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Abstract
We address the problem of estimating the mass of a quantum particle in a 
gravitational field and seek the ultimate bounds to precision of quantum-
limited detection schemes. In particular, we study the effect of the field on 
the achievable sensitivity and address the question of whether quantumness 
of the probe state may provide a precision enhancement. The ultimate bounds 
to precision are quantified in terms of the corresponding quantum Fisher 
information. Our results show that states with no classical limit perform 
better than semiclassical ones and that a non-trivial interplay exists between 
the external field and the statistical model. More intense fields generally lead 
to a better precision, with the exception of position measurements in the case 
of freely-falling systems.

Keywords: quantum estimation theory, mass sensing, semiclassical gravity, 
quantum probing

(Some figures may appear in colour only in the online journal)

1. Introduction

The emerging field of quantum metrology [1, 2] promises enhanced sensitivities in parameter 
estimation with respect to what can be accomplished using only classical probes. In particular, 
quantum sensors aim to harness phenomena at the quantum scale, such as quantum coherence, 
in order to achieve ultrasensitive information extraction. The standard paradigm of quantum 
sensing relies on three steps: initialization of the quantum probe, encoding of the physical 
parameter and final readout. The analysis of the outcomes allows for statistical inference on 
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the value of the parameter. Overall, the ultimate bounds to precision of any quantum-limited 
estimation strategy are quantified via the quantum Fisher information for the unknown param-
eter [3–6].

The present paper studies the estimation problem of inferring the mass of a particle probing 
an external gravitational field. Since in non-relativistic quantum mechanics the mass does not 
directly correspond to a quantum observable, because there is no Hermitian operator whose 
eigenvalues describe its possible values, the problem falls naturally within the framework of 
parameter estimation theory [7–9].

The possibility of estimating the mass of a freely-falling quantum probe follows from the 
fact that the gravitational coupling leads to the appearance of mass-dependent phenomena in 
its dynamics. This is in contrast to what happens in classical physics, where the mass does 
not enter the equations  of motion as a consequence of the equivalence principle [10–12]. 
In fact, the Schrödinger equation for a particle of mass m in an external gravitational field 
depends parametrically on the ratio !/m [13], so that wherever genuinely quantum behavior 
is expected, a dependence on the mass is unavoidable. Such parametric dependence in turn 
allows to extract information about the mass through suitable measurements on the probe.

Several physically realizable systems at the interface between gravity and quantum 
mechanics can be employed as mass sensing devices. An example is offered by gravity-based 
quantum interferometry [14], where the wavepackets propagating along the two arms of a 
Mach–Zender interferometer at different heights in the Earth’s uniform gravitational field 
accumulate a different phase due to the gravitational potential, thus producing a measurable 
mass-dependent shift of the interference pattern. In quantum bouncing experiments [15–17], 
quantum projectiles, typically a beam of cold neutrons, are subject both to gravity and to the 
confining potential of a perfect mirror, with a dynamics which is explicitly mass-dependent. A 
more recently available platform is provided by quantum nanomechanical oscillators [18–20].

In the following, the ultimate sensitivities for Hamiltonians describing the basic physics of 
such configurations are established. The purpose of the present paper is thus not to discuss any 
realistic implementation, but rather to look for general insights into the estimation problem 
at hand, loooking for the ultimate sensitivity by stripping away technical details, such as the 
presence of noise.

The rest of the paper is organized as follows. Section 2 contains a primer on local quantum 
estimation theory. In section 3, the quantum dynamics for systems, both in free-fall and with 
the addition of an external potential, is solved and the corresponding uncertainties quantified. 
Section 4 explains the origin of the different time-scalings of the quantum Fisher information 
with the interrogation time of the experiment. Section 5 summarizes our results and closes the 
paper with some concluding remarks.

2. Quantum estimation theory

One of the fundamental problems of statistical inference is to extract information about an 
unknown parameter λ from n measurements x1, x2, . . . , xn of a random variable X whose 
probability distribution pλ(x) depends parametrically on λ ∈ Λ ⊂ R. It is assumed that 
among the family { pλ}, i.e. the statistical model, there is also the true distribution pλ∗, where 
λ∗ is the true value of the parameter. Typically, one considers an unbiased estimator λ̂, i.e. a 
function of the measurement outcomes x1, x2, . . . , xn such that E(λ̂) = λ∗, and looks for the 
estimator which has minimum variance among all possible estimators. If it exists, the estima-
tor is called efficient. It is a well-known result of classical statistics [7] that the variance of any 
estimator λ̂, under certain regularity conditions, is bounded from below by the inverse of the 
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Fisher information (FI) evaluated at λ = λ∗. More precisely, let us suppose that the sample 
space of X is independent of λ and that pλ can be differentiated under the integral sign with 
respect to λ. Then the following Cramér–Rao bound holds,

Var(λ̂) ! 1
n FX(λ∗)

. (1)

The Fisher information FX(λ) is defined as

FX(λ) = E[(∂λ ln pλ(x))2]. (2)

Geometrically, the FI FX(λ∗) measures the curvature of the statistical model around the true 
distribution: when the curvature is low, large deviations around λ∗ may be expected and sen-
sitivity in distinguishing neighboring values of λ is reduced; conversely when the curvature is 
high, sensitivity is enhanced. The scaling with the inverse of the number of measurements n is 
due to the additivity of the FI, assuming the measurements are independent.

Let us emphasize that are two distinct steps in this optimization procedure. At first, one 
has to choose some random variable X whose probability distribution depends on the param-
eter. Then one has to look for an efficient estimator. The second problem has a well-known 
solution: Bayes estimators or estimators built using the maximum likelihood principle are 
asymptotically efficient, i.e. they become efficient for large samples (that is, for large values 
of n). On the other hand, the first problem has no clear-cut solution in classical statistics. 
Remarkably, in the quantum case, one can maximize the FI over all possible measurements 
and the result of the maximization process is the so-called quantum Fisher information (QFI). 
In addition, one may also prove that there is always a measurement scheme which saturates 
the bound. One then says that the corresponding measurement is optimal or that it achieves 
the ultimate quantum limit.

We now proceed to review the quantum parameter estimation problem. A quantum statisti-
cal model is a family of quantum states ρλ ∈ S(H ), where S(H ) is the set of density opera-
tors on the Hilbert space H  of the system. The states are parametrized by λ ∈ Λ ⊂ R as in the 
classical case. A measurement of an observable X is represented by a positive operator-valued 
measure (POVM) on the sample space Ω(X) of X, i.e. a mapping x → Πx, with x ∈ Ω(X) and 
Πx a positive, self-adjoint operator, with the condition

∫
dxΠx = 1H . (3)

The proper probability distributions for the measurement outcomes are obtained by Born’s 
rule, i.e.

pλ(x) = trρλΠx. (4)

The FI FX(λ) therefore takes the form

FX(λ) =

∫
dx

(∂λtrρλΠx)2

trρλΠx
. (5)

By introducing the symmetric logarithmic derivative Lλ of the density operator ρλ, defined 
implicitly by the relation

∂λρλ =
Lλρλ + ρλLλ

2
, (6)

one may derive an upper bound on FX(λ) which is independent of X,
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FX(λ) ! trρλL2
λ. (7)

The quantity appearing on the right side is called the QFI H(λ). The quantum Cramér–Rao 
bound therefore takes the form

Var(λ̂) ! 1
n H(λ∗)

. (8)

The proof of (7) amounts to an application of the Cauchy–Schwarz inequality with respect 
to the inner product (A, B) = trA†B, with A,B trace class operators on H . By investigating 
conditions for equality, one finds that the quantum Cramér–Rao bound can always be satur-
ated, but in general the optimal POVM depends on the true value of the parameter λ∗ and on 
time, so that it may be hard to implement experimentally. Nonetheless, the QFI is a relevant 
quantity, as it quantifies the maximum information on λ that in principle can be extracted. In 
addition, the QFI has deep geometrical underpinnings, giving rise to a Riemannian metric on 
the statistical model. For more details, see references [3, 4, 21–23].

To compute the QFI one has to determine the symmetric logarithmic derivative Lλ at least 
on the support of ρλ. In the case of a pure quantum statistical model, i.e. ρλ = |ψλ⟩⟨ψλ|, it is 
possible to find a closed form, expression,

H(λ) = 4 [⟨ψλ|∂λψλ⟩2 + ⟨∂λψλ|∂λψλ⟩]. (9)

Since the QFI is usually a dimensional quantity, one often reports instead the rescaled QFI 
λ2H(λ), which is manifesly dimensionless and moreover bounds from above the signal-to-
noise ratio λ2/Var(λ̂), where λ̂ is any unbiased estimator of the unknown parameter.

3. Quantum dynamics in a gravitational field

Upon taking the non-relativistic limit of the Klein-Gordon equation for a spinless boson in the 
weak-field metric, one recovers the Schrödinger equation, with the Newtonian gravitational 
potential as a potential energy [24]. That is, the Hamiltonian for a particle of mass m, in a 
gravitational field with Newtonian potential φ and an additional non-gravitational external 
potential V, takes the form

H =
p2

2m
+ mφ+ V . (10)

This form of the Hamiltonian has been confirmed by experiments at the interface between 
gravity and QM, as the gravity-based interferometry experiments of the 1970s [14].

In this section, three physical examples of quantum dynamics under gravity are worked 
out, see figure 1. We consider first the case of a particle in free-fall in a uniform gravitational 
field. Then an infinite barrier potential is introduced, which models the presence of a perfectly 
reflecting mirror, such as in the quantum bouncer experiments with cold neutrons [15–17, 25]. 
Finally the case of an harmonic potential is studied, which is relevant to quantum nanome-
chanical implementations.

3.1. Uniform field

The time-evolution operator for a particle of mass m in a uniform gravitational field g can 
be found analytically [26–28]. One first rewrites the Hamiltonian H = −∂2

x/2m + mgx in 
momentum space as
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H = ei p3

6m2g (img ∂p) e−i p3

6m2g , (11)

where the derivative is supposed to act as an operator on everything to its right. The time 
evolution operator is obtained by taking the complex exponential e−iHt of (11). One can 
employ the identity eδ∂p f ( p) e−δ∂p = f ( p + δ), where f is a generic scalar function of p, to 
write the time evolution operator in a form with all operators involving powers of p moved 
to the right, i.e.

e−iHt = e−i mg2 t3
6 emgt ∂p ei gpt2

2 e−i p2 t
2m . (12)

Returning to position space,

e−iHt = e−i mg2 t3
6 e−imgxt e

mgt2
2 ∂x ei t

2m ∂2
x . (13)

It follows that a general wavepacket under gravity evolves as if it were free, except for a phase 
factor and for being translated along the classical trajectory.

It is assumed that at the initial time t  =  0 the probe’s state is described by a generic square-
integrable function ψ(x, 0). In the absence of gravity, it would evolve according to ψf (x, t). 
Under gravity it becomes, after a time t,

ψ(x, t) = e−img2t3/6 e−imgxt ψf

(
x +

gt2

2
, t
)

. (14)

(a) (b)

(c)

Figure 1. Schematic representation of the three different setups at the interface between 
quantum mechanics and gravity we are going to consider. (a): a quantum particle of 
mass m, described by the wavefunction ψ(x, t), in free-fall in a uniform field −g x̂. 
(b): the quantum bouncer, i.e. a particle in a uniform field with an infinite barrier at the 
origin (on the side, the first three eigenstates of the quantum bouncer are reported). (c): 
a particle in uniform field subject to an harmonic potential (on the side, the first three 
eigenstates are reported).
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To compute the QFI using (9) the first step is to evaluate the derivative of the statistical model 
with respect to the parameter m,

∂mψ(x, t) = e−img2t3/6 e−imgxt ∂m ψf

(
x +

gt2

2
, t
)

− i
(

g2t3

6
+ gxt

)
ψ(x, t).

 

(15)

The first term is responsible for the fraction of the total information on the particle’s mass 
which would be available even in the absence of any gravitational field, which we denote as 
H|g=0. One then finds that the QFI is given by

H(m) = 4g2t2 Var(x) + H(m)|g=0. (16)

The position variance Var(x) may be equally computed either with respect to ψ or ψf , as a 
consequence of (14). Since for the free Schrödinger equation Var(x) grows like t2, the QFI 
grows like t4.

The asymptotic behavior like t4 appears to contradict the fact that the QFI for pure models 
is known to grow at most quadratically with the interrogation time t [29]. In section 4, it is 
shown that such behavior is due to the fact that the Hamiltonian for a particle in free-fall is 
an unbounded operator. In particular, the t4 scaling can be traced back to the existence of a t3 
term in the exponent of the propagator of (13). Since it is a pure phase factor, it is irrelevant 
for gravity-based interferometry (the achievable sensitivity in gravity-based interferometry 
scales only like t2). The fact that the QFI scales like t4 suggests that it is possible in principle to 
employ such phase factor in order to achieve a higher sensitivity. Recent proposals have been 
put forth towards a new kind of interferometry able to employ the t3-phase [30].

The QFI provides a benchmark against which optimality of specific quantum measurement 
schemes may be assessed. For example, one may compare it with the FI Fx obtained by moni-
toring the particle’s trajectory, i.e. for position measurements, with corresponding POVM 
Πx = |x⟩⟨x|, x ∈ R. Notice that, from (14),

Fx(m) =

∫
dx

(∂m|ψ(x, t)|2)2

|ψ(x, t)|2 =

∫
dx

(∂m|ψf (x + gt2/2, t)|2)2

|ψf (x + gt2/2, t)|2 , (17)

which by a change of variable is seen to be equal to the FI for position measurements in the 
absence of gravity, Fx

∣∣
g=0. This implies that the external gravitational field has no effect on 

the statistical model for position measurements, i.e. it does not allow to extract any further 
information compared with the free case [31].

A simple concrete example is a Gaussian wavepacket of the form

ψ(x, 0) =
(α
π

)1/4
e−

α
2 (x−h)2

. (18)

In the classical limit it corresponds to a particle localized on the lengthscale 1/
√
α around 

x  =  h. Its free evolution is given by

ψf (x, t) =
(α
π

)1/4 1√
1 + iαt/m

e−
α(x−h)2

2(1+iαt/m) . (19)

The wavepacket spreads according to

⟨x2⟩t = ⟨x2⟩t=0 (1 + α2t2/m2). (20)

The corresponding QFI is given by

L Seveso et alJ. Phys. A: Math. Theor. 50 (2017) 235301
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H(m) =
α2t2

2m4 +
2g2t2

α

[
1 +

(αt
m

)2]
. (21)

The second term is due to the gravitational coupling and it reproduces (16). The FI for position 
measurements Fx is

Fx(m) =
2

m2
(αt/m)4

[1 + (αt/m)2]2
. (22)

The quantity m/α is the characteristic timescale of spreading of the wavepacket, denoted by ts.  
In the macroscopic limit ts is very long, so that Fx vanishes, which is in accordance with the 
equivalence principle of classical gravitational physics. In the microscopic regime the infor-
mation does not vanish. However, such information is not specifically due to the gravitational 
coupling and is instead due to the mass-dependence already present for solutions of the free 
Schrödinger equation.

3.2. Quantum bouncer

When an infinite barrier potential at the origin is added to the Hamiltonian, the spectrum 
becomes discrete, as shown in appendix A, with eigenfunctions and eigenvalues

ψn(x) = Nn Ai(x/lG + zn), En = −mglGzn; (23)

Nn is a normalization constant, lG, see (A.1), is a characteristic lengthscale and zn denotes the 
nth zero of the Airy function Ai(x). The existence of gravitational bound states in the presence 
of a perfect mirror has been confirmed in experiments with ultracold neutrons [15–17]. An 
optical analogue has been realized as well [32].

3.2.1. Superposition of energy eigenstates.

The QFI for a particle in the nth energy eigenstate evaluates to

H(n)(m) =
16

63 m2

(
9
4
− 8

15
z3

n

)
. (24)

The position FI instead is

F(n)
x (m) =

16
63 m2

(
1 − 2

15
z3

n

)
. (25)

The QFI for a superposition of the form ψ(l,n) = ψl cos θ/2 + eiϕ ψn sin θ/2 can also be 
computed,

H(l,n)(m) = cos (θ/2)2 H(l) + sin (θ/2)2 H(n) − 4
m2

{
tEl

3
cos (θ/2)2 +

tEn

3
sin (θ/2)2

+
4 sin θ

(zl − zn)3 sin [ϕ+ (El − En)t]
}2

+
4t2E2

l
9m2 cos (θ/2)2 +

4t2E2
n

9m2 sin (θ/2)2

+
16 sin θ

9m2

{
36 [20 + (zl + zn)(zl − zn)2]

(zl − zn)6 cos [ϕ+ (El − En)t] +
3t(El + En)

(zl − zn)3

× sin [ϕ+ (El − En)t]
}

.

 

(26)

L Seveso et alJ. Phys. A: Math. Theor. 50 (2017) 235301



8

The asymptotic behavior for large t is

H(l,n)(m) ∼ t2

9m2 (En − El)
2 sin2 θ. (27)

When lower powers of t are omitted, the duration of the experiment is assumed to be much 
longer than the characteristic timescale of the system. For example, for a superposition of the 
first two levels of the quantum bouncer with ultracold neutrons, the period of the quantum 
beats, τ = 2π/(E2 − E1), is of the order of milliseconds, so (27) requires that the time of 
confinement of the neutrons inside the apparatus is much longer [25].

From (24) and (26), a superposition of two different energy eigenstates is seen to be more 
sensitive than a single eigenstate or a statistical mixture [33, 34]: quantum probes provide 
enhanced sensitivity (see figure 2). One may also optimize over θ and ϕ, i.e. the initial state 
preparation. Equation  (27) suggests to employ a balanced superposition, i.e. θ = π/2, and 
well-separated energy eigenstates.

3.2.2. QGE with a perfect mirror. For the purposes of this paper, a quantum Galilean experi-
ment (QGE) involves letting a quantum state with a well-defined classical limit, e.g. a local-
ized wavepacket, fall under gravity. In this section, we consider a QGE with a Gaussian 
wavepacket in the quantum bouncer. The initial state is the same as the Gaussian wavepacket 
of (18)4. For generic t, the wavepacket takes the form

ψ(x, t) =
∑

n

cn ψn(x) e−iEnt, (28)

where the coefficients cn are computed analytically in appendix B under the natural assump-
tion h ≫ 1/

√
α ! lG, where h is the initial distance from the mirror. The QFI is equal to

H(m) =
4 t2

9m2 Var(E)− 64
m2

⎡

⎣
∑

l ̸=n

cl cn

(zl − zn)3 sinωlnt

⎤

⎦
2

− 32
3m2 t⟨E⟩

∑

l ̸=n

cl cn

(zl − zn)3 sinωlnt

+
16

9m2

∑

n

[
z2

n(zn + ℓh)2

ℓ4
α

− 8
105

z3
n

]
c2

n +
64
m2

∑

l ̸=n

[20 + (zl + zn)(zl − zn)2] clcn

(zl − zn)6

× cosωlnt − 64
3m2

∑

l ̸=n

cl cn

(zl − zn)3

[
zl(zl + ℓh)

ℓ2
α

cosωlnt − t
2

El sinωlnt
]
+

4
63m2 ,

 (29)
where ℓα = 1/

√
α lG and ℓh = h/lG  are dimensionless parameters, ωln = El − En and

⟨E⟩ =
∑

n

En|cn|2, Var(E) =
∑

n

E2
n|cn|2 − ⟨E⟩2. (30)

Asymptotically, for large t,

H(m) ∼ 4 t2

9m2 Var(E). (31)

The QFI grows quadratically with t. As it can be seen in figure 3, there are local maxima at 
odd multiples of Tcl =

√
2h/g, i.e. when classically the particle would be reflected upwards 

by the mirror.

4 We assume that h
√
α≫ 1, i.e. the distance from the mirror is much greater than the localization length of the 

particle. Then the initial wavefunction is approximately normalized to 1 on the half line x  >  0.
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We may understand this result as follows. The presence of the barrier enhances the wavelike 
behavior of the wavepacket since, even if the wavepacket is initially localized, it gets reflected 
by the barrier and can interfere with itself. In turn, quantumness of the statistical model is 
expected to improve sensitivity. Therefore, introducing the barrier leads to an increase of 
the achievable precision. In other words, as long as the particle behaves as a well-localized 
object, a classical treatment is a good approximation to the underlying quantum dynamics of 
the probe. Sensitivity is then expected to be low since parametric dependence of the statistical 
model on the mass m enters through the ratio !/m, thus implying that the extractable informa-
tion on m and quantumness of the probe state go hand in hand.

3.3. Harmonic potential

Classically, the mass of an object can be estimated by monitoring its displacement from equi-
librium when coupled to a mechanical spring. This section deals with the quantum version of 
such a measuring procedure.

Figure 2. Dimensionless QFI for the first two energy eigenstates of the quantum 
bouncer (dashed and dot-dashed) and for a balanced superposition (solid). The mass 
is taken equal to the neutron’s mass, m = mn ≈ 1.7 × 1024 g and τ is defined as 
τ = 2π / (E2 − E1).

Figure 3. Dimensionless QFI for the Gaussian wavepacket in the quantum bouncer. 
The local maxima are at odd multiples of Tcl, i.e. the classical time of free-fall. In this 
figure, h = 100 lG and m = mn ≈ 1, 7 × 1024 g.
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A quantum particle of mass m subject to a gravitational acceleration g is coupled to an 
oscillator of stiffness k. The Hamiltonian is therefore H = −∂2

x/2m + mgx + kx2/2. The 
energy eigenfunctions and eigenvalues take the form

ψn(x) =
(mω
π

)1/4 1√
2n n!

Hn(ξ) e−ξ2/2, En = ω

(
n +

1
2

)
− 1

2
kx2

eq,

 

(32)

where ω =
√

k/m, xeq = mg/k, Hn denotes the nth Hermite polynomial and 
ξ =

√
mω(x + xeq).

3.3.1. Superposition of ground state and first excited state. If the particle is in the ground 
state, the statistical model consists of the family of wavefunctions given by

ψ(x, t) =
(mω
π

)1/4
e−iωt/2 eikx2

eqt/2 e−ξ2/2. (33)

Classically, the particle sits at rest at the equilibrium position x = −xeq. The corresponding 
QFI evaluates to

H(0)(m) =
1

8m2 +
2g2

mω3 . (34)

More generally, for the nth energy eigenstate,

H(n)(m) =
1

8m2 (n
2 + n + 1) + 4

(
n +

1
2

)
g2

mω3 . (35)

Computing the FI for a position measurement one finds exactly the same result of (34), 
Fx = H(0), i.e. this is the optimal quantum strategy.

A better precision can be achieved by employing a superposition of the two lowest-lying 
energy eigenstates. For simplicity, the case of a balanced superposition is considered, i.e. 
ψ(0,1) = (ψ0 + ψ1) /

√
2. The QFI is

H(0,1)(m) =
1
2

H(0) +
1
2

H(1) +
ω2t2

4m2 +

√
ω

2m
g
k
cosωt − 2mω

g2

k2 sin2 ωt.
 

(36)

It grows quadratically with t and it has local maxima at integer multiples of the classical 
period Tcl = 2π/ω. Regarding the possibility of an enhanced sensitivity compared to a 
single eigenstate, the relevant parameter is the ratio  of the displacement energy kx2

eq/2 
and the oscillator’s quantum ω . Indeed, denoting by N the number of periods one has to 
wait in order to achieve a precision enhancement, the inequality H(0,1) > H(1) is equivalent 
to the condition

π2N2 > 4 −
√

+
1
8

, =
kx2

eq

2ω
. (37)

Therefore a superposition offers an improved sensitivity if the number of periods N is suffi-
ciently large. However, the required N may be impractically high for large values of , i.e. in 
the macroscopic limit. For example, for m = 1 kg and ω = 1 GHz ( ∼ 1036) the required time 
would be of the order of the age of the Universe. Conversely, for the smallest nanomechanical 
oscillators (ω ≈ 1 GHz, m ≈ 1021 kg, i.e. ∼ 10−12, [18]) the enhancement is present already 
on a short timescale. A comparison between the two cases is shown in figure 4.
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3.3.2. Coherent wavepacket: QGE with a spring. The initial wavefunction is taken of the 
form

ψ(x, 0) =
(mω
π

)1/4
e−mω (x+xeq+δx)2/2, (38)

which corresponds to displacing the particle by δx from its ground state. The solution at time 
t is given by

ψ(x, t) =
(mω
π

)1/4
e−i(ω−kx2

eq)t/2 e−ξ2/2 e−e−iωt( 1
2 mω δx2 cosωt+

√
mω δx ξ).

 
(39)

The QFI in this case is

H(m) =
1

8m2 +
2

m2

(
(1 − cosωt)

√
2 +

ωt
2
√

mω δx sinωt
)2

+
2

m2

(
ωt
2
√

mω δx cosωt −
√

mω δx sinωt
2

+
√

2 sinωt
)2

,
 

(40)

In addition to the QFI, one may compute the FI for position measurements Fx(m) and momen-
tum measurements Fp(m). Figure 5 shows a comparison between them.

Finally, let us consider a superposition of two coherent wavepackets with opposite 
displacements5,

ψ(x, t) = N
(mω
π

)1/4
e−i(ω−kx2

eq)t/2 e−ξ2/2 e−e−iωtmω δx2 cosωt/2 cosh(e−iωt√mω δx ξ).
 (41)

The corresponding QFI can be computed numerically. Figure  6 compares it with the 
QFI for a single coherent wavepacket, see (40), showing that there is indeed a precision 
enhancement.

5 (41) is the superposition of coherent states N (|α⟩+ |− α⟩). Coherent states are defined as |α⟩ = D(α)|0⟩, where 

D(α) = eαa†−α∗a is the displacement operator. In our case α = −
√

mω/2 δx  and N =
√

2/(1 + e−mωδ2) .

Figure 4. Dimensionless QFI for the first two energy eigenstates of the particle in the 
harmonic potential (dashed and dot-dashed) and for a balanced superposition (solid). Tcl 
is the classical period 2π/ω . (a): m = 10−18 g, ω = 1 GHz, ≪ 1. (b): m = 10−12 g, 
ω = 1 khz, ≫ 1.
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4. Time-scaling behaviors of the QFI

In the previous sections, different scalings of the QFI with the interrogation time have been 
observed. In this section, some general results are reported. We limit ourselves to pure statistical 
models of quantum states |ψ⟩t, where the subscript denotes the time at which the state vector is 
evaluated. It is assumed that the system evolves unitarily according to |ψ⟩ → |ψ⟩t = e−iHt|ψ⟩, 
with H the Hamiltonian. No subscript is short for t  =  0. We derive an explicit formula for the 
QFI of (9).

First of all, the derivative of the statistical model with respect to the parameter λ at time t is

|∂λψ⟩t =

∫ 1

0
dα e−iH(1−α)t (−i∂λH t) e−iHαt|ψ⟩+ e−iHt|∂λψ⟩; (42)

notice that in general H and ∂λH do not commute. It follows that

t⟨ψ|∂λψ⟩t = ⟨ψ|∂λψ⟩ − i
∫ 1

0
dα ⟨ψ|(∂λH)αt|ψ⟩ t. (43)

Figure 5. Dimensionless QFI (solid), dimensionless FI for position (dashed) and for 
momentum (dot-dashed) for a coherent wavepacket. m = 10−12 g, ω = 1 kHz, ≫ 1, 
δx = xeq.

Figure 6. Dimensionless QFI for a single coherent wavepacket (dashed) and for 
a superposition of two coherent wavepackets (solid). m = 10−18 g, ω = 1 GHz, 
δx = 107 xeq .
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Just as for state vectors, subscripts denote the time at which an operator is evaluated. That is, for 
a general operator O on the Hilbert space of the system, we use the notation Ot = eiHt O e−iHt.

Notice also that

t⟨∂λψ|∂λψ⟩t = ⟨∂λψ|∂λψ⟩ − 2 Im
∫ 1

0
dα ⟨ψ|(∂λH)αt|∂λψ⟩t

+

∫ 1

0

∫ t

0
dα dβ⟨ψ|(∂λH)βt(∂λH)αt|ψ⟩t2.

 
(44)

Thus, after a change of variables, the QFI is

H(λ)t = H(λ) + 8
(
|⟨ψ|∂λψ⟩|⟨ψ|

∫ t

0
dα (∂λH)α|ψ⟩ − Im⟨ψ|

∫ t

0
dα (∂λH)α|∂λψ⟩

)

+ 4

[
⟨ψ|
∫ t

0

∫ t

0
dα dβ (∂λH)β(∂λH)α|ψ⟩ −

(
⟨ψ|
∫ t

0
dα (∂λH)α|ψ⟩

)2
]

 

(45)

This can be further simplified through the identity

Ot =
∞∑

n=0

(it)n

n!
[H, ·]n O. (46)

The usefulness of formula (45) is that, together with (46), it allows to compute the QFI at 
arbitrary time t operatorially, i.e. without solving any differential equation. This in particular 
can be useful to find out how the QFI grows with the interrogation time t. For example, one 
may apply this result to the case of the particle in free-fall of section 3.1. The infinite series of 
nested commutators in (46) terminates at n  =  2 and one may check that, as in (21), the QFI 
grows like t4.

Let us just sketch how the computation works. In our example, the Hamiltonian is 
H = −∂2

x/2m + mgx and the unknown parameter λ is the probe’s mass m. First, one has to 
find an explicit expression for (∂mH)α using (46). To this end, let us compute the first two 
commutators appearing in (46), i.e.

[H, ∂mH] = −2g
m
∂x, [H, [H, ∂mH]] = 2g2. (47)

In a uniform field, all higher orders commutators vanish, since the last commutator, i.e. 2g2, is 
just a scalar constant. Therefore one obtains

(∂mH)α =
∂2

x

2m2 + gx − 2igα
m

∂x − g2α2. (48)

One finally has to substitute the expression just found for (∂mH)α in (45). It is now just a 
matter of computation to check that the terms scaling like t5 and t6 cancel among each other, 
whereas a nontrivial scaling with t4 remains. In the case of the Gaussian wavepacket (18), 
going through the computation in details (which involves computing expectation values only 
on the initial state at t  =  0) allows to reproduce our previous formula (21).

As a matter of fact, the case of the freely-falling particle is somehow special, since the 
corre sponding Hamiltonian is unbounded from below and therefore there is no ground state. 
In the more usual case of a Hamiltonian on a Hilbert space admitting a countable basis of 
energy eigenstates, the QFI can grow at most like t2. Indeed, one may expand the statistical 
model in the energy eigenbasis,
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ψ(x, t) =
∑

n

cnψn(x)e−iEnt, (49)

with Hψn = Enψn. Then, keeping only the highest power of t,

H(λ) = 4t2 Var(∂λE) + o(t2), (50)

where

Var(∂λE) =
∑

n

|cn|2(∂λ En)
2 −

(
∑

n

|cn|2 ∂λEn

)2

; (51)

i.e. if the Hamiltonian is bounded the QFI grows generically as a quadratic function of 
time.

5. Conclusions

Upon solving the dynamics of several physical systems at the interface between quantum 
mechanics and gravity, we have evaluated the ultimate limits to mass sensing precision in a 
gravitational field.

Our results show that states with no classical limit provide an enhancement of precision, 
according to the intuition that quantumness of the statistical model and mass sensitivity 
go hand in hand, since the dynamics of a quantum particle under gravity depends para-
metrically on the ratio !/m. For example, we have found in sections 3.2.1 and 3.3.1 that a 
statistical mixture of the quantum bouncer’s eigenstates cannot determine the mass with 
arbitrary precision, whereas this becomes possible with a coherent superposition of energy 
eigenstates. Moreover, in section 3.3.2, a superposition of two oppositely displaced coher-
ent wavepackets was shown to lead to a notable increase in sensitivity compared to a single 
coherent wavepacket.

We have also shown that the gravitational coupling is responsible for a fraction of the avail-
able information on the particle’s mass. More intense gravitational fields allow to extract, in 
general, a greater amount of information, see (27) and (34). The exception is when the particle 
is in pure free-fall in a uniform field and position measurements are used to estimate the mass. 
In fact, in this case we have found that the introduction of a gravitational field does not influ-
ence the information available on the probe’s mass by monitoring its trajectory, a conclusion 
which agrees with the equivalence principle.
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Appendix A. Energy eigenstates of the quantum bouncer

By introducing the gravitational lengthscale

lG =
1

(2m2g)1/3 , (A.1)

and passing to the dimensionless variable
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χ =
x
lG

− En

mglG
, (A.2)

the Schrödinger equation for the energy eigenstate En takes the form

(∂2 − χ)ψn = 0. (A.3)

The general solution is a linear combination of Airy functions Ai(χ) and Bi(χ), but since 
Bi(χ) diverges exponentially as χ→ ∞, it must be discarded. Imposing that all eigenfunc-
tions vanish at the origin gives quantization of the energy levels. If zn denotes the nth zero of 
Ai, one gets the condition

En = −mglzn, (A.4)

with corresponding eigenfunctions

ψn(x) = Nn Ai(x/lG + zn), Nn =
1√

lG
∫∞

zn
dx [Ai(x)]2

=
1√

lG Ai′(zn)
.

 

(A.5)

Appendix B. Time evolution of the quantum bouncer wavepacket

The expansion coefficients of (28) are given by

cn =
(α
π

)1/4
Nn

∫ ∞

−h
dx Ai[(x + h)/lG + zn] e−αx2/2. (B.1)

The lower limit of integration may be changed to −∞ under the assumption already stated in 
section 3.2.2 h

√
α≫ 1. The resulting integral is computed analytically by making use of the 

identity

Ai(x) =
1

2π

∫ ∞

−∞
du ei(xu+u3/3). (B.2)

After doing the Gaussian integral in x, the remaining integral in u can be computed through an 
appropriate change of variable of the form u → u+const. so as to recover the integral repre-
sentation of the Airy function. The final result is

cn =
(α
π

)1/4
Nn exp

[
ℓ2
α

2
(zn + ℓh) +

ℓ6
α

12

]
Ai
(

zn + ℓh +
ℓ4
α

4

)
, (B.3)

where ℓα = 1/
√
α lG and ℓh = h/lG . In the limit h ≫ 1/

√
α ! lG considered in the text, the 

coefficients (B.3) assume a much simpler form, which allows to keep only a few values of n 
in the expansion (28). The maximum of (B.3) is reached for n̄ such that zn̄ + ℓh is as small as 
possible. Employing the asymptotic form of the Airy function for x → ∞, one finds that the 
coefficients cn take the Gaussian form

cn ∼ 1
(πα)1/4

Nn

ℓα
e
− (zn+ℓh)

2

2ℓ2
α . (B.4)

We may therefore restrict all summations on n to some interval of values centered around n̄, 
e.g. [n̄ − δn, n̄ + δn] such that |zn̄+δn − zn̄| ≈ ℓα. n̄ and δn can be estimated as follows. Using 
the asymptotic representation
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Ai(−x) ∼ 1√
π x1/4 sin

(
2
3

x3/2 +
π

4

)
, as x → ∞,

for n ≫ 1,

zn ∼ −
[

3
2
π

(
n − 1

4

)]2/3

. (B.5)

Therefore n̄ is the integer closest to

2
3π

ℓ3/2
h +

1
4

. (B.6)

From (B.5) it follows that the average distance between successive zeroes of the Airy function 
is approximately 

(
2π2/3n

)
1/3 and therefore the number of terms to keep is

δn =
2 ℓα

(2π2/3n)1/3 =
2
π

√
ℓh ℓα. (B.7)

The content of this appendix has been used to produce figure 3.
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