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Probing molecular spin clusters by local measurements
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We address the characterization of molecular nanomagnets at the quantum level and analyze the performance
of local measurements in estimating the physical parameters in their spin Hamiltonians. To this aim, we compute
key quantities in quantum estimation theory, such as the classical and the quantum Fisher information, in the
prototypical case of a heterometallic antiferromagnetic ring. We show that local measurements, performed only
on a portion of the molecule, allow a precise estimate of the parameters related to both magnetic defects and
avoided level crossings.
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I. INTRODUCTION

Molecular nanomagnets are low-dimensional spin systems,
displaying a variety of nonclassical features [1–5]. The
magnetic properties of these systems can be interpreted in
terms of their spin Hamiltonians, which typically depend on
a number of unknown coupling constants [6,7]. The number
of independent parameters can be reduced on the basis of
symmetry arguments, and their values can in principle be com-
puted from first principles [8,9]. However, these approaches
are computationally demanding and are affected by their
own uncertainties. Therefore, the parameters entering the spin
Hamiltonians are generally obtained by fitting experimental
curves [10,11].

In particular, when experiments are performed at temper-
atures lower than the energy gap between ground and first-
excited states [12], the estimation of the physical parameters
is made possible by the dependence on such quantities of
the system ground state [13]. In fact, any variation in some
parameter of interest λ modifies the ground state, and thus
the statistics related to the accessible physical observables.
Any bound to the precision in the estimation procedure should
thus be connected to the distance between ground states
corresponding to infinitesimally close values of λ [14–16].

Such intuition can be made more rigorous and quantita-
tive upon employing tools from quantum estimation theory
[17–21]. This allows one to design optimal estimation pro-
cedures and to compute the fundamental limits to precision,
as dictated by quantum mechanics. Indeed, the infinitesimal
(Bures) distance between ground states corresponding to
neighboring values of λ is proportional to the maximum
precision in the estimation of such parameter, achievable by
any possible measurement. The connection between the metric
structure of the Hilbert space and quantum estimation theory
has in fact been exploited to characterize several systems of
interest in quantum technology and to address quantum critical
systems as a resource for quantum estimation [22–25].

Here we make use of two key quantities in quantum
estimation theory, in order to assess the precision in the
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estimation of physical parameters entering the spin Hamil-
tonian of molecular nanomagnets [26]. These quantities are
the classical and the quantum Fisher information (FI and
QFI, respectively). The FI provides, through the Cramer-Rao
inequality [27], a lower bound for the uncertainty in the param-
eter estimation, based on the statistics of a given observable.
The QFI gives an upper bound to the FI of any measurement,
and thus the best possible precision in the estimation allowed
by quantum mechanics, for a given parametric dependence of
the system (ground) state. In this way, benchmarks for either
local or global quantum measurements can be obtained, and
exploited to assess and compare different classes of detection
techniques. As a matter of fact, quantum estimation theory
also provides tools to identify the optimal observable, i.e., the
observable whose FI equals the QFI, thus paving the way for
possible practical implementations.

We address the characterization of molecular nanomagnets
at the quantum level and analyze the performances of local
measurements, realized by addressing a portion of the entire
compound, as opposed to global ones, requiring access to
the molecule as a whole. Our results clearly indicate that
fluctuations induced by the total-spin and magnetization
tunneling at a level anticrossing, or by the introduction of
a magnetic defect, can be monitored locally, with nearly the
ultimate precision allowed by quantum mechanics. Overall,
we provide quantitative results on precision bounds that are
applicable to general classes of measurements.

The paper is structured as follows. In Sec. II we set
notation and introduce the basic tools of quantum estimation
theory. In Sec. III we analyze estimation problems where the
ground-state dependence at avoided level crossings is relevant,
whereas in Sec. IV we address estimation of parameters related
to a magnetic defect. Section V closes the paper with some
concluding remarks.

II. THEORETICAL BACKGROUND

We consider a spin Hamiltonian H, which depends on
an unknown parameter λ. The value of λ has to be inferred
by performing quantum-limited measurements on the system
ground state |ψλ⟩, and by suitably processing the sample
of experimental data. The inferred value of the unknown
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parameter can thus be expressed as a function of such data,
known as the estimator, and typically denoted with λ̂. This
is said to be unbiased if its expectation value coincides with
the actual value of the parameter λ. For a given observable,
an unbiased maximum-likelihood estimator λ̂ allows one to
saturate the classical Cramer-Rao bound. The fundamental
limit to the precision that can be achieved, through an arbitrary
observable, in the estimate of λ is instead given by the quantum
Cramer-Rao bound: 1/Var(λ̂) ! H (λ), where H (λ) is the
quantum Fisher information and Var(λ̂) is the variance of
any unbiased estimator, corresponding to the average square
distance between λ and λ̂. For a pure state, the QFI is given by

H (λ) = 4[⟨∂λψλ|∂λψλ⟩ + |⟨∂λψλ|ψλ⟩|2]

= 4

[
∑

k

|∂λck|2 + |c∗
k (∂λck)|2

]

. (1)

Here the ground state is expanded in a parameter-independent
basis, |ψλ⟩ =

∑
k ck(λ)|k⟩, such that |∂λψλ⟩ =

∑
k(∂λck) |k⟩.

If only a specific observable X is available, then the
precision of the parameter estimation is bounded by the
classical Cramer-Rao inequality: 1/Var(λ̂) ! F (λ,X). Here

F (λ,X) =
∑

x

pλ(x)[∂λ ln pλ(x)]2 =
∑

x

[∂λ|⟨x|ψλ⟩|2]2

|⟨x|ψλ⟩|2

(2)

is the Fisher information, and pλ(x) = |⟨x|ψλ⟩|2 is the proba-
bility of obtaining the outcome x from the measurement of X,
at a given λ. The quantum Cramer-Rao theorem states that the
FI is bounded from above by the QFI: F (λ,X) ! H (λ). Any
observable X which saturates the above inequality is said to
be optimal, in that it maximizes the precision in the estimate
of λ.

The optimal measurement generally involves accessing
the system ground state as a whole. A question arises on
whether, and to which extent, its performances can be emulated
by measurements that are local in nature, i.e., performed
only on a portion of the entire system. Such question can
be answered by evaluating the QFI for the reduced density
operator describing a specific subsystem A, as obtained by
performing a partial trace on the complementary subsystem B,
ρA

λ = TrB[|ψλ⟩⟨ψλ|]. The local QFI is given by the expression

HA(λ) = 2
∑

i,j

∣∣⟨φi |∂λρ
A
λ |φj ⟩

∣∣2

pi + pj

. (3)

Here, pi and |φi⟩ are the eigenvalues and eigenstates of ρA
λ ,

respectively, and the sum is extended over all the indices such
that pi + pj > 0.

The above quantities allow a thorough characterization of
the parameter estimation performed through measurements on
the system ground state. In fact, the ratio between FI and
QFI quantifies the relative suitability of the observable X to
estimate the parameter λ. The ratio HA/H , instead, assesses to
which extent a precise estimate of λ can be obtained by means
of local measurements within a given subsystem A.

III. LEVEL ANTICROSSINGS

In analyzing the ground-state dependence on a physical
parameter, special attention should be devoted to the avoided
level crossings. Here, small variations of a physical parameter
can induce large changes in the system ground state, which
are reflected in pronounced peaks of the QFI and, possibly, of
the FI of some accessible observable. Level anticrossings thus
represent a resource for the characterization of spin Hamiltoni-
ans. For the sake of the following discussion, we write the spin
Hamiltonian in the generic formH = H0 + λH1 + H2, where
the two dominant terms H0 and H1 commute with each other,
but not with the small term H2. By varying the parameter λ in
the vicinity of some critical value λlc, one can induce a level
crossing between two joint eigenstates ofH0 andH1, hereafter
denoted by |1⟩ and |2⟩. If these two states are energetically far
from all the others for λ ≃ λlc, the system Hamiltonian can be
projected on a two-dimensional subspace and thus reduced to

h = 1
2 [−α(λ − λlc)σ3 + (σ1], (4)

where α = ⟨2|H1|2⟩ − ⟨1|H1|1⟩ is the rate with which the
diagonal gap varies as a function of λ and ( = 2⟨1|H2|2⟩ is
assumed to be real and positive. The operators σj (j = 1,3) are
Pauli matrices in the basis {|1⟩,|2⟩}. The ground state of such
effective two-level system can be written as |ψλ⟩ = c1(y)|1⟩ +
c2(y)|2⟩, where

c1 = (y +
√

1 + y2)1/2

√
2(1 + y2)1/4

, c2 = −
(
1 − c2

1

)1/2
, (5)

and y ≡ α(λ − λlc)/( represents the (normalized) distance of
the parameter λ from the critical value λlc. It follows that the
FI corresponding to a generic observable X can be written in
the product form F = (α/()2fX(y), where the function fX is
given by the following expression:

fX = y +
√

1 + y2

2(1 + y2)5/2

∑

x

{
⟨1|x⟩2−⟨2|x⟩2 + 2y⟨1|x⟩⟨2|x⟩

[y +
√

1 + y2]⟨1|x⟩−⟨2|x⟩

}2

.

(6)

In fact, also the quantum Fisher information can be written in
a factorized form:

H = (α/()2

{1 + [α(λ − λlc)/(]2}2
≡ (α/()2fH (y). (7)

The above functions fX and fH thus specify the dependence
of the highest precision achievable in the parameter estimation
on the distance y from the crossing point. The presence of
the prefactor (α/()2 quantifies the increase of the precision
that can be achieved, for each given distance y, by making the
anticrossing narrower.

From the above expressions of the FI and QFI it follows
that an observable X is optimal if there are two measurement
outcomes x and x ′ allowing for a perfect discrimination
between any two orthogonal states. In other words, |x⟩ and
|x ′⟩ must be orthogonal linear superpositions of the states
|1⟩ and |2⟩ alone, or, equivalently, there must be no finite
matrix element ⟨i|X|j ⟩, with |i ! 2⟩ and |j > 2⟩ eigenstates
of H0 + H1. In this case, in fact, fX(y) = fH (y), and the FI
of X equals the QFI. It can be easily verified that (in the
absence of degeneracy at the distance y of interest) both H0
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and H1 fulfill the above condition, and thus represent optimal
observables.

We finally consider the role of the phase coherence between
the two states |1⟩ and |2⟩ by comparing the FI and QFI of |ψλ⟩
with those obtained for the mixture σλ = c2

1|1⟩⟨1| + c2
2|2⟩⟨2|.

The QFI of the mixture σλ can be shown to coincide with
that of the linear superposition |ψλ⟩ (f inc

H = fH ). On the other
hand, the expression of the FI is different in the two cases,
being

f inc
X = y +

√
1 + y2

2(1 + y2)5/2

∑

x

(⟨1|x⟩2 − ⟨2|x⟩2)2

[(y +
√

1 + y2)⟨1|x⟩]2 + ⟨2|x⟩2
.

(8)

In the presence of a mixture, an observable X allows an optimal
parameter estimation at the anticrossing (f inc

X = f inc
H ) only if it

has |1⟩ and |2⟩ as eigenstates. Therefore, the highest precisions
that can be achieved in the presence of a mixture and of a
linear superposition coincide, but the conditions on the optimal
observables X are more restrictive in the former case. Further
details on the derivation of the above equations can be found
in Appendix A.

Numerical results

The problem of estimating the physical parameters that en-
ter the spin Hamiltonian is ubiquitous in molecular magnetism.
In the following, we consider in some detail the representative
example of the Cr7Ni molecule. Its magnetic core is formed
by seven Cr3+ ions, each carrying an sCr = 3/2 spin, and one
Ni2+ ion, with sNi = 1 [28]. As a spin ring with dominant
antiferromagnetic exchange interaction, Cr7Ni represents a
prototypical model of a highly correlated, low-dimensional
quantum system [29]. Besides, the presence in such molecule
of the Ni ion allows us to extend the present discussion to
the role of magnetic defects. Given the purpose of the present
paper, we focus on the functional dependence of the FI and QFI
on the main physical parameters entering the spin Hamiltonian,
rather than on their specific values, as estimated by different
experimental and theoretical means.

As an example of an anticrossing in the system ground
state, we consider the one between the lowest eigenstates
of H0 + H1 with S = M = 1/2 and S = M = 3/2, hereafter
labeled |1⟩ and |2⟩, respectively. The above two terms of the
Hamiltonian account for the exchange interaction between
neighboring spins, H0 = J

∑8
k=1 sk · sk+1 (with J > 0), and

for the coupling to an applied magnetic field, H1 = −λαSz.
The unknown parameter λ thus coincides with the Zeeman
splitting in units of α, and can be identified for example with
the g factor of the molecule for α = µBB. The zero-field
gap between the ground S = 1/2 doublet and the lowest
S = 3/2 quadruplet, mainly induced by the exchange interac-
tion, determines the value of λlc. The small term H2 includes
all the remaining contributions in the spin Hamiltonian, which
are responsible for the gap ( [28].

The dependence on λ of the system ground state and of
the corresponding reduced density operators is summarized
by the behavior of the FI and of the QFI. In particular, three
main features emerge from the HA(λ). First, for subsystems A
formed by a small number of consecutive spins (nA = 2,3,4),

FIG. 1. Quantum estimation of the Cr7Ni molecule ground state
at the anticrossing. We show results for measurements performed
on different subsystems A of the ring (α/( = 1), formed by the
first nA consecutive spins, with nA = 2 (black curves), 3 (red), 4
(green), 5 (blue), 6 (purple), and 7 (orange), respectively. The four
panels show (a) the QFI; (b) the FI corresponding to the observable
XA ≡ ρA

11 − ρA
22 (dotted lines), and QFI obtained for a mixture of the

diabatic states (solid lines); the (c) QFI and (d) FI of the subsystems,
normalized to the QFI of the whole ground state. The dotted lines in
(b) represent the QFI corresponding to the mixture, rather than the
linear superposition, of the states |1⟩ and |2⟩.

the highest values of HA are obtained away from the crossing
point, where the QFI presents instead a clear dip [see Fig. 1(a)].
Second, such feature can be linked to the phase coherence
between the states |1⟩ and |2⟩ that contribute to the ground state
|ψλ⟩. In fact, the value of the QFI corresponding to the mixture
σA

λ = c2
1(y)ρA

11 + c2
2(y)ρA

22, with ρA
ij = TrB(|i⟩⟨j |), presents

lower values for all λs, and a maximum close to λ = λlc [solid
lines in Fig. 1(b)]. The QFI of σA

λ also corresponds to the
maximum of the FI of |ψλ⟩, restricted to observables X that are
diagonal in the basis of the diabatic states {|1⟩,|2⟩}. Therefore,
the comparison between the QFI of ρA

λ and σA
λ shows that

the performance of a local observable X at an avoided level
crossing can in general benefit from the fact that X is not
diagonal in the basis of the diabatic states. Third, within the
diagonal observables, the operator XA ≡ ρA

11 − ρA
22 (dotted

lines) is approximately optimal. Finally, we note that not only
the maximum of the QFI of local observables can be localized
away from the crossing point, but λlc also corresponds to
an absolute minimum for the relative suitability of the local
measurements. This clearly emerges from the plots of HA(λ)
and F (λ,XA), normalized to the QFI of the ground state
[Figs. 1(c) and 1(d)].

In order to gain some quantitative insight into the
problem, we consider the case where the actual value of
the unknown parameter λ = g is 2, and this coincides
with the critical value, given the applied magnetic field
B. In this case, the mean squared error in the estimate
of the g factor resulting from a single quantum mea-
surement is given by Var1/2(λ̂) = ((/µBB)[HA(y = 0)]−1/2,
with HA the curves plotted in Fig. 1. For two spins
(black curves), this is approximately 0.05 (we have taken
B = 10 T, which approximately corresponds to the field that
induces the level crossing between the S = M = 1/2 and the
S = M = 3/2 eigenstates, and ( = 0.1 K, which is a typical
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value of the gap in the Cr-based rings). The mean squared error
can in principle be reduced by a factor

√
N by passing from a

single measurement to a set of N measurements, or by working
at a narrower anticrossing. A few details on the numerical
calculation of the Hamiltonian eigenstates are provided in
Appendix B.

IV. ESTIMATING PARAMETERS RELATED TO A
MAGNETIC DEFECT

We next consider a ground state that changes gradually
with λ, away from a level crossing (here, H0 and H1 do not
commute, and H2 can be set to zero). In particular, we are
interested in the case where the unknown parameter is related
to a magnetic defect, such as the s8 = sNi spin in the Cr7Ni
molecule. This spin represents a defect because its length
differs from that of all the other spins in the ring. Besides,
the Cr-Ni exchange coupling can differ from the Cr-Cr ones,
and the Ni g factor can differ from that of the Cr ions.

A. Exchange interaction

We start by considering the effect of an inhomogeneous
exchange interaction, and correspondingly group the relevant
part of the spin Hamiltonian into the two terms

H0 = J

6∑

k=1

sk · sk+1, H1 = λJ s8 · (s7 + s1), (9)

where the unknown parameter λ coincides with the ratio
between the Cr-Ni and Cr-Cr exchange couplings.

The dependence of the system ground state on λ is
characterized in terms of the QFI H (λ) (Fig. 2), both for
negative and positive values of the parameter [panels (a) and
(b), respectively]. For λ < 0, the defect is ferromagnetically
coupled to its neighbors, and the system ground state has
S = 5/2. For λ > 0, instead, such coupling is antiferromag-

FIG. 2. Quantum estimation of the exchange coupling between
the magnetic defect and the neighboring spins (Cr-Ni), with respect
to that between all the other neighboring spins (Cr-Cr). QFI (solid
curves) and FI (dotted) corresponding to two- (blue) and three-spin
(red) subsystems. Panels (a) and (b) correspond to ferromagnetic and
antiferromagnetic Cr-Ni coupling, respectively. In the insets of the
two panels, the same quantities are normalized to the QFI of the
whole ground state.

netic, and the total spin is S = 1/2. In both cases, H (λ)
is maximal for λ → 0, and decreases monotonically with
|λ| (solid black curves). The distinguishability between two
(infinitesimally) close values of λ is thus relatively large in
the weak-coupling limit, while the ground state is weakly
dependent on the precise value of λ in the (more realistic)
range of values λ ≃ 1. In the considered range of parameters,
the lowest mean squared error that can be achieved in the
estimate of the Cr-Ni exchange coupling by means of a single
quantum measurement, Var1/2(λ̂) = J [H (λ)]−1/2, is of the
order of the Cr-Cr exchange coupling J (H is the black
curve plotted in Fig. 2). Besides the absolute value of the
QFI, we are interested here in the comparison between the
QFI corresponding to the ground state and the same quantity
derived for the reduced density operators. We note that, already
for subspaces A formed by three consecutive spins (solid red),
HA(λ) approaches H (λ). The QFI corresponding to a two-spin
subsystem (solid blue), instead, approaches H (λ) only for
λ < 0. The ratios between the local QFI and that of the whole
ground state are reported in the figure insets. Therefore, local
observables are in principle well suited for precisely estimating
the exchange coupling between the magnetic defect and the
neighboring spins. Interestingly, local observables consisting
of exchange operators, X(nA) =

∑k+nA−1
i=k si · si+1, are nearly

optimal. This is shown by the FI corresponding to nA = 2
and nA = 3 (dotted curves), which are very close to the QFI
of the corresponding subsystems. The Fisher information of
the local magnetization (not shown) gives instead significantly
lower values.

B. Zeeman coupling

The magnetic defect affecting the ground state can also
consist in the presence of a spin with a different g factor (or,
equivalently, in a local magnetic field). As a limiting case, one
can consider a field applied locally to the site of the magnetic
defect. In this case, the relevant terms of the spin Hamiltonian
are grouped as follows:

H0 = J

8∑

k=1

sk · sk+1, H1 = λJ sN,z. (10)

The unknown parameter λ thus corresponds to the Zeeman
splitting of the Ni ion, normalized to the exchange coupling,
λ = µBgNiB/J . The quantum Fisher information of the
system ground state (solid black line in Fig. 3) presents
a pronounced maximum for λ ≃ 0.5. As in the previous
case, the QFI information corresponding to two- and
three-spin subsystems (solid blue and red, respectively)
approaches H (λ), especially if the subsystem A includes
the defect. The FI corresponding to the local magnetization,
X(nA) =

∑k+nA

i=k aisi,z, falls significantly below the QFI for
the corresponding subsystem if the observable is not spin
selective (ai = aj for all i ̸= j , dotted lines). However, if the
magnetization is spin selective (ai ̸= aj for i ̸= j , dashed
lines), the values of the FI are very close to the maximal ones.
In the latter case, the magnetization thus represents a nearly
optimal observable for the parameter estimation.
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FIG. 3. Quantum estimation of the inhomogeneity in the g

factor associated with the magnetic defect, i.e., µBgNiB/J . Solid
curves correspond to the QFI: for the whole system (black), and
for subsystems formed by two (red) or three consecutive spins
(blue). Dashed and dotted curves correspond to the FI for the local
magnetization, with and without resolution between the spins of the
subsystem.

V. CONCLUSIONS

We have analyzed the performances of local measurements
in estimating different physical parameters that enter the spin
Hamiltonian of a molecular nanomagnet. Local measurements
are shown to allow a precise estimation of parameters related to
both magnetic defects and avoided level crossings. Parameters
such as the exchange coupling or the g factor of a magnetic
defect can be estimated locally—with nearly the ultimate
precision allowed by quantum mechanics—by measuring
related observables, namely the exchange operators and the
local magnetization, respectively. Local measurements also
approach the ultimate precision in the parameter estimation
at avoided level crossings, where the commutation relations
between the observable and the Hamiltonian are shown to play
a relevant role. Our results clearly show the effectiveness of
local measurements in probing Hamiltonian parameters, thus
paving the way for the development of optimal characterization
schemes for molecular spin clusters.
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APPENDIX A: DERIVATION OF THE ANALYTICAL
RESULTS

The ground state |ψλ⟩ of the effective Hamiltonian h in
Eq. (4) can be expressed as a function of the basis states |1⟩

and |2⟩ by means of the coefficients

c1(y) = P (y)Q(y), c2(y) = −Q(y), (A1)

where y = α(λ − λlc)/( is the normalized distance of the
parameter λ from the critical value. The functions P and Q
are given by the following expressions:

P (y) = y +
√

1 + y2, Q−1(y) =
√

2P (y) (1 + y2)1/4.

(A2)

From the above equations, it follows that the derivatives of the
coefficients, entering the expressions of both the classical and
the quantum Fisher information, are given by

∂yc1(y) = Q(y)
2(1 + y2)

, ∂yc2(y) = P (y) Q(y)
2(1 + y2)

. (A3)

As a result, the expression of H (λ) takes the form

H = 4(α/()2[(∂yc1)2 + (∂yc2)2] = (α/()2

(1 + y2)2
, (A4)

where we made use of the equation ∂λ = (α/()∂y . As to the
classical Fisher information corresponding to the observable
X, this can be written as a function of the amplitudes ⟨1|x⟩
and ⟨2|x⟩ (which are assumed to be real, for simplicity), of the
coefficients c1 and c2, and of their derivatives with respect to
λ (or y). These enter the expression of the probabilities

pλ(x) = ⟨ψλ|x⟩2 =
2∑

k,l=1

ck(y)cl(y)⟨k|x⟩⟨x|l⟩. (A5)

The derivative of such probability with respect to y can be
shown to be

∂ypλ(x) = P (y)[Q(y)]2

1 + y2
(⟨1|x⟩2 − ⟨2|x⟩2 + 2y⟨1|x⟩⟨2|x⟩).

(A6)

After replacing the two above expressions into that of the
Fisher information,

F (λ,X) = (α/()2
∑

x

[∂ypλ(x)]2

pλ(x)
, (A7)

one can derive the Eq. (6) reported in the paper.
In order to highlight the role of the phase coherence

between the two basis states, the QFI of |ψλ⟩ can be compared
with that obtained for the statistical mixture of |1⟩ and |2⟩,
with populations corresponding to [ck(y)]2. In this case, the
probabilities pλ(x) take the form

pinc
λ (x) =

2∑

k=1

[ck(y)⟨k|x⟩]2. (A8)

The corresponding derivative with respect to y reads

∂yp
inc
λ (x) = P (y)[Q(y)]2

1 + y2
(⟨1|x⟩2 − ⟨2|x⟩2). (A9)
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The adimensional function that enters the expression of the
quantum Fisher information thus becomes the one reported
in Eq. (8). This also corresponds to the function fX for an
observable X =

∑
x x|x⟩⟨x|, which is diagonal in the basis of

the diabatic states, and thus such that ⟨1|x⟩⟨x|2⟩ = 0 for any x.
This follows simply from the fact that, for such an observable,
pλ(x) = pinc

λ (x).
We next consider the case where there are two outcomes

of the measurement of X, x and x ′, with corresponding
eigenstates |x⟩ and |x ′⟩ that are mutually orthogonal and
belong to the two-dimensional subspace {|1⟩,|2⟩}. We write
them as linear combinations of the basis states, with real
coefficients (what follows can be easily generalized to the
case of complex coefficients): |x⟩ = a|1⟩ + b|2⟩ and |x ′⟩ =
b|1⟩ − a|2⟩. Plugging these expressions into the Eq. (1) of
the paper, one obtains, after some algebra, the equation
fX = fH = 1/(1 + y2)2, which implies that the measurement
is optimal.

In the case of the Cr7Ni ring, the observable XA ≡ ρA
11 −

ρA
22 is diagonal in the basis of the states |1⟩ and |2⟩ (even if it

does not belong to the two-dimensional subspace). In fact, |1⟩
and |2⟩ are eigenstates of Sz, corresponding to different values,
M1 = 1/2 and M2 = 3/2, of the total spin projection. The
reduced density operators ρA

kk (and thus XA) can be written as
mixtures of density operators, each with a defined value of the
total spin projection. This follows from the fact that each finite
term of ρA

kk comes from contributions like ⟨iB |k⟩⟨k|iB⟩, with
|iB⟩ a basis state of the subsystem B, which can be chosen so as
to have a defined value of the spin projection MB . The ket and
the bra in the term of ρA

kk thus have to be characterized by the
same value of MA = Mk − MB . As a result, ρA

kk ⊗ IB cannot
have matrix elements between states with different values of
the total spin projection, such as |1⟩ and |2⟩.

APPENDIX B: NUMERICAL CALCULATIONS

The eigenstates of Cr7Ni are obtained by numerically
diagonalizing the Hamiltonian, with the inclusion of the
exchange and of the Zeeman terms. The Hamiltonian is
computed and diagonalized within the irreducible tensor
operator formalism [11]. In the case of the avoided level
crossing, the Hamiltonian commutes with S2 and Sz, and can be
diagonalized independently within each (S,M) subspace, with
S = M = 1/2 (dimension 574) and S = M = 3/2 (dimension
1000). The eigenstates are then expanded in a local basis
|m1,m2, . . . ,m8⟩ (with mi the projection of the ith spin along
z), and the terms ρA

ij are computed by performing a partial trace
over the spins that do not belong to the subsystem of interest
A. The reduced density operator ρλ is then computed by
combining the above operators, through the expression ρA

λ =∑2
i,j=1 ci(λ)cj (λ)ρA

ij . This matrix is diagonalized numerically,
for all the values λk = k δλ of the parameter λ in the grid, so
as to obtain the eigenvalues pi and the eigenvectors |φi⟩ that
enter the expression of HA, for each point of the grid. The
derivative of the reduced density operator, ∂λρ

A
λ , is computed

numerically as (ρA
λk+1

− ρA
λk−1

)/(2δλ).
The introduction of the magnetic defect reduces the

symmetry of the Hamiltonian. In particular, in the case of the
exchange coupling the ground state of the spin Hamiltonian
belongs either to the S = 5/2 or to the S = 1/2 subspaces,
depending on whether the Cr-Ni coupling is ferromagnetic or
antiferromagnetic, respectively. In the case of the magnetic
field, H1 does not commute with S2. This implies that the
ground state has to be calculated in a larger subspace, including
all the basis states with total spin from 1/2 to Smax > 1/2. The
value of Smax is determined upon convergence of the ground
state energy and depends on the value of λ.
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