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Nonlinearity as a resource for nonclassicality in anharmonic systems
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Nonclassicality is a key ingredient for quantum enhanced technologies and experiments involving macroscopic
quantum coherence. Considering various exactly solvable quantum-oscillator systems, we address the role played
by the anharmonicity of their potential in the establishment of nonclassical features. Specifically, we show that
a monotonic relation exists between the entropic nonlinearity of the considered potentials and their ground-state
nonclassicality, as quantified by the negativity of the Wigner function. In addition, in order to clarify the role of
squeezing, which is not captured by the negativity of the Wigner function, we focus on the Glauber-Sudarshan
P function and address the nonclassicality-nonlinearity relation using the entanglement potential. Finally, we
consider the case of a generic sixth-order potential confirming the idea that nonlinearity is a resource for the
generation of nonclassicality and may serve as a guideline for the engineering of quantum oscillators.
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I. INTRODUCTION

At the heart of quantum technologies lies the fact that
quantum-mechanical systems show features, with no classical
counterpart, that may be employed as resources to perform
specific tasks better or faster than within the classical realm
[1]. In the context of quantum optics, genuine quantum traits
of optical systems have led to the emergence of the concept
of nonclassicality, which characterizes states whose effects
are not achievable with classical light [2]. In particular,
linear models (here intended as systems that induce linear
transformations of the bosonic mode operators) have attracted
much attention in the past decades due to the development
of experimental platforms able to implement them. In fact,
the generation of nonclassical light, especially in the form of
squeezed beams, has proven to be an enabling resource for a
variety of quantum technological applications [3].

Recently, alternative experimental platforms have been
developed that can also be coherently controlled and described
as single-mode bosonic systems, including trapped ions [4],
optomechanical systems [5], atoms in optical lattices [6], and
hybrid systems [7]. The latter naturally embody a playground
to discuss and test the generation and characterization of
genuine quantum features. In particular, they offer the unique
opportunity to consider nonlinear (or anharmonic) models,
given that the possibility to host nonlinearities is within reach
of current technologies, in particular for trapped ions [8] and
optomechanical systems [9]. Interestingly, it has been shown
that the inclusion of nonlinearities in the oscillator potential
uncovers new possibilities to generate nonclassical states
[10–18]. However, a general framework that encompasses
these possibilities remains elusive, and in particular a thorough
quantitative assessment of the link between nonlinearity and
nonclassicality is still lacking.

The aim of this work is to investigate in detail the idea that
nonlinearity is a general resource to generate nonclassicality
in single-mode bosonic systems composed of anharmonic
oscillators. In particular, we will focus on a quantitative
assessment of the phenomenon, as we critically consider

specific quantifiers of nonclassicality and nonlinearity. In fact,
identifying proper measures of these quantities is crucial
by itself, and in particular, different figures of merit exist
that capture different features associated with nonclassicality
[19–25]. The quantitative connection of the nonlinear behavior
of an oscillatory system and the appearance of nonclassicality
has recently been tested, in the context of nanomechanical
resonators, for the Duffing oscillator model [26]. Here we
extend this connection and assess its validity for more
general scenarios, including three families of exactly solvable
nonlinear oscillators and a generic sixth-order potential.

The remainder of this paper is structured as follows. In
Sec. II we review the main conceptual tools and establish
our notation and formalism. First, we introduce and discuss
the two quantitative measures of nonclassicality that will be
used throughout the paper, namely, entanglement potential
and the volume of the negative part of the Wigner function.
Then, we review a recently introduced measure to quantify
the nonlinearity of a quantum oscillator [27], which in turn
is based on an entropic measure of non-Gaussianity [28].
In Sec. III we analyze the quantitative connection between
nonclassicality and nonlinearity for three different nonlinear
potentials having an exact solution. We also highlight some
differences between the two measures of nonclassicality (see
also Ref. [29]). In Sec. IV we address the generic (symmetric)
anharmonic potential by considering fourth- and sixth-order
perturbations to the harmonic one. In Sec. V we draw our
conclusions.

II. NONCLASSICALITY OF A STATE AND
NONLINEARITY OF A POTENTIAL

A. Nonclassicality of a single-mode bosonic state

We consider a bosonic system with a single degree of
freedom, such as a one-dimensional oscillator or a single mode
of a bosonic field. Since we deal with single-mode systems,
we will not discuss any notion related to entanglement or other
nonclassical correlations.
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In the most general terms, a quantum state is said to be
nonclassical if the methods of classical statistics fail to describe
its properties and phenomenology. In the context of quantum
optics this definition is made precise by using quasiprobability
distributions in phase space. Here we are not only interested
in criteria for nonclassicality, but we seek a quantitative
characterization. An excellent summary on this topic can be
found in the introduction of Ref. [30].

1. P nonclassicality and entanglement potential

According to Titulaer and Glauber [31–33], a quantum state
is nonclassical when its P function fails to be interpreted
as a probability distribution in the phase space (see also
Refs. [34–36]). It has been recently emphasized [37] that
the P function is the only quasiprobability distribution which
can give a description that can be completely modeled using
classical electrodynamics, therefore supporting the idea that to
identify a classical state it is necessary to use the P function.
In this paper we refer to this fundamental notion as P -function
nonclassicality, or P nonclassicality for short.

The best-known way to quantify P nonclassicality is the
nonclassical depth [20]: It quantifies, operationally, the amount
of thermal noise that is needed in order to render the P function
of a given state a well-behaved probability distribution and
the corresponding state classical. This measure, however, is
not fully suited for our purposes: in fact, although we will
be interested in establishing a quantitative hierarchy of pure
non-Gaussian states in terms of their nonclassicality at a set
nonlinearity of a given potential, it has been proven that such
states all saturate the nonclassical depth [38]; that is, they are
equally and maximally nonclassical according to this measure.

This obstacle can be overcome by considering the fol-
lowing. It has long been known that coherent states are
the only pure states that produce uncorrelated outputs when
mixed by a passive linear-optics device [39]. Specifically, P
nonclassicality has been identified as a necessary condition for
having entangled states at the output of a beam splitter [40–
42], and quantitative relations have been identified between
nonclassicality and entanglement [23,43–48] or discordlike
correlations more generally [48]. The idea of quantifying
the nonclassicality of a single-mode state as the two-mode
entanglement at the output of a linear-optics device was
introduced by Asbóth et al. [23]. In particular, it was shown
that the optimal entangler is just a beam splitter with vacuum
as an auxiliary state (see [49] for further discussion). By
restricting ourselves to this setup, nonclassicality of the input
state becomes a necessary and sufficient condition for output
entanglement. As a consequence, entanglement at the output
of a linear mixer may be used as a faithful quantitative measure
of P nonclassicality. This measure is usually referred to as the
entanglement potential E(ρ), and it is defined as

E[ρ] = E[B̂(ρ ⊗ |0⟩⟨0|)B̂†], (1)

where ρ is the density matrix of the state under scrutiny, |0⟩ is
the vacuum state at the ancillary port of the beam splitter, B̂ is
the beam-splitter operator, and E[ρ] is a suitable measure
of entanglement. Our analysis will be concerned with the
ground state of a given Hamiltonian model. By dealing with
pure states, E[ρ] can be chosen, with no ambiguity, as the

entanglement entropy. This choice corresponds to the entropic
entanglement potential defined in Ref. [23], which has been
evaluated by expanding the wave function on the Fock space of
a harmonic oscillator of unitary frequency and mass, truncating
the expansion by ensuring the approximate normalization of
the state before and after the beam splitter.

2. W nonclassicality

While the P function can be a singular object, the Wigner
function is always well behaved, even if it can attain negative
values. Negativities of the Wigner function associated with a
given state define the so-called W -function nonclassicality (W
nonclassicalty), which is, however, only a sufficient condition
for P nonclassicality. It follows that there are W -classical
states which are P -function nonclassical: displaced squeezed
states are a remarkable example. The notion of W nonclas-
sicality has gained an operational meaning as follows: the
evolution of a system which is in a W -nonclassical state cannot
be efficiently simulated with classical resources [50,51]. In
order to quantify W nonclassicality we use the volume of the
negative part of the Wigner function [22]

δ =
(∫

dx dp |W (x,p)|
)

− 1, (2)

where x and p are phase-space variables and W (x,p) is the
Wigner function of the state under scrutiny. We will make use
of the following normalized version of this measure:

ν = δ

1 + δ
, (3)

which gives ν ∈ [0,1].
Let us stress that the W and P nonclassicalities single out

different quantum features. In particular, the Hudson theorem
[52] guarantees that the sole pure states with a positive Wigner
function are Gaussian ones, i.e., squeezed coherent states.
Hence, there exist pure states that have zero W nonclassicality
(e.g., squeezed states) but nonzero P nonclassicality. In this
sense the entanglement potential can reveal more detailed
features of quantumness, as we will see below. Note that
measures of W nonclassicality based on the geometric distance
between quantum states have also been introduced [19,24].

B. Quantifying the nonlinearity of a one-dimensional potential
using its ground state

The first idea to quantify the nonlinearity (intended as
the anharmonicity character) of a potential would be to
define a distance between potential functions and the reference
harmonic potential. However, this is, in general, not feasible
since potentials do not need to be integrable functions. A
different approach follows from the fact that ground states and
equilibrium states of anharmonic potentials are not Gaussian,
as opposed to those of a quantum harmonic oscillator. We can
thus choose to quantify nonlinearity by the non-Gaussianity
of the ground state of a given Hamiltonian model [27]. The
measure of non-Gaussianity used for this goal is the entropic
measure introduced in [28,53]. Here we shall briefly review
these measures.
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1. Non-Gaussianity of a quantum state

The covariance matrix of a single-mode bosonic system
prepared in a state ρ is defined as [54]

σjk[ρ] = 1
2 ⟨{R̂j ,R̂k}⟩ρ − ⟨R̂j ⟩ρ⟨R̂k⟩ρ, (4)

where R̂ = (x̂,p̂)T is the vector of single-mode quadrature
operators x̂ and p̂ and the subscript implies that expectation
values are calculated over state ρ. We also define the
displacement vector X̄[ρ] with components Xk[ρ] = ⟨R̂k⟩ρ .
A Gaussian state has a Gaussian Wigner function.

To quantify non-Gaussianity of a generic stateρ, a reference
Gaussian state τ should be defined. This is identified as
the Gaussian state with the same covariance matrix and
displacement vector as ρ. That is,

X̄[τ ] = X̄[ρ], σ [τ ] = σ [ρ]. (5)

Non-Gaussianity can now be defined as the distance
between ρ and τ calculated using, for instance, the quantum
relative entropy

S(ρ∥τ ) = Tr[ρ(ln ρ − ln τ )]. (6)

We have that S(ρ∥τ ) = 0 iff ρ = τ . Although S(ρ∥τ ) is
not symmetric in its arguments and thus does not embody
a proper metric, it has been used widely to quantify the
distinguishability of two states. This leads to the definition
of the entropic measure of non-Gaussianity,

δE(ρ) = S(ρ∥τ ) = Tr[ρ ln ρ] − Tr[ρ ln τ ] = S(τ ) − S(ρ),

(7)

where S denotes the von Neumann entropy and, owing to
the way τ is defined, we have that S(τ ) = −Tr[τ ln τ ] =
−Tr[ρ ln τ ]. This measure satisfies a series of quite useful
properties [28]: it is additive under the tensor product operation
and invariant under symplectic transformations, which are both
very useful for the sake of our analysis.

The von Neumann entropy of a single-mode Gaussian state
takes the very simple form

S(ρG) = h(
√

det σ ), (8)

where h(x) = (x + 1
2 ) ln(x + 1

2 ) − (x − 1
2 ) ln(x − 1

2 ). Thanks
to this form, the entropic non-Gaussianity becomes

δE(ρ) = h(
√

det σ ) − S(ρ), (9)

which is further simplified for pure states, as S(ρ) = 0.

2. Nonlinearity of a potential

We consider a generic potential V (x) and denote with
|φ⟩ the ground state of the corresponding Hamiltonian. The
first idea to quantify nonlinearity would be again using
the geometrical distance between the ground state of the
potential and a reference harmonic state; in particular for
this purpose the Bures metric has also been employed [27].
This way of reasoning has a downside because we have
to choose a value for the frequency ω of the reference
harmonic oscillator. The most natural choice is expanding the
potential near its minimum and finding ω as a function of the
nonlinear parameters of the potential. However, determining
this frequency is not always straightforward, and for some

potentials exhibiting more than one minimum it may even be
misleading.

Instead of using a metric, we choose to quantify nonlinearity
using the entropic non-Gaussianity δE, so that the measure of
nonlinearity is defined as

ηNG[V ] = δE(|φ⟩⟨φ|) = h(
√

det σ ); (10)

this equality holds because the ground state is pure and σ is the
covariance matrix of the ground state (we drop the dependence
from the state when obvious).

This definition is more appealing than a geometric one
because it does not require the determination of a reference
potential for V (x), just the reference Gaussian state for the
ground state of V (x). This makes ηNG independent of the
specific features of the potential since we do not need to
know the behavior of V (x) near its minimum to compute the
reference frequency.

Moreover, ηNG inherits the property of the non-Gaussianity
measure and is invariant under symplectic transformations
[54]. This means that δNG assigns the same nonlinearity to
oscillators which are displaced, rotated in phase space, or
squeezed, which is a reasonable property for a measure of
nonlinearity.

III. EXACTLY SOLVABLE NONLINEAR OSCILLATORS

We now analyze quantitatively the relation between the
figures of merit introduced in the previous section, considering
three exactly solvable anharmonic oscillators.

A. Modified harmonic oscillator

The modified harmonic oscillator (MHO) potential is
defined as [55] (throughout this paper we choose units such
that ! = m = 1)

VMHO(x) = α2x2

2
− αβx tanh(βx). (11)

Here α is a parameter corresponding to the frequency of
the unmodified harmonic oscillator, while β determines the
deformation of the harmonic potential. The effects of this
parameter on the shape of the potential is appreciated from
Fig. 1, where VMHO(x) is plotted at a set value of α for
different choices of β, showing that an increasing deformation
parameter transforms a harmonic potential into a double-well
one whose well depth and separation both increase with β.
For small β this potential has a behavior similar to the Duffing
oscillator routinely used to model nanomechanical resonators
[56,57]; therefore, we think of the MHO as an extension of the
Duffing model in the case of strong nonlinearity.

The normalized wave function of the ground state of this
potential can be found to read [55]

φMHO(x) =
√

2e− 1
2 αx2

cosh(βx)
4
√

π
α

√
1 + exp[β2/α]

. (12)

The associated energy is E0 = (α − β2)/2. The covari-
ance matrix of such a least-energy state can be computed
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FIG. 1. The MHO potential with β = 3 (solid blue line), 2 (dotted
yellow line), 1 (dashed green line) and the harmonic potential with
unitary frequency and mass (dot-dashed orange line); with our choice
of units x is measured in units of α−1/2,V in units of α, and β in units
of α1/2. The inset represents the same graph at a larger scale, where
we see the resemblance to the harmonic potential.

straightforwardly to be

σ MHO =
(

1
2α

+ β2

α2
exp[β2/α]

1+exp[β2/α] 0

0 α
2 − β2

1+exp[β2/α]

)

. (13)

Its determinant is

det σ MHO = 1
4

− τ 2

2
(2τ 2eτ 2 − e2τ 2 + 1)

(eτ 2 + 1)2
, (14)

with the dimensionless parameter τ =
√

β2/α. Such depen-
dence on τ , rather than α and β independently, is common to
ηNG = h(det σ ) and the measure of nonlinearity based on the
Bures distance (for the latter, we should choose the unmodified
harmonic oscillator with frequency α as a reference). Both
measures of nonlinearity increase monotonically with τ .

The Wigner function associated with φMHO can be written
in terms of the suitably rescaled phase-space variables q = βx
and p = β

α
y as [55]

WMHO(q,p) = e− q2+p2

τ2
cosh(2q) + eτ 2

cos(2p)
πτ 2(1 + eτ 2 )

, (15)

which shows again the key role played by τ and, in turn, that the
nonclassicality measure based on the volume of the negative
part of WMHO(q,p) is determined by such a parameter.

In order to understand how W nonclassicality and non-
linearity are related to each other, we have studied both
quantities against τ . In Fig. 2 we report the resulting parametric
plot, showing that ν monotonically increases with ηNG, thus
supporting the idea that a growing degree of anharmonicity
of the potential results in increased nonclassicality of the
corresponding ground state.

However, the picture changes significantly as soon as we
consider P nonclassicality quantified by the entanglement
potential, which, as said, can single out more detailed features
of quantumness. Indeed, at variance with what has been found
above, such a figure of merit turns out to depend on α and β
independently. The reason for such a difference in behavior

FIG. 2. Parametric plot of the W -nonclassicality measure ν(τ )
versus the degree of nonlinearity for the MHO potential and for
τ ∈ [0.1,6].

should be ascribed to the fact that entanglement at the output
of a beam splitter can be originated either by a non-Gaussian
input state or by Gaussian single-mode squeezing. In other
words, nonlinearity is needed to generate W nonclassicality,
while P nonclassicality may be obtained using just squeezing.

In order to illustrate this clearly, in Fig. 3 we show the
entanglement potential and squeezing for the MHO both as a
function of β for fixed values of τ and as a function of τ at set
values of α. The squeezing in Fig. 3 is shown in terms of the
ratios

rx = σ MHO
11

σ 0
11

= 2σ MHO
11 , rp = σ MHO

22

σ 0
22

= 2σ MHO
22 , (16)

with σ 0
11 = σ 0

22 = 1/2 being the variances of position and
momentum calculated over the vacuum state of the harmonic
potential. Squeezing is found in the ground state of the MHO

FIG. 3. Entanglement potential and squeezing for the MHO. We
plot rx (dashed blue curve), rp (dotted orange curve), the entanglement
potential (P nonclassicality) E (black dots), and W nonclassicality ν

(red dots) against (a) and (b) β for τ = 1 and τ = 3 and (c) and (d)
τ for α = 3 and α = 5. Squeezing is observed for either rx < 1 or
rp < 1 (i.e., variances of the perturbed ground state below the values
of the vacuum state of a harmonic oscillator).
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FIG. 4. The Morse potential VM(x) for α = 1 (solid blue line), 2
(dashed orange line), 3 (dotted green line), where V is measured in
units of D,x in units of D−1/2, and α in units of D1/2. The inset shows
the potential for D = 1 (solid blue line), 2 (dashed orange line), 3
(dotted green line), with x in units of α−1 and V and D in units of α2

for either rx < 1 or rp < 1. As is apparent from Fig. 3, the
behavior of E is rather different from that of ν, and its features
may be understood by looking at squeezing. In particular, we
see that E grows when the ground state exhibits squeezing.

B. Morse potential

The Morse potential has been introduced as an approx-
imation to the potential energy of diatomic molecules as
it provides a better description of the vibrational structure
than the (quantum) harmonic oscillator [58]. The form of the
potential is

VM = D(e−2αx − 2e−αx), (17)

where x is the distance from the minimum of the potential,
the parameter D > 0 determines the depth of the well, and α
controls its width. Expanding the two exponentials for α → 0
at fixed D, we get the harmonic limit, which is an oscillator
with frequency ωM =

√
2Dα. The potential is plotted in Fig. 4

for different values of the parameters.
The Schrödinger equation associated with this potential

can be solved analytically, with the energy eigenvectors being
labeled by two quantum numbers, which we label here N
and ν. The first is related to the parameters of the potential as
N = −1/2 +

√
2D/α. The second, which can take values ν =

0,1,2, . . . ,⌊N⌋, counts the number of anharmonic excitations
of the system. As we want at least one bound state, we require
N > 0. We thus have the constraint α < 2

√
2D. The limiting

case where we have just one bound state (the ground state) is
achieved for α → 2

√
2D. The wave function of the ground

state is

φM(x) = (2N + 1)N
√

α

(N − 1)!
e−αxN−(N+ 1

2 )e−αx

, (18)

with associated energy E = −αN2/2. The behavior of the
nonlinearity of the Morse potential can be understood by
looking at the form of the potential in Fig. 4, as opposed
to the harmonic one [27]: For any fixed value of D (α) we

expect an increase (decrease) of nonlinearity for increasing
α (D).

The covariance matrix associated with the ground state in
Eq. (18) is

σ M =
(

ψ (1)(2N)
α2 0
0 α2N

2

)

, (19)

where ψ (n)(z) is the polygamma function ψ (n)(z) =
dn+1

dzn+1 log -(z), with -(Z) being the Euler gamma function.
The determinant of this correlation matrix, as well as the Bures
distance from the reference harmonic oscillator, depends only
on N , or, equivalently, on the combination

√
2D/α. In this case

both measures of nonlinearity are monotonically decreasing
functions of N .

The Wigner function for the ground state of the Morse
potential reads [59]

WM(x,p) = 2(2N + 1)2N

π-(2N )
e−2NαxK−2Ip/α[(2N + 1)e−αx],

(20)

where Kγ (z) is the Macdonald function of (noninteger) order
γ . In order to calculate the measure of nonclassicality ν, we
rescale the phase-space variables to q = αx and p = y

α
and

evaluate
∫∫

dx dy |WM(x,y)| =
∫∫

dq dp

∣∣∣∣
2e−2Nq

π-(2N )
(2N + 1)2N

×K−2Ip[(2N + 1)e−q]
∣∣∣∣, (21)

which shows that the only relevant parameter is N . The
numerical integration of Eq. (21) is challenging and was
carried out with the aid of the CUBA libraries [60]. The
degree of W nonclassicality ν is found to monotonically
decreases with N , and the parametric plot of nonclassicality
versus nonlinearity in Fig. 5 reveals a monotonic behavior,
strengthening the link between such features and reinforcing
the idea that nonlinearity might play the role of a catalyst for
nonclassicality.

FIG. 5. Parametric plot of the W nonclassicality ν versus the
degree of nonlinearity η for a Morse potential with D = 1 and α ∈
[0.15,2.7], i.e., N ∈ [0.0238,8.928].
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FIG. 6. Entanglement potential and squeezing for the Morse
oscillator. We plot rx (dashed blue curve), rp (dotted orange curve),
the entanglement potential (P nonclassicality) E (black dots), and W

nonclassicality ν (red dots) against (a) and (b) α for N = 1 and N = 5
and (c) and (d) 1/N for α = 1 and α = 3. Squeezing is observed for
either rx < 1 or rp < 1 (i.e., variances of the perturbed ground state
below the values of the vacuum state of a harmonic oscillator).

The situation regarding the entanglement potential is
completely analogous to what we found for the MHO, as it
depends on both parameters. In Fig. 6 we report the same
kind of graphs, with both N and α fixed, which show that the
behavior of E is explained by the squeezing of the state.

C. Pöschl-Teller potential

The Pöschl-Teller (PT) potential has been studied since the
early days of quantum mechanics (see, e.g., [61]); it has been
applied in the context of semiconductor quantum wells [62–
64], and it can be used to model nonlinear optical properties
[65,66].

In particular we will use the modified PT potential, defined
as

VPT(x) = −APTcosh−2(αx), (22)

where APT > 0 is the depth of the potential and α is connected
to its range. The harmonic limit is obtained at fixed APT for
α → 0, and the frequency of the reference harmonic oscillator
is ωPT =

√
2APTα. As for the Morse potential, we have a

quantum number s that labels the energy eigenstates and counts
the anharmonic excitations. It is related to the parameters of the
potential through the relation APT = 1

2α2s(s + 1). Therefore,
the request for the existence of at least one bound state
translates into s = 1

2 (−1 +
√

1 + 8APT/α2) > 0. Figure 7
shows the dependence of the PT potential on the position
coordinate.

The ground state of the system reads

φPT(x) = 1

π
1
4

√
α-

(
s + 1

2

)

-(s)
cosh−s(αx), (23)

with associated energy E = −α2s2/2.
Different from the previous cases, the covariance matrix of

the ground state is rather involved and will not be reported

FIG. 7. The Posh-Teller potential with α = 1/2 (solid blue line),
1 (dashed orange line), and 3 (dotted green line), with x in units of
A

−1/2
PT ,α in units of A

1/2
PT , and VPT in units of APT.

here; it can, however, be easily obtained by directly applying
x and p operators in the position representation on the wave
function (23).

In line with the case of the previous two anharmonic
potentials studied here, its determinant depends only on s
(or, equivalently, on APT/α2). Again, both ηNG and the Bures
nonlinearity are monotonically decreasing functions of only s.

The Wigner function of state φPT(x) in Eq. (23) is known
analytically for the case of APT = α2 [55]. In this case, the
measure ν is an s-dependent constant, which can be seen by
rescaling the relevant variables as p′ = p

α
,x ′ = αx,y ′ = αy

and evaluating the integral

WPT(x,p) =
∫

dy φ∗
PT

(
x − y

2

)
φPT

(
x + y

2

)
e−Iyp, (24)

which embodies the definition of the Wigner function.
As for the entanglement potential, this turns out to depend

on both α and s. Plots similar to those valid for the MHO
and Morse potential are presented in Fig. 8 (without the W
nonclassicality ν).

FIG. 8. Entanglement potential and squeezing for the PT oscilla-
tor. We show rx (dashed blue curve), rp (dotted orange curves), and
the entanglement potential E (black dots) against (a) and (b) α for
s = 1 and s = 5 and (c) and (d) 1/s for α = 1 and α = 3.
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IV. OSCILLATORS WITH POLYNOMIAL
PERTURBATIONS

So far we have studied exactly solvable potentials with two
parameters and revealed a common behavior: the nonlinearity
and the W nonclassicality ν have the same behavior and
depend just on a single effective parameter. On the other hand,
the entanglement potential carries a dependence on both the
parameters, and its different behavior may be understood in
terms of the squeezing of the state.

Now we want to address the case of a generic two-parameter
perturbation, so we study a physical system composed of
a one-dimensional harmonic oscillator with perturbations
proportional to x4 and x6, respectively. The Hamiltonian of
this system thus reads

H = 1
2 (p2 + ω2x2) + ϵ4x

4 + ϵ6x
6 . (25)

As the model is not exactly solvable, the properties of the
system will be studied using perturbation theory. We notice
that Eq. (25) may also serve as an approximation for any
symmetric (even) potential. In particular this Hamiltonian can
also be intuitively considered as a generalization of the static
Duffing oscillator.

We do not consider odd powers of x or negative coefficients
for the even powers of x, even when the potential is still
bounded from below. We make this choice in order to avoid any
ambiguity, which could arise when the potential has more than
one minimum. In fact, for such a case, the state obtained with
the perturbative expansion is not necessarily an approximation
to the true ground state but could be a state associated with a
local minimum of energy.

A remark is in order: terms proportional to x and to x2

could, in principle, be treated in a perturbative way as well.
However, they do not give rise to truly anharmonic behavior
and will not be considered in this context.

In order to get insight into the ground states for these
Hamiltonians we use first-order time-independent perturbation
theory [67]. The state takes the form

|ψ⟩ =
3∑

n=0

γ2n|2n⟩, (26)

where |k⟩ denotes a Fock number state of the harmonic
oscillator and the coefficients γk are in given Sec. A 1.

Applying first-order perturbation theory, the ground state
can be approximated with a finite superposition of Fock states,
which makes the Wigner function and the nonlinearity easy
to compute. In order to assess the validity of the first-order
approximation, we compare such a ground state to the state
obtained by numerically diagonalizing the Hamiltonian of
the system within a truncated Fock space of suitable size.
Convergence of the results of such numerical calculations
appears to be ensured by using 61 harmonic levels. The
corresponding ground state |φ⟩ is then compared to |ψ⟩ using
the state fidelity |⟨φ|ψ⟩|2. In Fig. 9 we present a contour plot
of the overlap as a function of both ϵ4 and ϵ6. For values of ϵ4
up to 0.1 and ϵ6 up to 0.03 the fidelity is at least ≈0.976.
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FIG. 9. Contour plot of the overlap between the perturbative
ground states of Eq. (26) and the numerically calculated one (for
ω = 1).

Nonclassicality and nonlinearity

From the perturbed ground state in Eq. (26) we compute the
nonlinearity of the perturbing potential. The covariance matrix
associated with |ψ⟩ can be thus written as

σ pol =
(

(1+2⟨â2⟩+2⟨â†a⟩−4⟨â⟩2)
2ω

0
0 ω

2 (1 + 2⟨â†â⟩ − 2⟨â2⟩)

)
,

(27)
with â and â† being the annihilation and creation operators of
the oscillator and

⟨â†⟩ = ⟨â⟩ = 0,

⟨â†a⟩ = 2|γ2|2 + 4|γ4|2 + 6|γ4|2,

⟨â2⟩ =
√

2γ2γ0
∗ + 2

√
3γ4γ2

∗ +
√

30γ6γ4
∗,

⟨â†2⟩ = ⟨â2⟩∗ =
√

2γ0γ2
∗ + 2

√
3γ2γ4

∗ +
√

30γ4γ6
∗.

(28)

An explicit calculation shows that the determination of σ pol,
and in turn the nonlinearity h(

√
det σ ), depends on both

the perturbative parameters and the frequency ω. No single-
parameter rescaling can be identified in this case, thus entailing
the double dependence highlighted above, which is passed to
the W nonclassicality ν (see Sec. A 1).

As our aim is to highlight the role played by the perturbative
parameters; in the remainder of our analysis we set ω = 1
and generate random pairs of values (ϵ4,ϵ6) (within the
appropriate range of validity of the first-order perturbative
approach discussed above) that are then used to compute both
the nonclassicality and nonlinearity indicators.

The results shown in Figs. 10 and 11 showcase a nonmono-
tonic relation between nonlinearity and nonclassicality: the
points corresponding to the randomly taken pairs of values
for the parameters are distributed within a (narrow) region
comprised within four curves, each associated with an extremal
value of ϵ4,6.

Nonclassicality and nonlinearity are thus strongly depen-
dent on the details of the system under consideration and are,
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FIG. 10. Random scatter plot of the W nonclassicality ν versus
the nonlinearity ηNG for the perturbed harmonic oscillator when both
parameters ϵ4 and ϵ6 are varied in the range given in Fig. 9; 104

random points were generated. The dark blue curve below the points
represents ϵ6 = 0, while the one above the points is the curve for
ϵ6 = 0.03. The light red curve below the points is the one for ϵ4 = 0.1,
while the one above the points is for ϵ4 = 0. The green curves in the
middle are obtained by choosing ϵ6 = kϵ4; from top to bottom they
correspond to the values k = 2,1,0.5,0.3,0.1.

strictly speaking, nonequivalent notions. On the other hand, the
regions in Figs. 10 and 11 are concentrated enough to suggest
that the intuitive link between such two features is, in fact,
correct. Moreover, if there is only one effective parameter, by
fixing the value of either ϵ4 or ϵ6 or by keeping their ratio fixed
(i.e., ϵ6 = kϵ4), the behavior of both nonclassicality measures
becomes monotonic with nonlinearity.

Digging into the details of the phenomenological behavior
identified by our analysis, it appears that W nonclassicality
(Fig. 10) is favored by the x6-like nonlinearity. On the other
hand, P nonclassicality appears to benefit from an x̂4-type of
nonlinear effects: in Fig. 11 the roles of the dark blue and light
red curves are inverted with respect to Fig. 10, showing that,
after choosing the parameters ϵ4 and ϵ6 in such a way that the

FIG. 11. Random scatter plot of the entanglement potential (P
nonclassicality) E versus the nonlinearity ηNG for the perturbed
harmonic oscillator when both parameters ϵ4 and ϵ6 are varied in the
range given in Fig. 9; 104 random points were generated. The dark
blue curve above the points represents ϵ6 = 0, while the one below the
points is the curve for ϵ6 = 0.03. The light red curve above the points
is the one for ϵ4 = 0.1, while the one below the points is for ϵ4 = 0.
The green curves in the middle are obtained by choosing ϵ6 = kϵ4;
from top to bottom they correspond to the values k = 2,1,0.5,0.3,0.1.

entropic nonlinearity is fixed, the ground state obtained with
the maximum value of ϵ4 generates more entanglement than
any other one.

V. CONCLUSIONS

We have addressed in detail the role played by the
nonlinearity of anharmonic potentials in the generation of
nonclassicality in their ground states. In particular, we have
shown that nonlinearity plays a crucial role in the generation
of W nonclassicality, while P nonclassicality may also be
obtained by potential inducing just squeezing.

Our results support the expectation, put forward in
Ref. [26], that the nonlinearity of a potential is quantitatively
related to the nonclassicality of its ground state, and thus,
the former feature may be regarded as a resource to generate
the latter one. The strict validity of such an expectation, which
appears to be conceptually quite intuitive, is, however, strongly
linked to the specific details of the Hamiltonian model being
addressed. The solvable anharmonic potentials we considered
can be reduced to a single-parameter dependence and give
rise, in fact, to a monotonic relation between nonlinearity
and W nonclassicality. Such a correspondence breaks down
for effectively multiparameter potentials: set values of non-
linearity bound the possible degrees of nonclassicality of the
ground state of a given anharmonic potential, albeit without
determining it unambiguously.

Our investigation opens up a series of questions, all linked
to the effective role that nonharmonic oscillators might have
in the quantum technology arena: it would be interesting, for
instance, to investigate whether the enhanced nonclassicality
achieved, in general, for a non-null degree of nonlinearity is
accompanied by an equally enhanced degree of coherence in
the ground state of the oscillator. Equally interesting is the
question on the actual use that can be made of the sought
nonlinearity in protocols of practical quantum estimation.
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APPENDIX: CALCULATIONS FOR THE HARMONIC
OSCILLATOR WITH PERTURBATIONS

1. Perturbative states

The matrix elements of the two perturbations on the basis
of the energy eigenstates of the unperturbed system, which in
this case are the Fock states |n⟩, are

⟨n|x̂4|n⟩ = 6n2 + 6n + 3
4ω2

, (A1)

⟨n|x̂4|n + 4⟩ =
√

(n + 1)(n + 2)(n + 3)(n + 4)
4ω2

, (A2)

⟨n|x̂4|n + 2⟩ = (4n + 6)
√

n(n − 1)
4ω2

(A3)
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for x4 and

⟨n|x̂6|n⟩ = 5(4n3 + 6n2 + 8n + 3)
8ω3

, (A4)

⟨n|x̂6|n + 6⟩

=
√

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)
8ω3

, (A5)

⟨n|x̂6|n + 4⟩ = 3(2n + 5)
√

(n + 1)(n + 2)(n + 3)(n + 4)
8ω3

,

(A6)

⟨n|x̂6|n + 2⟩ = 15(n2 + 3n + 3)
√

(n + 1)(n + 2)
8ω3

(A7)

for x6, and all the other elements are zero apart from
the symmetrical ones (i.e., ⟨n|x̂4|n + k⟩ = ⟨n + k|x̂4|n⟩ and
⟨n|x̂6|n + k⟩ = ⟨n + k|x̂6|n⟩).

The formula for the perturbed ground state is

|ψ⟩ = |0⟩ + ϵ
∑

k ̸=0

|k⟩ Vk0

−ωk
, (A8)

where Vnk = ⟨n(0)|V |k(0)⟩ and V stands for the perturbation
ϵ4x

4 + ϵ6x
6. Using this formula and the matrix elements (A1)–

(A7), we readily find the normalized ground state (26); its
coefficients are

γ0 = 1
C

, γ2 = − γ0√
2

(
45ϵ6

4ω3
+ 3ϵ4

ω2

)
,

γ4 = −γ0

√
3
2

(
15ϵ6

2ω3
+ ϵ4

ω2

)
, γ6 = −

√
5γ0ϵ6, (A9)

where the normalization constant C is

C =

√
ω2

(
96ω6 + 117ϵ2

4

)
+ 945ωϵ4ϵ6 + 2055ϵ2

6

4
√

6ω4
. (A10)

2. Wigner function

It is convenient to express the Wigner function as W (α) =
2
π

Tr[ρD̂(2α)(−1)â
†â] [68,69], where D̂ is the displacement

operator D̂(ξ ) = exp(ξ â† − ξ ∗â). The expectation values of
D̂ on Fock states are given by

⟨n′|D(z)|n⟩ =

⎧
⎨

⎩

√
n!
n′!e

− |z|2
2 (−z)n

′−nL
(n′−n)
n′ (|z|2) if n′ > n,

√
n′!
n! e

− |z|2
2 (z∗)n−n′

L(n−n′)
n (|z|2) if n > n′,

(A11)

where L(α)
n (x) are the associated Laguerre polynomials. The

Wigner function then becomes

W (z) = 2
π

e−2|z|2
[
γ0

2L0(4|z|2) + γ2
2L2(4|z|2) + γ4

2L4(4|z|2)

+ γ6
2L6(4|z|2) + 4

√
2γ0γ2 Re(z2)L2

2(4|z|2)

+ 16√
3
γ0γ4 Re(z4)L4

4(4|z|2) + 32

3
√

5
γ0γ6 Re(z6)

×L6
6(4|z|2) + 4√

3
γ2γ4 Re(z2)L2

4(4|z|2)

+ 16

3
√

10
γ2γ6 Re(z4)L4

6(4|z|2)

+ 8√
30

γ4γ6 Re(z2)L2
6(4|z|2)

]
, (A12)

where the coefficients are given by (A9).
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