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Naimark extension for the single-photon canonical phase measurement
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We address the implementation of the positive-operator-valued measure (POVM) describing the optimal M-
outcome discrimination of the polarization state of a single photon. Initially, the POVM elements are extended to
projective operators by the Naimark theorem; then the resulting projective measure is implemented by a Knill-
Laflamme-Milburn scheme involving an optical network and photon counters. We find the analytical expression
of the Naimark extension and the detection scheme that realizes it for an arbitrary number of outcomes M = 2N .
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I. INTRODUCTION

Quantum information processing with flying qubits, espe-
cially photons, has been extensively studied in recent decades,
with applications in communication [1,2], quantum key distri-
bution (QKD) [3,4], quantum networking [5–7], and universal
quantum computing [8–10]. While remarkable results for
communication and QKD have already been proved [11–14],
there is great expectation for the medium- to long-term re-
alization of a quantum internet [15,16] and possibly of a
photonic quantum computer [17].

In all these scenarios, photons are used as qubit encoders
and information carriers because of their ability to travel long
distances with minimal decoherence. Information processing
is performed at the encoding and decoding stage and in inter-
mediate stages as well (e.g., in repeaters [18,19]) to implement
quantum gates. Depending on the qubit encoding into the
possible degrees of freedom, gates may have easy or more
challenging implementations in terms of resources [20], with
two-qubit gates being the hardest components to realize due
to the small photon-photon coupling that can be obtained via
matter-mediated processes [21].

Several theoretical and experimental proposals have been
put forward [22–28], but the transition from theory to practice
is not always straightforward. In this paper, we focus our
attention on quantum measurements and consider a detection
scheme which arises in optimal discrimination theory. The
detection operators are described by an analytical expression,
which we translate into an optical scheme. We believe the
steps undertaken in this paper are relevant in the framework
of current technology and that they will prove useful for
the implementation of other measurement schemes in linear
optics quantum computing with discrete variables.

The most general description of a quantum measurement
is provided by positive-operator-valued measures (POVMs)
acting on the Hilbert space of the systems under investigation.
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†matteo.paris@fisica.unimi.it

Mathematically speaking, a POVM is a resolution of identity
made by sets of positive operators {!k},

∑
k !k = I. The

cardinality of the POVM is not limited by the dimension of
the Hilbert space and the operators {!k} are not required to
be projectors. Positive-operator-valued measures have found
useful applications in several fields of quantum information
theory, e.g., in unambiguous quantum discrimination, where
the optimal detection scheme may not correspond to a projec-
tive measurement.

Experimental realizations, however, always involve ob-
servable quantities, which strictly correspond to projective
measures. Therefore, the challenge usually comes in finding
an appropriate detection scheme to realize a given POVM.
Fortunately, there is a canonical route to achieve this goal,
which is provided by the Naimark theorem [29–33], ensuring
that the POVM formulation may always be extended to a
projective one, which may then be implemented experimen-
tally. More explicitly, the Naimark theorem states that for
any POVM {!k}k∈K on the Hilbert space HS , generating a
probability distribution p(k) = TrS[ρ!k] ∀ ρ, there exist a set
of orthogonal projectors {Pk}k∈K on the enlarged Hilbert space
HA ⊗ HS and a pure state |ω⟩ ∈ HA such that

p(k) = TrS[ρ!k] = TrAS[(ρ ⊗ |ω⟩⟨ω|)Pk].

In this paper, we address the implementation of the POVM
{!k}, k = 0, 1, . . . , M − 1, which acts on the Hilbert space
of a two-level system and describes the optimal M-outcome
discrimination of the polarization state of a single photon. The
explicit expression is given by

!k = 2
M

|ψk⟩⟨ψk|, (1)

|ψk⟩ = 1√
2

(e−i(π/M )k|0⟩ + ei(π/M )k|1⟩). (2)

Our strategy to solve the problem is the following. First,
the POVM elements !k are extended to projective operators
upon exploiting the Naimark theorem. Second, the resulting
projective measure is implemented by a Knill-Laflamme-
Milburn (KLM) scheme involving an optical network and
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photon counters. The key idea is to consider an interferometer
with a single rail input mode, to receive the input signal, and
multiple output path modes, one for each outcome. Each of
these output modes goes to photon counters, such that when
we record a click we assign the corresponding outcome. In
this way, we have found explicitly the Naimark extension and
the detection scheme for an arbitrary number of outcomes
M = 2N , N > 1.

The paper is structured as follows. In Sec. II the Naimark
theorem is introduced and the algorithm to evaluate the ex-
tension of the phase measurement is described. In Sec. III the
application of the Naimark extension to the phase measure-
ment of the polarization of a single photon is presented. In
Sec. II we give the corresponding expressions in the case of
M = 8. The extension is factorized in a sequence of unitaries
in Sec. III A, with Sec. III B considering the case of M = 8
in this instance. The implementation of the unitaries are
provided in Sec. III C, and two different schemes for the phase
measurement are designed in Secs. III D and III E. Section IV
summarizes the paper.

II. NAIMARK EXTENSION OF THE POVM OF THE PHASE

We consider phase measurements on a qubit. In particular,
we consider measurements described by the POVM {!k},
where the kth outcome, k ∈ {0, 1, . . . , M − 1}, is associated
with the phase value θk = k 2π

M . The number of outcomes M
defines the resolution of the measurement scheme and it may
be arbitrarily high. The scheme we discuss works for M being
a power of 2, i.e., M = 2N , N ! 1 ∈ N.

As a matter of fact, many different kinds of phase mea-
surements have been analyzed and discussed, with the main
goal of achieving optimal phase estimation. In this paper we
study how to implement the phase measurement which is the
solution of the following problem. Given the states

|ϕk⟩ = |0⟩ + eiϕk |1⟩√
2

,

where ϕk = 2π
M k, k ∈ {0, 1, . . . , M − 1}, drawn with equal

probability 1
M , we find the optimal POVM {!k} that maxi-

mizes the probability of guessing correctly, i.e.,

Pguessing =
∑

k

P[θk|ϕk] =
∑

k

⟨ϕk|!k|ϕk⟩. (3)

The problem is well known because of the symmetry of the
states, and the solution, which was found long ago [32], is
the POVM in Eq. (1). This optimal POVM may also be
seen as an approximate canonical phase measurement, that
is, the measurement defined by the POVM {!θ }, θ ∈ [0, 2π ),
defined in the standard basis as

!θ = 1
2π

|θ⟩⟨θ |, |θ⟩ =
∑

n

einθ |n⟩. (4)

When we restrict the Hilbert space to the subspace spanned
by |n⟩ = {|0⟩, |1⟩} and we discretize the outcome θ in the M
values θk , we obtain the POVM {!k} of Eq. (1). Note that
each POVM element may be expressed in terms of the column

vectors

|ψk⟩ = 1√
2

[
e−ik(π/M )

eik(π/M )

]
(5)

for k = 0, 1, . . . , M − 1 and also as

!k = XkX †
k , Xk = 1√

M

[
e−ik(π/M )

eik(π/M )

]
, (6)

i.e., using the set of the unnormalized column vector Xk . Note
also that the POVM elements are not orthogonal, except for
M = 2 and !k!l ̸= !kδk,l .

The POVM elements are operators on the original system
Hilbert space HS and, according to the Naimark theorem
[29–33], may be implemented as a projective measurement
in a larger Hilbert space H, usually referred to as the Naimark
extension of the POVM. Actually, the theorem ensures that
a canonical extension exists among the infinite others, i.e., an
implementation as an indirect measurement, where the system
under investigation is coupled to an independently prepared
probe system [34] and then only the probe is subject to a
(projective) measurement [35–37], whose statistics mimic that
of the POVM.

Here we look for a Naimark extension of the POVM {!k}
in Eq. (1) using a recursive algorithm designed in a previous
paper [38]. The algorithm builds the projectors one by one,
enlarging the size of the Hilbert space H only when necessary.
As we will see in a moment, the projectors have rank 1 and
may be described in a matrix representation as Pk = ZkZ†

k ,
with Zk a column vector. Each projector must verify a set
of orthogonality conditions, which translates to constraints on
Zk , i.e.,

PkPl = 0, k ̸= l ⇐⇒ Z†
k Zl = 0, (7)

as well as an idempotent condition,

(Pk )2 = Pk ⇐⇒ Z†
k Zk = 1. (8)

In addition, in order to be the extension of a POVM element,
each projector Pk must satisfy

!k = TrA[Pk (ρA ⊗ IS )], (9)

which is the constraint required to evaluate the correct out-
come probability in HS and in H, respectively, i.e.,

TrS[!kρS] = TrAS[Pk (ρA ⊗ ρS )]. (10)

In Eqs. (9) and in (10), we have introduced the enlarged
Hilbert space H given by the tensor product of an ancillary
Hilbert space HA and the original Hilbert space HS , i.e.,
H = HA ⊗ HS . We have introduced also an auxiliary state ρA
defined in HA, whose choice gives some degrees of freedom in
building the extension. Following the suggestion of Helstrom
[32], we use ρA = |eA

1 ⟩⟨eA
1 |, where |eA

1 ⟩ is the ancillary pure
state whose column representation is the vector e1 of the
canonical basis with the appropriate size,1 i.e., with all the
entries equal to zero except for the first one.

The recursive algorithm works by building the columns Zk
one at a time. In each column, the upper coefficients are set

1Since the algorithm enlarges the size of the Hilbert space H only
when necessary, the size of HA is determined only at the end.
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equal to Xk .2 Then the following coefficients are found by
imposing the orthogonality condition (7) with the previously
found Z0, . . . , Zk−1. Finally, the last coefficient is obtained by
solving Eq. (8). All following coefficients are set to zero. If
during the evaluation of a coefficient the provisional vector is
already orthogonal to Zl , l < k or idempotent, it is not nec-
essary to add another coefficient. This helps in reducing the
growth in size of H. Reference [38] actually finds a general
expression for the coefficients to solve the orthogonal and
idempotent constraints. The algorithm can be implemented
numerically to find the Naimark extension of the POVM
{!k}. However, an analytical expression for the projectors for
arbitrarily high M can be found when employing the order
Z0, ZM/2, Z1, ZM/2+1, . . . , ZM−1 for their evaluation. The pro-
jectors are hence extended in pairs evaluating Zk and Zk+M/2
for k = 0, . . . , M/2 − 1, resulting in the overall expressions

of Eq. (12). To better illustrate how the recursive algorithm
works, we show the case for M = 8 in Sec. II.

As expected, the first two coefficients are Xk . Then 2(k +
1) coefficients are defined, followed by zero entries that pad
the vector up to the size of M. For k = M/2 − 1 and k =
M − 1 the last coefficients (which would overflow the length
of M) are zeros, so ZM/2−1 and ZM−1 can be truncated to the
correct length. The columns Zk can be packed in the M × M
matrix Z ,

Z = [Z0ZM/2Z1ZM/2+1 · · · ZM/2−1ZM−1], (11)

and Eqs. (7) and (8) can be checked analytically or nu-
merically to verify Z† · Z = Z · Z† = I . As an example, we
evaluate Z for M = 8 in Sec. II and report it in Eq. (13).
Expression (12) may be proved by induction:

Zk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−i(k/M )π
√

M
ei(k/M )π
√

M

− 2√
M(M−2) cos

( k
M π

)

− 2√
M(M−2) sin

( k
M π

)

− 2√
(M−2)(M−4) cos

( k−1
M π

)

− 2√
(M−2)(M−4) sin

( k−1
M π

)

...

− 2√
(M−2k+2)(M−2k)

cos
( 1

M π
)

− 2√
(M−2k+2)(M−2k)

sin
( 1

M π
)

√
M−2k−2)

M−2k

0
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Zk+M/2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−i[(k+M/2)/M]π
√

M
ei[(k+M/2)/M]π

√
M

2√
M(M−2) sin

( k
M π

)

− 2√
M(M−2) cos

( k
M π

)

2√
(M−2)(M−4) sin

( k−1
M π

)

− 2√
(M−2)(M−4) cos

( k−1
M π

)

...
2√

(M−2k+2)(M−2k)
sin

( 1
M π

)

− 2√
(M−2k+2)(M−2k)

cos
( 1

M π
)

0√
M−2k−2

M−2k

0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Recursive evaluation of Zk for M = 8

In this section we illustrate how the recursive algorithm
presented in [38] builds the columns of Z for M = 8. The
procedure can be followed by looking at the columns of
Eq. (13), which represent the resulting matrix.

As anticipated in Sec. II, the columns are evaluated one at
a time starting from Z0 and following the order of Eq. (11). In
Z0, the first two coefficients are X0 = [1/

√
M, 1/

√
M]T . Then

the next coefficient is obtained by imposing the condition that
the overall Z0 has unitary norm, as in Eq. (8). These three
coefficients will be extended and padded with zeros once the
final length is known.

For the second column, which corresponds to Z4, the first
two coefficients are X4 = [−i/

√
M, i/

√
M]T . The following

2By Eq. (9), the choice ρA = |eA
1 ⟩⟨eA

1 | imposes that the first entries
of Zk are equal to Xk .

one is obtained by imposing the orthogonality constraint (7)
with Z0, which gives a zero coefficient in the third item.
The next coefficient is obtained from (8) imposing the unit
norm.

The third column, which corresponds to Z1, is eval-
uated with the same procedure. The first two coeffi-
cients are X1 = [e−iπ/8/

√
M, eiπ/8/

√
M]T . The following co-

efficients are obtained from the orthogonality constraint
with Z0 and Z4, obtaining −2 cos(π/8)/

√
(M − 2)M and

−2 sin(π/8)/
√

(M − 2)M, respectively. The following coef-
ficient is obtained again from the idempotent constraint (8).
The recursive procedure continues in the same way for the
remaining columns, first by copying the coefficients of Xk ,
then by imposing the orthogonal constraint (7) with all the
previous columns, and finally by evaluating the last coefficient
with the idempotent constraint (8). Note that while with this
procedure up to M + 2 coefficients may be evaluated for each
column, the last coefficients of the last two columns are zeros
since M = 8, and the columns can be truncated to the correct
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length of M = 8:

Z =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
M

− i√
M

e−iπ/8
√

M
e−i5π/8
√

M
e−i2π/8
√

M
e−i6π/8
√

M
e−i3π/8
√

M
e−i7π/8
√

M
1√
M

i√
M

eiπ/8
√

M
ei5π/8
√

M
ei2π/8
√

M
ei6π/8
√

M
ei3π/8
√

M
ei7π/8
√

M√
M−2

M 0 − 2 cos(π/8)√
(M−2)M

2 sin(π/8)√
(M−2)M − 2 cos(2π/8)√

M(M−2)
2 sin(2π/8)√

M(M−2) − 2 cos(3π/8)√
M(M−2)

2 sin(3π/8)√
M(M−2)

0
√

M−2
M − 2 sin(π/8)√

(M−2)M − 2 cos(π/8)√
(M−2)M − 2 sin(2π/8)√

M(M−2) − 2 cos(2π/8)√
M(M−2) − 2 sin(3π/8)√

M(M−2) − 2 cos(3π/8)√
M(M−2)

0 0
√

M−4
M−2 0 − 2 cos(π/8)√

(M−2)(M−4)
2 sin(π/8)√

(M−2)(M−4) − 2 cos(2π/8)√
(M−2)(M−4)

2 sin(2π/8)√
(M−2)(M−4)

0 0 0
√

M−4
M−2 − 2 sin(π/8)√

(M−2)(M−4) − 2 cos(π/8)√
(M−2)(M−4) − 2 sin(2π/8)√

(M−2)(M−4) − 2 cos(2π/8)√
(M−2)(M−4)

0 0 0 0
√

M−6
M−4 0 − 2 cos(π/8)√

(M−4)(M−6)
2 sin(π/8)√

(M−4)(M−6)

0 0 0 0 0
√

M−6
M−4 − 2 sin(π/8)√

(M−4)(M−6) − 2 cos(π/8)√
(M−4)(M−6)

0 0 0 0 0 0
√

M−8
M−6 0

0 0 0 0 0 0 0
√

M−8
M−6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

III. PHASE MEASUREMENT OF A SINGLE PHOTON

Let us denote by ρS the state of the qubit, defined on a
two-level system representing the single rail polarization en-
coding, that is, identifying the logical system basis {|0⟩L, |1⟩L}
with the polarization modes |0⟩L = |H⟩ = a†(m)

H |0⟩ and |1⟩L =
|V ⟩ = a†(m)

V |0⟩. Operators a†(m)
H and a†(m)

V are the creation
operators of the polarization modes on the mth path and |0⟩
is the vacuum state. In this case the optical state is defined
on a single path, as opposed to the dual rail encoding which
employs the mth and nth spatial modes to define the log-
ical basis |0⟩L = |10⟩mn = a†(m)|00⟩mn and |1⟩L = |01⟩mn =
a†(n)|00⟩mn.

Note that even though our system qubit is defined with
the single rail polarization encoding, in the following we will
also employ the dual rail encoding when speaking about the
implementation scheme of the phase measurement. In that
framework, we will denote the mode number in the super-
script, while making the polarization explicit in the subscript.

Let us start by summarizing the key idea behind our
detection scheme. We implement the Naimark extension of
the POVM by an optical network that receives the quantum
state ρS to be measured as input and (probabilistically) outputs
a single photon towards an array of photon counters. Each
detector is associated with an outcome, corresponding to a
click in a specific detector. In the ideal case of no losses
in the network and no detector noise, every time we send
ρS into the optical network we always get one and only
one click. In this respect, our scheme resembles the KLM
scheme for measurements [8] since the measurement device
is implemented with a unitary rotation followed by a set of
projectors. In our case the overall projectors Pk to be applied
on ρA ⊗ ρS can be obtained as Pk = Z|eH

k ⟩⟨eH
k |Z†, where |eH

k ⟩
is the state defined in H with column representation of the kth
element of the canonical basis. Since

Tr[PkρA ⊗ ρS] = Tr
[
(Z†ρA ⊗ ρSZ )

∣∣eH
k

〉〈
eH

k

∣∣], (14)

the unitary rotation is defined by Z† and implemented with the
optical network, while the projector |eH

k ⟩⟨eH
k | is implemented

with a photon counter on the kth output mode.

A. Decomposition of the unitary Z†

The unitary Z† can be decomposed as a product of simpler
unitary rotations [39] usually referred to as Givens rotations
(GRs), i.e., a rotation in the plane spanned by two coordinate
axes, often employed to zero out a particular entry in a vector.
Section III C describes how to implement each GR so that the
overall sequence realizes the interferometer associated with
Z†. Givens rotations have a matrix representation that looks
like the identity matrix, with the exception of the coefficients
on two rows and two columns, which define the mixing
between the two.

We define such an M × M matrix as

u v

W (u, v,ω) =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0

0
. . . 0 0 0

0 0 cos(ω) sin(ω) 0
0 0 − sin(ω) cos(ω) 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
u
v

, (15)

with u and v the indices of the rows and columns being mixed
and ω a parameter defining the mixing. We define also the
matrix S(u,φ),

u

S(u,φ) =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0

0
. . .

...
0 1 0 0
0 · · · 0 e−iφ 0
0 0 0 1

⎞

⎟⎟⎟⎟⎠u
, (16)

which corresponds to a phase shift on the uth vector of the
basis.

In decomposing Z† we take advantage of its structure,
which is almost lower triangular due to the zero padding of
Zk to reach the length of M coefficients [see, for instance,

032126-4



NAIMARK EXTENSION FOR THE SINGLE-PHOTON CANONICAL … PHYSICAL REVIEW A 100, 032126 (2019)

the structure of Z in Eq. (13) in the example in Sec. II].
Further details on the decomposition of Z† are reported in
Sec. III B.

A pattern in the sequence of unitaries W and S emerges,
suggesting an analytical expression for the decomposition
for any M [see, for instance, Eq. (17)]. In fact, with the
exception of S(2,π/2) and W (1, 2,π/4), the GR can be

grouped in triplets of unitaries where the u and v indices act
on the same group, e.g., {5, 7, 6, 8}, {3, 4, 5, 6}, or {1, 2, 3, 4}.
The parameter ω also shows a pattern in its value, i.e.,
it has the same value in the first two GRs of the triplet and
it has the same value in the third GR among different triplets.
These patterns have a direct effect on the physical realization
of Z† decomposition (see Sec. III C):

Z† = W
(

7, 8,π + π

M

)
W

(

6, 8, arctan

√
M − 6

2

)

W

(

5, 7, arctan

√
M − 6

2

)

× W
(

5, 6,π + π

M

)
W

(

4, 6, arctan

√
M − 4

2

)

W

(

3, 5, arctan

√
M − 4

2

)

× W
(

3, 4,π + π

M

)
W

(

2, 4, arctan

√
M − 2

2

)

W

(

1, 3, arctan

√
M − 2

2

)

S
(

2,
π

2

)
W

(
1, 2,

π

4

)
(17)

The expression (17) can be easily checked by multiplying it
by Z and obtaining the identity matrix.

B. Decomposition of Z for M = 8

In this section we describe more in detail how the decom-
position of Z† can be obtained. We will consider the case of
M = 8, which is reported in Eq. (17).

We start from the corresponding matrix Z , whose ex-
pression is reported in Eq. (13). This matrix is unitary and
therefore can be decomposed as a sequence of GRs [39]. To
find this decomposition, a handy procedure is to left multiply
Z by W and S until we obtain the identity matrix. In short,
we should multiply Z by GRs that nullify the off-diagonal
entries. The sequence of W and S then corresponds to the
decomposition we are looking for.

To simplify the procedure, we first multiply Z by W0 =
W (1, 2,π/4) and S0 = S(2,π/2) to convert the complex
entries in the first two rows of Z into their corresponding real
and imaginary parts. The matrix becomes

S0W0Z =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2√
M

0
√

2 cos(π/M )√
M

· · ·

0
√

2√
M

√
2 sin(π/M )√

M√
M−2

M 0 − 2 cos(π/M )√
(M−2)M

0
√

M−2
M − 2 sin(π/M )√

(M−2)M

0 0
√

M−4
M−2

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

We can then focus on nulling the entry below the diago-
nal. We need a GR for each of the entries in the first and
second columns, W1 = W (1, 3,ω13) and W2 = W (2, 4,ω24),
respectively, with ω13 = ω24 = arctan

√
(M − 2)/2. We then

obtain

W2W1S0W0Z

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 1 0 0

0 0
√

2 cos( π
M )√

M−2
−

√
2 sin( π

M )√
M−2

0 0
√

2 sin( π
M )√

M−2

√
2 cos( π

M )√
M−2

0 0
√

M−4
M−2 0

0 0 0
√

M−4
M−2

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Note that, at this point, all the off-diagonal entries in the first
and second rows, as well as those in the first and second
columns, are zero.

If we then multiply the matrix by W3 = W (3, 4,π + π/M )
to nullify the first off-diagonal entry in the fourth row, we
obtain a matrix that resembles (18) except for M − 2 in place
of M, i.e.,

W3W2W1S0W0Z

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 1 0 0

0 0
√

2√
M−2

0

0 0 0
√

2√
M−2

0 0
√

M−4
M−2 0

0 0 0
√

M−4
M−2

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

The multiplication by W3W2W1 has effectively nullified the left
off-diagonal entries in the second and third rows of S0W0Z .
From here on, we can find triplets of GR {W6,W5,W4} that
act like {W3,W2,W1} to nullify the left off-diagonal entries
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in rows 5 and 6. This procedure can be repeated for the
remaining rows and gives the pattern of GR triplets in the
decomposition (17).

Once we obtain the final identity matrix, the product of the
GRs employed W9W8 · · ·W3W2W1S0W0 is a decomposition of
Z†. The decomposition works for arbitrarily high values of M
since the matrix Z has the same structure.

C. Physical realization of Givens rotations

Without loss of generality, we can consider the measure-
ment of ρS = |ϕS⟩⟨ϕS|, with |ϕS⟩ being a single-photon state,

|ϕS⟩ = |0⟩L + eiϕ |1⟩L√
2

= a†(1)
H + eiϕa†(1)

V√
2

|0⟩, (21)

and ϕ ∈ [0, 2π ) an unknown phase to be estimated. Again,
a†(1)

H and a†(1)
V are the creator operators for the first path mode,

for the horizontal and vertical modes, respectively. In the case
of a mixed state, the result of the phase measurement follows
by linearity from the measurement of the eigenvectors of ρS .

To define the vector representation of the state in the
enlarged Hilbert space H, we collect the coefficients of the
creation operators a†(m)

H and a†(m)
V and stack them in order

in a column. For instance, the input quantum state (21) is
represented as

|ϕAS⟩ =
∣∣eA

1

〉
⊗ |ϕS⟩ −→

⎡

⎢⎢⎢⎢⎢⎢⎣

1√
2

eiϕ
√

2
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎦
(22)

because the coefficients of a†(1)
H and a†(1)

V are placed in the first
two items in the column representation, while the zeros are the
coefficients of a†(m)

H and a†(m)
V , m > 1.

This representation is useful because in the Hilbert space
spanned by the polarizations of a single photon on multiple
modes, the mixing of n optical modes is represented by an
n × n unitary matrix.3 As a consequence, the states that define
the canonical basis in this representation and in the unitary Z†

are single-photon states of some polarization and path modes.
The auxiliary state |eA

1 ⟩ is just the tensor product of many
vacuum states corresponding to multiple modes.

In this Hilbert space the converse also holds, i.e., any
unitary transformation can be achieved with a set of passive
devices such as beam splitters, polarizing beam splitters,
waveplates, and mirrors [40]. We will leverage this result to
provide a possible realization for the unitaries S(u,φ) and
W (u, v,ω).

The unitary S(u,φ) can be realized with a waveplate of
the appropriate thickness where the fast axis is aligned with
the horizontal mode and the slow axis with the vertical mode.
In this way, the vertical mode gains a phase shift equal to

3In contrast, linear mixing between annihilation operators and
creation operators requires nonlinear optical interactions, as it results
from squeezing transformations.

−φ with respect to the horizontal one. The corresponding
transformation given by the waveplate can be expressed as

[
â†(m)

H

â†(m)
V

]

(out)

=
[

1 0

0 e−iφ

][
â†(m)

H

â†(m)
V

]

(in)

, (23)

where the index u in S(u,φ) specifies the column and row
associated with â†(m)

V .
The transformation W (u, v,ω) can be realized differently

depending on whether the modes involved refer to different
polarizations of the same rail or two spatial modes on dif-
ferent rails. In the first case, a simple rotation equal to ω of
the coordinate system on the polarization plane realizes the
transformation, i.e.,

[
â†(m)

H

â†(m)
V

]

(out)

=
[

cos(ω) sin(ω)
− sin(ω) cos(ω)

][
â†(m)

H

â†(m)
V

]

(in)

. (24)

In this case, the indices u and v specify the columns and
rows of â†(m)

H and â†(m)
V , respectively. If a mixing between

two different spatial modes is required, a beam splitter (BS)
with the appropriate transmissivity and reflectivity may be
used. The transmissivity and reflectivity may even depend on
the polarization, and in this case a partially polarizing beam
splitter (PPBS) is required to realize the transformation

⎡

⎢⎢⎢⎣

cos(ωH ) 0 sin(ωH ) 0
0 cos(ωV ) 0 sin(ωV )

− sin(ωH ) 0 cos(ωH ) 0
0 − sin(ωV ) 0 cos(ωV )

⎤

⎥⎥⎥⎦
(25)

from the input to the output creation operators listed
in the column [â†(m)

H , â†(m)
V , â†(n)

H , â†(n)
V ]T . In this case, we

are actually implementing the transformation W (u, v,ωH )
× W (u′, v′,ωV ), where u and v point at the coefficients of the
horizontal polarizations and u′ and v′ at those of the vertical
ones. When ωH = ωV , we recover the transformation of a BS.
An extreme example of a PPBS is the polarizing beam splitter
(PBS), which completely transmits the horizontal polariza-
tions and reflects the vertical polarizations and corresponds
to the transformation (25) with ωH = 0 and ωV = π/2.

In order to obtain the implementation of (17), we fol-
low the sequence of the unitary transformations S(u,φ) and
W (u, v,ω) from right to left and compose in a cascade the cor-
responding implementations. Two possible implementations
arise, a direct one and a folded one, which are the topic of the
following sections.

D. Direct scheme

The direct implementation is designed following the se-
quence of GRs in Eq. (17). Figure 1 depicts the scheme for
M = 8, where the optical network and the photon counters
can be clearly recognized.

The scheme presents an initial block implementing the uni-
taries W (1, 2,π/4) and S(2,π/2). The qubit to be measured
is defined on the Cartesian coordinate system of the polar-
ization plane, which is rotated by π/4 in order to implement
W (1, 2,π/4). In Fig. 1, such a rotation is indicated with a
curved arrow.
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|ϕS

Initial block

BS

PBS

PD(0)

PD(4)

Modular block

PD(1)

PD(5)

PD(2)

PD(6) PD(7)

PD(3)

FIG. 1. Direct scheme for M = 8. The qubit |ϕS⟩ to be measured enters the optical network from the left and traverses the optical network
to give the correct outcome probability. The initial block and a modular block, which is then repeated three times, are enclosed within dashed
lines. Each modular block is composed of a BS, a PBS, two photon counters, and a polarization plane rotation (depicted with a curved arrow).
Each block has two ingoing modes coming from the previous block and two ingoing auxiliary modes in the vacuum state. Two outgoing modes
of the BS are directed to the PBS and then to photon counters, while the other two outgoing modes are directed towards the polarization plane
rotation and then to the next block. A click in the photon counter PD(k) corresponds to the projection on Pk = Z†|eH

k ⟩⟨eH
k |Z in the extended

Hilbert space.

The optical modes H (1) and V (1) must then go through a
quarter waveplate which realizes S(2,π/2). The waveplate,
indicated in Fig. 1 with a slim rectangular box, is aligned
with the new coordinate system, and the same holds for the
following components.

The decomposition (17) highlights a structure for the ma-
trices following the initial block. In particular, the GRs can be
grouped in triplets which work on the same group of modes,
e.g.,

W (3, 4,ω34)W (2, 4,ω24)W (1, 3,ω13). (26)

The same holds if we add 2k, k = 0, . . . , M
2 − 2, to the indices

of the modes, employing the angles ω34 = π + π
M and ω24 =

ω13 = arctan
√

(M − 2 − 2k)/2.
This observation suggests a modular implementation of the

triplet, which is repeated several times. The modular block is
shown within the dashed line in Fig. 1.

In general, the unitaries W (2, 4,ω24)W (1, 3,ω13) may
be implemented with a PPBS realizing (25) with ωH = ω13
and ωV = ω24, where the horizontal creation operators have
indices 1 and 3 and the vertical ones have indices 2 and 4.
However, since ωH = ωV = ω24 = arctan

√
(M − 2 − 2k)/2,

a BS suffices to implement the transformation. After this,
two of the outgoing modes go to a PBS to be separated
into horizontal and vertical polarization modes and then on
to photon counters to record a possible click. The other two
outgoing modes are mixed with a rotation of the polarization
plane, realizing the unitary W (3, 4,ω34) as in (24), with ω =
ω34 = π + π

M .
Note that the actual transformation implemented by the BS

followed by the rotation of the polarization plane would be
(supposing k = 1)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
2
M 0

√
M−2

M 0

0
√

2
M 0

√
M−2

M√
M−2

M cos
(

π
M

) √
M−2

M sin
(

π
M

)
−

√
2
M cos

(
π
M

)
−

√
2
M sin

(
π
M

)

−
√

M−2
M sin

(
π
M

) √
M−2

M cos
(

π
M

) √
2
M sin

(
π
M

)
−

√
2
M cos

(
π
M

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

However, two of the input modes of the PPBS are vacuum states, and the effective transformation from the coefficients of
[â†(m)

H , â†(m)
V ]T to those of [â†(m)

H , â†(m)
V , â†(n)

H , â†(n)
V ]T results:

⎡

⎢⎢⎢⎢⎣

â†(m)
H

â†(m)
V

â†(n)
H

â†(n)
V

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

√
2
M 0

0
√

2
M√

M−2
M cos

(
π
M

) √
M−2

M sin
(

π
M

)

−
√

M−2
M sin

(
π
M

) √
M−2

M cos
(

π
M

)

⎤

⎥⎥⎥⎥⎥⎥⎦

[
â†(m)

H

â†(m)
V

]

. (28)

032126-7



NICOLA DALLA POZZA AND MATTEO G. A. PARIS PHYSICAL REVIEW A 100, 032126 (2019)

|ϕS

Initial block

PBS

Phase Mod

PBS

PBS

PD(k)

PD(k + M/2)

Time-varying PPBS

Delay line

FIG. 2. Folded scheme for the phase measurement. The qubit
|ϕS⟩ to be measured travels through an initial block and enters an op-
tical loop defined by the interferometer and the delay line. The initial
block and the interferometer, which implements a time-varying BS,
are enclosed within dashed lines. The optical loop, composed of the
interferometer, the PBS, photon counters, and the polarization-plane
rotation (depicted with a curved arrow), corresponds to the modular
block of the direct scheme. The photon exits the loop via the second
BS in the interferometer and its polarizations are split with a PBS
and are directed to photon counters. The measurement outcome k
(k + M/2) is obtained when a click in PD(k) [PD(k + M/2)] is
recorded in the (k + 1)th time slot, which is defined as the time
interval that takes the photon to travel in the loop.

The horizontal and vertical polarizations of mode m then go to
a PBS followed by two photon counters, while those in mode n
go to the next modular block, or to additional photon counters
in the case of the last module.

As a side note, we would like to point out that, in general,
photonic implementations with a BS require the rails to be
swapped and brought close in order to perform the unitary
operation on adjacent modes. The direct scheme and the
folded scheme are free of this issue, as can be seen from
the schematics of Figs. 1 and 2, respectively. This is also
true for arbitrarily high M since this property originates
from the pattern of GR triplets in the decomposition of Z† and
their modular implementation with a BS and a polarization
plane rotation.

E. Folded scheme

The folded scheme is a variation of the direct scheme,
which comes from the following considerations.

First, an experimental implementation of the direct scheme
requires a number of photon counters equal to the number of
outcomes M, which may become highly expensive to realize
if a fine resolution of the phase is required, i.e., a large number
M. It is therefore worthwhile to explore the possibility of
reducing the number of devices required.

Second, the photon counters and the modular blocks in
general are not used at the same time, but at different times
as the photon will click later in PD(k) with respect to PD(0).
This opens up the possibility to exploit recursive schemes that
reuse the same modular block in different time slots.

The folded scheme is obtained by putting a delay line after
the first modular block, connecting the output modes of this
block to the input modes of the PPBS, effectively folding
all the blocks onto the first one. Figure 2 shows a possible
implementation of the scheme.

Note that since the parameters ωH and ωV change from
one modular block to another, a time-varying BS is required,
which may be realized with an interferometer with the appro-
priate phase shift on one arm. This interferometer is singled
out inside the dashed enclosure in Fig. 2.

The photon to be measured enters the loop and in the
following M/2 time slots (each lasting a round-trip time in the
delay line) it exits towards the PBS and the photon counters.
The outcome depends on both the polarization and the time
slot and corresponds to k and k + M/2 for a click recorded in
the (k + 1)th time slot in the photon counter associated with
the horizontal and vertical polarization, respectively.

A comment on the experimental feasibility of these
schemes is in order. As a matter of fact, the direct scheme
can be realized straightforwardly either with bulk optics or
in integrated optical circuits. On the other hand, the folded
scheme requires a careful design of the delay line. In par-
ticular, its length defines the time slot where a photon can
be recorded at the photon counters and must amount to at
least the temporal span of the single photon plus the time
required for the time-varying BS to adjust its parameters.
This latter duration is the limiting constraint, with commercial
devices that report switching frequencies of the order of tens
of megahertz in their data sheet. The resulting length for the
delay line is of the order of tens of meters, which is feasible
to realize in a laboratory. The dead time of photon counters,
which may blind successive time slots, does not impact the
current measurement, though it may affect the time slots in the
following one. This can be solved by imposing an idle time
interval between consecutive measurements, at the cost of
reducing the overall rate of measurements that can performed.
However, for a proof-of-principle experimental test, this is not
usually a major consideration.

IV. CONCLUSION

We have addressed the optical implementation of a POVM
corresponding to the optimal M-outcome discrimination of
the polarization state of a single photon. In particular, we have
found an explicit Naimark extension and optical implemen-
tation for any M = 2N , N > 1, so that the resolution of the
estimated phase can be arbitrarily small.

The measurement scheme has been devised to estimate
the phase of the polarization of a single photon. The single
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photon passes through an optical network towards a set of
photon counters, providing information about which path was
taken, depending on its polarization. The optical network is
defined by the unitary obtained from the projectors and it
is realized as a sequence of modular blocks that reflects the
structure of the unitary decomposition in GRs. Each block is
a combination of beam splitters and waveplates that act on
multiple polarization modes. The photon counters are placed
at the outgoing modes and at each recorded click they assign
the corresponding outcome.

We have provided an analytical expression for both the
Naimark extension and its decomposition in GRs and we have
proposed an implementation for the measurement scheme
of the polarization, but other phase measurements can in

principle be realized. Our results pave the way for realistic
implementations of the canonical phase POVM for single-
photon states and for extension to high-dimensional Hilbert
spaces.
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