

where we have introduced the notation
A = Ad'b— Aab',
B=¢a'b' - Zab. (19)
Eq. (18) can be evaluated using the operator relation
e*Be =B+ [A, B+ LA (48] +
1 _ . . A 4
+;[A,[A,...,[A,B]]]+.... (20)
P————
n times

Upon the further position

R =¢Aa®? — Zha® + ZAb* — 22612, (21)

we have

[A,[A,....[A,B]]]=(=4]7)" D2k nodd,
N———

n times

= (—4{r|H)"?B n even.
(22)

We thus arrive at the expression

- (4]AH)*

-1k B
kZ:O:( ) (2k)!
gk (41’\| o\
Z( D 2k + 1)!

=cos(2|A]) B + MK (23)

2|l

Let us now consider the special case of a balanced
beam splitter. As we noted above, this corresponds to
A =iw/4, so that we have

eABe A= 2R, (24)

:ilw

and
V (im/4) OV (im/4) = exp [(2/m)K]
=8, (im¢/2) ® 8, (img /2) (25)

where S(p) = exp[(p/2)a? — (p/2)a%] is the
squeezing operator.
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In Eq. (25) the two squeezing operators act on only
one mode. This means that a balanced beam splitter is
able to disentangle squeezing from a parametric am-
plifier. The output state at this stage would be repre-
sented by a two-identical single-mode squeezed vac-
uum. In the next subsection we will show how to dis-
place them, in order to generate two identical squeezed
states.

2.4. Displacing states

The displacement properties of a beam splitter for
a coherent state have been known for a long time.
Recently it has been shown [13] that it can be used
to displace any quantum state of radiation. The signal
mode is impinged onto a beam splitter whose second
port (idler) is fed by a very intense laser beam (local
oscillator). At the same time the transmissivity of the
beam splitter is supposed to be very close to unity. That
is, only a little mixing of the input state with the idler
is allowed. However, the latter beam is very intense.
The evolution of the signal mode can be obtained by
a partial trace of the evolution operator (10) over the
idler mode. The latter is described by a coherent state
|z}, thus we have
VTR by, @6
with D(B) = exp(Ba’ — Ba) the displacement oper-
ator of amplitude 8= —izv1 — 7.

In the present scheme the local oscillator of both the
beam splitters BS; and BS3 comes from a common
source (see Fig. 1). This is to assure phase matching
and balance of amplitudes. The classical pump of the
parametric amplifier can nicely provide this common
source. It is also assumed that the two beam splitters
have the same transmissivity 73 = 74 = 7.

Following the scheme of Fig. 1, we have that after
the beam splitters BS3 and BS; the state of the two
modes is described by

Tr {1 ®|z)(z| V(1)

V() V() V (4 = im/4) 0(£)]0)|0)
= V(A3)10,i7Z/2)aV (A0) 10,17 /2)5
=|B,im{ [ 2)a| BrimL [2)p . (27)
In Eq. (27) |B.¢) = D(B)S({)|0) denotes a

squeezed state with coherent amplitude 8 and squeez-

ing parameter £, B is given by B = —iz/v2+v/1 — 7.

Two identical squeezed states have been indeed syn-
thesized in two different spatial modes of the field.

3. Summary and some remarks

In this paper we have suggested an interaction
scheme to excite two different spatial modes of the
radiation field to identical squeezed states. First the
vacuum has to be excited to a two-mode squeezed
vacuum by a parametric amplifier. Then, the squeez-
ing is disentangled by a balanced beam splitter, and
finally the resulting two-single-mode squeezed vac-
uum is displaced by a nearly-unit transmissivity beam
splitter whose second port is fed by a highly excited
coherent state. The squeezing parameter can be tuned
by varying the amplitude and phase of the classical
pump, whereas the coherent amplitude is controlled
by the intensity of the local oscillator.

The final result of two identical squeezed states re-
lies on the capacity to carefully control two parameters
of the whole device, namely the transmissivity of the
two balanced beam splitters BS; and BS,. In partic-
ular, the disentanglement properties of BS; would be
destroyed if its transmissivity deviates from the value
71 = 1/2. On the other hand, any fluctuation of the
transmissivity of BS; results in an unbalanced split-
ting of the local oscillator, thus leading to a different
displacement of the two states.

One can argue that a scheme for the generation of a
single squeezed state could be enough, as one can gen-
erate any number of copies of it by repeated prepara-
tions. However, this cannot be used to obtain two iden-
tical squeezed states at the same time. Also, a parallel
production of the states by duplication of the prepa-
ration apparatus cannot be useful due to fluctuations,
acting in different manners in the different devices.
On the contrary, the situation considered here is qual-
itatively different, as the two identical squeezed states
are jointly generated from the same common classical
source, namely the pump of the parametric amplifier.
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