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Nonlocal compensation of pure phase objects with entangled photons
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We suggest and demonstrate a scheme for coherent nonlocal compensation of pure phase objects based on
two-photon polarization and momentum entangled states. The insertion of a single phase object on one of the
beams reduces the purity of the overall detected state and the amount of shared entanglement, whereas the original
entanglement can be retrieved by adding a suitable phase object on the other beam. In our setup polarization and
momentum entangled states are generated by spontaneous parametric downconversion and then purified using
a programmable spatial light modulator, which may be also used to impose arbitrary space-dependent phase
functions on the beams.
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I. INTRODUCTION

In what is usually referred to as ghost imaging the coherent
imaging of an object is achieved with incoherent light upon
exploiting the spatial correlations between two light beams [1].
The object interacts with one of the beams and an image of the
object is built up by scanning the other beam. Ghost imaging
may be obtained either with classically correlated beams [2–4],
as those obtained by splitting the light from a (pseudo)thermal
source, or with entangled beams [5–8], as those obtained by
parametric downconversion. In the latter case one may achieve
in principle higher visibility.

For objects which modify only the amplitude of light an
image may be obtained with a single spatially incoherent beam
upon measuring the autocorrelation function in the far field,
without the need of ghost imaging. This is no longer possible
when the object is also modifying the phase of the beam. In
particular, it is of interest to investigate ghost imaging in the
extreme case of pure phase objects, i.e. objects altering only
the phase information carried by the beam. Phase objects are
also of intrinsic interest in quantum-information processing,
since they introduce reversible unitary operations.

Ghost imaging of pure phase objects has been extensively
analyzed theoretically and experimentally using both classi-
cally or quantum correlated beams [2–12]. Related effects
connected with (nonlocal) dispersion cancellation have been
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investigated as well, both in the temporal and the spatial
domains [13–18]. In this paper we suggest and demonstrate
experimentally a scheme to achieve coherent nonlocal com-
pensation or superposition of pure phase objects, also paving
the way for the reconstruction of the overall phase function
imposed on the two beams. Our scheme is based on two-
photon polarization and momentum entangled states, which
are generated by spontaneous parametric downconversion and
purified using a spatial light modulator. The same device
is also used to introduce arbitrary phase functions on the
two beams, which represent arbitrary phase objects. In our
setup the insertion of a single phase object on one of the
beams reduces the purity of the overall detected state and
the amount of shared entanglement, since the detector traces
out the angular degree of freedom. The original entanglement
can be retrieved by adding a suitable phase object on the
other beam. The image of both single or double phase objects
can be thus obtained by scanning the coincidence counts on
one of the two beams. As a possible application, we also
perform a proof-of-principle experiment to demonstrate a
protocol for quantum key distribution based on nonlocal phase
compensation.

The paper is structured as follows. In the next section we
describe in detail our experimental setup and the properties
of the two-photon entangled states that are generated. In
Sec. III we analyze in some detail phase imaging and nonlocal
phase compensation of phase objects. Finally, in Sec. IV,
we describe a proof-of-principle experiment to demonstrate
a protocol for quantum key distribution based on nonlocal
phase compensation. Section V closes the paper with some
concluding remarks.
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FIG. 1. (Color online) Schematic diagram of experimental setup.
A linearly polarized cw laser diode at 405 nm pumps a couple of
BBO crystals cut for type-I downconversion. The horizontal and
vertical photon pairs are balanced by a half-wave plate set along the
pump path, whereas an additional BBO crystal (TC) is placed on the
pump path to compensate the temporal delay. Signal and idler beams
travel through the SLM, which provides entanglement purification
and imposes the space-dependent phase functions φ(s)(θ ),φ(i)(θ ′),
and then are spatially selected by two irises and two slits set at
D = 500 mm with #x = 5 mm (# = 10 mrad). An interference
filter IF (FWHM 10 nm around the central wavelength 810 nm) set
on the signal path selects the spectral width, while a long-pass filter
LF, cut-on wavelength 715 nm, is set on the idler path in order to
reduce the background. Photons are focused in two multimode fibers
(MMFs) and sent to single-photon counting modules. Polarizers at the
angles π/4 and 3π/4 or π/4 and π/4 are inserted to measure visibility
whereas a quarter-wave plate, a half-wave plate, and a polarizer (not
shown in the figure) are used for the tomographic reconstruction.

II. EXPERIMENTAL SETUP

In our setup (see Fig. 1) a two-qubit polarization entangled
state is produced by type-I downconversion from a couple of
crystals [beta barium borate (BBO)] in a non-collinear con-
figuration [19–21]. Pairs of correlated photons are generated
and distributed on broad angular and spectral ranges, which
are determined by the crystal length [22]. Upon expanding the
transverse momentum conservation condition to the first order,
it can be shown that the angular and the spectral degrees of
freedom are connected by the relation

θ ′ = −θ + γ ω, (1)

where θ,θ ′ are the signal and idler shifts from the central
emission angles ('0 # '′

0 # 3◦ in our case), ω is the signal
shift from the central frequency of the downconverted beams,
and γ is a constant depending only on the signal central
frequency and angle [23,24].

The state at the output of the crystals may be written as

|ψ〉 ∝
∫∫

dθdθ ′g(θ,θ ′)

× [|Hθ〉|Hθ ′〉 + eı)(θ,θ ′)|V θ〉|V θ ′〉], (2)

where the overall angular distribution

g(θ,θ ′) = f (θ,θ ′) T [ω(θ,θ ′)]

contains the angular distribution f (θ,θ ′) due to the
phase-matching conditions and the transmissivity T [ω] ≡
T [ω(θ,θ ′)] of an interference filter set on the signal arm.
The ket |P θ〉 denotes a single-photon state emitted with
polarization P = H,V at angle θ (θ ′) along the signal (idler)
arm, and the integrations range from − 1

2# to 1
2#, # being

the angular aperture of two slits placed along the paths of the
downconverted beams (see Fig. 1).

Experimentally, some care must be taken in order to
spatially superimpose the |HH 〉 and |V V 〉 downconversion
beams, so that the angular distribution f (θ,θ ′) is actually the
same for the two components of the entangled state. From
Eq. (1) one sees that for a narrow spectral width (ω → 0), the
angular distribution g(θ,θ ′) approaches f (θ,−θ ) and maximal
entanglement in momentum is thus achieved. The relative
phase in Eq. (2) can be written as

)(θ,θ ′) = )D(θ,θ ′) + )PUR(θ,θ ′) + φ(s)(θ ) + φ(i)(θ ′).

The first phase term, which can be expanded to the first
order as

)D(θ,θ ′) = η(θ − θ ′) + )0,

comes from the angle-dependent optical path of vertically
polarized photon pairs, generated in the first crystal, which
must travel along the second one. These angular-dependent
terms are responsible for decoherence of the polarization
qubit and should be removed in order to obtain an effective
source of entangled pairs [23–25]. In our apparatus, a one-
dimensional programmable spatial light modulator (SLM) is
placed on the signal and the idler paths (see Fig. 1) in order to
insert the phase functions )PUR(θ,θ ′), φ(s)(θ ), and φ(i)(θ ′).
The first term is used for purification, i.e., to remove the
angle-dependent phase shift, )PUR = −)D , thus realizing a
reliable polarization-entanglement source [23,24], whereas the
functions φ(s) and φ(i) represent the phase objects we insert on
the signal and the idler arm, respectively. Our SLM is sensitive
just to horizontal polarization allowing the introduction of
a relative phase between HH and V V pairs. In Ref. [24]
an additional constant phase was set just on half of the
signal angular distribution in order to perform a phase gate.
Notice that spatial light modulators have been recently used in
imaging also for a different purpose, i.e., that of imposing a set
of known random phase distributions [26] and implementing
the so-called computational ghost imaging [27,28], where the
intensity detected in one of the beams is computed off-line.

Given the state in Eq. (2), we can write the probability
for the detection of a photon pair within the emission angle
range θ ∈ (θ0 − δ

2 ,θ0 + δ
2 ), θ ′ ∈ (θ ′

0 − δ′

2 ,θ ′
0 + δ′

2 ) and with
polarization angles P (signal) and P ′ (idler) as follows:

Cδδ′

PP ′ (θ0,θ
′
0) =

∫ θ ′
0+ δ′

2

θ ′
0− δ′

2

dθ

∫ θ0+ δ
2

θ0− δ
2

dθ ′ |〈P θ |〈P ′θ ′|ψ〉|2 (3)

=
∫ θ ′

0+ δ′
2

θ ′
0− δ′

2

dθ ′
∫ θ0+ δ

2

θ0− δ
2

dθ |g(θ,θ ′)|2

× | cos P cos P ′ + eı)(θ,θ ′) sin P sin P ′|2. (4)

In order to quantify the entanglement of our state we measure
the state visibility, which is defined from Eq. (4), by placing the
slits on the spontaneous parametric downconversion central
emission angles, θ0,θ

′
0 = 0, and setting the aperture to # =

10 mrad, and using the two pairs of angles P1 = P ′
1 ≡ α =

π/4 and P2 = α, P ′
2 = α + π/2 ≡ β; i.e.,

V =
C##

αα (0,0) − C##
αβ (0,0)

C##
αα (0,0) + C##

αβ (0,0)
. (5)
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In fact, once the state has been purified and the phase objects
φ(s,i) have been inserted, the polarization density matrix reads

. = 1
2 (|HH 〉〈HH | + ε[φ,φ′] |V V 〉〈HH |
+ ε∗[φ,φ′] |HH 〉〈V V | + |V V 〉〈V V |) , (6)

where ε ≡ ε[φ,φ′] is given by

ε =
∫

dθ dθ ′|g(θ,θ ′)|2 exp{ı[φ(s)(θ ) + φ(i)(θ ′)]}.

Since the angular distribution g(θ,θ ′) is symmetric (see below)
by choosing, without loss of generality, odd phase functions
φ(s) and φ(i), we obtain that ε is real. As a consequence we
may write

. = ε.b + (1 − ε).m ,

where .b denotes a Bell state and .m the corresponding
mixture. For the state ., visibility provides a proper measure
of entanglement since the expression in Eq. (5) reduces to
V = Re[ε] ≡ ε which, in turn, equals the concurrence of the
state.

The experimental setup is shown in Fig. 1: A linearly
polarized cw, 405 nm laser diode (Newport LQC405-40P)
pumps a couple of 1 mm thick BBO crystals cut for type-I
downconversion. The beam waist is set to #500 µm by a
telescopic system. The effective pump power on the generating
crystals is of about 11 mW. The |HH 〉 and |V V 〉 pairs are
balanced by a half-wave plate set along the pump path. A
BBO crystal with the proper length and optical axis angle
is set on the pump path, and is used to counteract the
decoherence effect due to the temporal delay between the
two components [22–25,29–32]. Such crystal introduces a
delay time between the horizontal and vertical polarization
of the pump which precompensates the delay time between
the |V V 〉 pair generated by the first crystal and the |HH 〉 pair
from the second one. Signal and idler beams travel through
the SLM (SLM-S640 from Jenoptik Optical Systems) and
are spatially selected by two irises and two slits set at D =
500 mm. The low quantum efficiency of our detectors (∼10%)
forces us to couple large angular regions: We set #x = 5
mm which corresponds to # = 10 mrad. An interference
filter IF (FWHM 10 nm, central wavelength 810 nm) is set
on the signal arm and selects the spectral width, whereas
a long-pass filter set on the idler arm (cut-on wavelength
715 nm) is used to reduce the background. Photons are focused
in two multimode fibers (MMFs) and sent to homemade single-
photon counting modules, based on an avalanche photodiode
operated in Geiger mode with passive quenching. In order
to measure the visibility, we insert two polarizers, set at
the P1 = P ′

1 ≡ α = π/4, corresponding to a maximum in
the coincidence rate, and P2 = α, P ′

2 = α + π/2 ≡ β for the
minimum. For the tomographic reconstruction (see below) we
insert on both paths a quarter-wave plate, a half-wave plate,
and a polarizer.

A. Spatial entanglement

In our setup, the purification provided by the SLM allows us
to generate good polarization-entangled states with visibility
up to V = 0.912 ± 0.007, which may be further increased
by spatially filtering the pump to achieve a Gaussian profile.
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FIG. 2. (Color online) Effect of the interference filter to narrow
the output spectral range and achieve spatial entanglement. The
plot shows coincidence count distribution C with # = 1 mrad
and polarizers at P = P ′ = H [see Eq. (7)], measured within a
coincidence time window of 50 ns, as a function of the signal and idler
slit positions θ and θ ′. The phase-matching central angles correspond
to θ0,θ

′
0 = 0.

However, ghost imaging also requires spatial entanglement and
this can be obtained upon exploiting Eq. (1), i.e., by narrowing
the output spectral range. We use an interference filter, whose
action is denoted by T [ω] in Eq. (2), which selects a range of
about 10nm about the central wavelength 810 nm within the
overall downconversion spectrum (∼200 nm).

In order to observe the resulting angular correlation we
place two slits of aperture # = 1 mrad, two polarizers at
P = P ′ = H along the downconversion arms, and we measure

C ≡ C##
HH (θ0,θ

′
0) =

∫ θ ′
0+ #

2

θ ′
0− #

2

dθ ′
∫ θ0+ #

2

θ0− #
2

dθ |g(θ,θ ′)|2 (7)

at θ0,θ
′
0 = −2#,−1.5#, . . . ,+2#. The phase-matching (cen-

tral) angles correspond to θ0,θ
′
0 = 0. Coincidences are taken

over an acquisition time of 6s within a coincidence time
window of 50 ns. The coincidence counts C are reported in
Fig. 2 and the experimental results confirm that g(θ,θ ′) is
approaching f (θ,−θ ) for the selected (narrow) spectral range.
In an analog way we have also measured C##

V V (θ0,θ
′
0), checking

experimentally that

C##
V V (θ0,θ

′
0) # C##

HH (θ0,θ
′
0).

Notice that in the setup of [24] this angular correlation was
washed out by the larger coupled spectrum (∼200 nm). The
corresponding behavior is reported in Ref. [33], where the
coincidence count distribution does not show any angular
correlation.

III. PHASE IMAGING AND NONLOCAL
PHASE COMPENSATION

Single phase object imaging consists in setting φ(i) = 0
and reconstructing the phase function φ(s)(θ ) inserted along the
signal arm by scanning the coincidences for different emission
angles θ ′ on the idler arm [12]. Experimentally, we insert the
phase function

φ(s)(θ ) = a sin(kθ )

using the SLM, with a = 1.35 rad and k # 0.57 mrad−1.
In Fig. 3 we present the results for the ghost imaging:
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FIG. 3. (Color online) Phase imaging after inserting the phase
function φ(s)(θ ) = a sin(kθ ) on the signal beam, with a = 1.35 rad
and k # 0.57 mrad−1. Blue squares are the direct counts whereas
red circles are the coincidences. Solid lines are the corresponding
theoretical predictions (blue and red lines, respectively) as a function
of the idler slit position. From the coincidence counts observed by
scanning the idler beam, one can reconstruct the phase function along
the signal beam.

Polarizers are set to α = π/4 on the signal and β = 3π/4
on the idler, the slit apertures are # = 10 mrad for the signal
and δ = 1 mrad for the idler. The signal slit is centered on
θ0 = 0, while the idler slit varies over different values of θ ′

0.
The experimental data, already subtracted of the accidental
coincidences (coincidence window equal to 50 ns, acquisition
time 120 s) are the red circles, whereas the red solid line is the
theoretical prediction as obtained from Eq. (4), i.e.,

C#δ
αβ (0,θ ′

0)

=
∫ θ ′

0+ δ
2

θ ′
0− δ

2

dθ ′
∫ + #

2

− #
2

dθ |g(θ,θ ′)|2 sin2
[

1
2

φ(s)(θ )
]
. (8)

For comparison we also report the measured value of the
direct counts (blue squares, acquisition time 10s) with the
corresponding theoretical prediction (solid blue line), i.e.,

C#δ
αβ (0,θ ′

0) =
∫ θ ′

0+ δ
2

θ ′
0− δ

2

dθ ′
∫ + #

2

− #
2

dθ |g(θ,θ ′)|2.

As a matter of fact, the insertion of a single phase object
leads to the generation of a set of maximally entangled states at
different angles, each one with a different phase term φ(s)(θ ).
The entanglement of the state over a broad angular region is
thus reduced to V = 0.531 ± 0.008 due to the integration over
many θ and θ ′.

Once we have reconstructed the signal phase φ(s)(θ ) we may
further tune entanglement by imposing the phase functions
φ(i) = ±φ(s) on the idler beam. In this way we nonlocally
superimpose two phase objects. We remark that, given the
correlation condition θ ′ # −θ (see Fig. 2), the overall phase
function inserted by the SLM is given by

φ(s)(θ ) + φ(i)(θ ′) # 2a sin(kθ ) if φ(i) = −φ(s),

φ(s)(θ ) + φ(i)(θ ′) # 0 if φ(i) = φ(s).

The corresponding visibility values are V = 0.057 ± 0.014
and V = 0.888 ± 0.003, respectively. The visibility of the
entangled state is slightly lower than the original value
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FIG. 4. (Color online) Tomographic reconstruction (the real part
of the density matrix on the left and the imaginary one on the right) of
the state in which we insert φ(i) = φ(s) = a sin(kθ ), with a = 1.35 rad
and k # 0.57 mrad−1 (upper panels) and of the state obtained with
φ(i) = −φ(s) (lower panels). The corresponding visibilities are given
by 0.888 ± 0.003 and 0.057 ± 0.014, while the measured CHSH-
Bell parameters are B = 2.658 ± 0.011 and B = 1.854 ± 0.012,
respectively.

V = 0.912 ± 0.007 since the two beams, though showing high
angular correlations, are not delta correlated.

In order to fully characterize the output state and confirm
that visibility is a good figure of merit to discriminate phase
functions, we have also performed state reconstruction by
polarization qubit tomography for the two different output
states. The procedure goes as follows: We measure a suitable
set of independent two-qubit projectors [34,35] and then recon-
struct the density matrix from the experimental distributions
using maximum-likelihood reconstruction. The tomographic
measurements are obtained by inserting a quarter-wave plate,
a half-wave plate, and a polarizer.

In Fig. 4 we present the tomographic reconstructions of the
density matrix of the two output states: The reconstruction of
the state resulting from the overall phase function φ(i) = φ(s) is
reported in the upper panel (real part on the left, and imaginary
part on the right). In the lower panel we show the tomographic
reconstruction of the density matrix for the state obtained with
φ(i) = −φ(s) (real part on the left, and imaginary part on the
right). In order to detect the presence of nonlocal correlations
we also measured the CHSH-Bell parameter

B = |E(β1,β2) + E(β1,β
′
2) + E(β ′

1,β2) − E(β ′
1,β

′
2)|,

where E(β1,β2) denotes the correlations between measure-
ments performed at polarization angle βj for the mode j . We
found

B = 1.854 ± 0.012 if φ(i) = −φ(s),

B = 2.658 ± 0.011 if φ(i) = φ(s);

i.e., we have violation of CHSH-Bell inequality [36] by
more than 57 standard deviations for φ(i) = φ(s), whereas no
violation of the CHSH-Bell inequality is found for φ(i) =
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FIG. 5. (Color online) Quantum key distribution by nonlocal
phase compensation. The four blocks of data in the plot are
the coincidence counting rates in the four different configurations
[+ + /1], [+ + /0], [+ − /1], and [+ − /0], respectively The first
two configurations correspond to the faithful transmission of the key,
whereas the two others cases are the events that Alice and Bob are
going to reject in the sifting stage of the protocol.

−φ(s), for which the measure B is less than the threshold
B = 2 by 12 standard deviations.

IV. A PROOF-OF-PRINCIPLE QUANTUM KEY
DISTRIBUTION EXPERIMENT

As a possible application of nonlocal phase compensation,
we suggest exploiting the switch between entangled and mixed
states for quantum key distribution. The scheme is based on
the fact that Alice and Bob control the signal and the idler arm
respectively of the downconversion output. They are thus able
to insert independently, and in a random sequence, the phase
functions φ(A) and φ(B), where φ(A,B) = ±a sin(kθ ). In turn,
this may be used to establish a quantum key distribution (QKD)
protocol as the analog of the random choice of the signal basis
or of the measurement basis. Alice then encodes the key (0,1)
by adding a constant phase (ϕA = 0,π) to φ(A). Upon setting
the detection polarizers to α = π/4 and β = 3π/4 we have
that for φ(B) = φ(A) a highly entangled state is shared, and
thus we have a maximum in the coincidence counting rate
when ϕA = π and a minimum when ϕA = 0. On the other
hand, if φ(B) = −φ(A) (or if an eavesdropper tries to acquire
knowledge about the key), then Alice and Bob share a mixed
(or partially mixed) state, and an intermediate counting rate is
detected.

In Fig. 5 we present the experimental results for the
coincidence counting rate in the four possible configurations,
which are summarized in Table I and labeled as follows:
[+ + /1] denotes the case φ(A) = φ(B) =a sin(kθ ) and ϕA =
π , corresponding to the faithful transmission of the symbol
“1”; analogously [+ + /0] denotes the case φ(A) = φ(B) =

TABLE I. Proof-of-concept QKD protocol based on nonlocal
phase compensation. The phase functions φ(A) and φ(B) play the role
of the random choice of the signal basis, whereas the key (0,1) is
encoded by adding a constant phase ϕA = 0,π to φ(A). When the
phase functions are matched, φ(A) = φ(B), we have the transmission
of the key symbols.

Configuration φ(A) φ(B) ϕA Transmitted Key

[+ + /1] a sin(kθ ) a sin(kθ ) π “1”
[+ + /0] a sin(kθ ) a sin(kθ ) 0 “0”
[+ − /1] a sin(kθ ) −a sin(kθ ) π None
[+ − /0] a sin(kθ ) −a sin(kθ ) 0 None

a sin(kθ )and ϕA = 0, leading to the faithful transmission of
the symbol “0”. The events that Alice and Bob are rejecting in
the sifting stage are [+ − /0] and [+ − /1] corresponding to
φ(A) = −φ(B) = a sin(kθ ) and ϕA = 0,π , respectively.

Notice that the purification procedure, which removes the
angular phase terms )D(θ,θ ′), allows us to generate high-
quality entanglement states even when broad angular regions
are coupled. Indeed, the measurements used for quantum key
distribution has been performed with a larger aperture, in order
to compensate the low quantum efficiency of photodetectors
and to increase the measurement rate.

V. CONCLUSIONS

In conclusion, we have suggested and demonstrated exper-
imentally an entanglement-based scheme to achieve coherent
nonlocal compensation of pure phase objects. Our scheme
is based on creating two-photon polarization and momentum
entangled states where the insertion of a single phase object
on one of the beams reduces both the purity of the state and
the amount of shared entanglement, and where the original
entanglement can be retrieved by adding a suitable phase object
on the other beam. In our setup polarization and momentum
entangled states are generated by spontaneous parametric
downconversion and then purified using a programmable
spatial light modulator. The same device is also used to
impose arbitrary space-dependent phase functions on the
beams, which play the role of arbitrary pure phase objects.
Finally, we have applied nonlocal phase compensation to a
proof-of-principle experiment of quantum key distribution.
Our results prove experimentally the feasibility of coherent
nonlocal compensation or superposition of pure phase objects
and pave the way for further developments, such as the
reconstruction of the overall phase function imposed on the
two beams.

ACKNOWLEDGMENTS

M.G.A.P. thanks Alessandra Gatti and Konrad Banaszek
for useful discussions.

[1] A. Gatti, E. Brambilla, and L. A. Lugiato, Prog. Opt. 51, 251
(2008).

[2] R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett.
89, 113601 (2002).

[3] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A.
Lugiato, Phys. Rev. Lett. 94, 183602 (2005).

[4] O. Katz, Y. Bromberg, and Y. Silberberg, Appl. Phys. Lett. 95,
131110 (2009).

043817-5

http://dx.doi.org/10.1016/S0079-6638(07)51005-X
http://dx.doi.org/10.1016/S0079-6638(07)51005-X
http://dx.doi.org/10.1103/PhysRevLett.89.113601
http://dx.doi.org/10.1103/PhysRevLett.89.113601
http://dx.doi.org/10.1103/PhysRevLett.94.183602
http://dx.doi.org/10.1063/1.3238296
http://dx.doi.org/10.1063/1.3238296


CIALDI, BRIVIO, TESIO, AND PARIS PHYSICAL REVIEW A 84, 043817 (2011)
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