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A B S T R A C T

We address memory effects in the dynamics of a two-level open quantum system interacting with a classical
fluctuating field via dipole interaction. In particular, we study the backflow of information for a field with a
Lorentzian spectrum, and reveal the existence of two working regimes, where memory effects are governed either
by the energy gap of the two-level system, or by the interaction energy. Our results show that non-Markovianity
increases with time, at variance with the results obtained for dephasing, and in spite of the dissipative nature of
the interaction, thus suggesting that the corresponding memory effects might be observed in practical scenarios.

1. Introduction

The dynamics of a closed quantum system is reversible and the
time evolution of its states, which is governed by the Schrödinger
equation, is described by unitary maps. On the other hand, for an open
quantum system interacting with its environment, the state evolution
is no longer reversible and is described by completely-positive, trace-
preserving (CPTP) maps, which themselves result from the partial trace
of the (unitary) joint evolution of the open system + environment. In
turn, the evolution equation for an open quantum system, the so-called
Master equation (ME), should be derived from the Schrödinger equation
of the overall system, upon tracing out the degree of freedom of the
environment [1,2].

In most cases, obtaining a ME is quite challenging and, in turn, there
are only few examples of open quantum systems for which an exact ME
may be derived. In the other cases, the most common approximations
used to derive the ME of an open quantum systems are those referred
to as the Born andMarkov approximations [1]. The Born approximation
amounts to assume a weak coupling between the open system and its
environment. Markov approximation consists instead in assuming that
the dynamics of the environment is slow compared to the system’s one.
In the Markovian regime, the state of the system at time t is independent
on its past, i.e. we do not need to go backwards in time to account
for memory effects. In turn, the loss of memory effects corresponds to
CPTP maps of the Lindblad type [3], satisfying the so-called divisibility
property.

Lindblad–Markov MEs are valid tools in describing the dynamics of
several systems, but they are unable to describe coherent phenomena
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occurring in several solid-state and biological systems [4–6], as well as
in material systems with a photonic band gap [7,8]. If memory effects
cannot be neglected, the dynamics is referred to as non-Markovian.
Non-Markovianity may also cause a backflow of information from the
environment to the system, and this may be exploited e.g. to enhance
security of quantum key distribution [9] or outperform metrological
strategies based on uncorrelated states [10]. We also remind that there
are MEs suitable to describe the dynamics of non-Markovian open
quantum systems as for example the Nakajima–Zwanzig ME [11,12] or
the time-convolutionless one [13,14].

In order to characterize and quantify non-Markovianity, several
figures of merit have been introduced. A measure has been proposed
(BLP) on the basis of memory effect [15] and another one (RHP) in
terms of entanglement of the system and its environment [16]. In
addition, other measures have been proposed, based on quantum Fisher
information [17], mutual information [18] and temporal steering [19].
In this paper, since we are interested in discussing the sources of memory
effects for an atom interacting with its electromagnetic environment,
we stick with the original BLP definition in terms of backflow of
information.

A two-level atom interacting with its electromagnetic environment
corresponds to an open quantum system [20–26]. A well-known and
solvable model to describe its dynamics is the Jaynes–Cummings one,
describing the interaction with a single-mode in terms of the dipole
moment [27–29]. In recent years, some studies have been performed
about the non-Markovianity of this system in the presence of various
environments. In particular, non-Markovianity has been considered for
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a two-level system coupled to a single mode of the field via the Jaynes–
Cummings model using BLP measure [27] and coupled to random
external fields using different measures [30]. The non-Markovianity of
a damped Jaynes-Cummings model [31,32] and for the coupling to a
quantized bosonic field [20] has been studied as well.

If a two-level system is exposed to a fluctuating field with a broad
spectrum, the equations of motion are not linear and the response of the
system may not obtained easily. In those situations, it is convenient to
employ semiclassical stochastic methods [33–37] to address the time
evolution. Since this is a common situation of practical interest for
various applications, we here investigate the non-Markovianity of a
two-level system interacting with a stochastic field with a Lorentzian
spectrum.

The paper is structured as follows. In Section 2 we describe our
model, solve the equations of motion for the specific case of a Lorentzian
spectrum and introduce the BLP measure of non-Markovianity. Our re-
sults and the different working regimes are then illustrated in Section 3.
Section 4 closes the paper with some concluding remarks.

2. The system and the interaction model

We consider a two-level system interacting with a classical, possibly
fluctuating, e.m. field. The dynamics of the system is described by the
Hamiltonian

H = H
0

* � � E, (1)

where H
0

=

1

2

⌦�
3

is the free Hamiltonian of the two-level system, � =

� cos ↵ �
1

is the dipole moment of the system, and E í Et is an external,
possibly fluctuating, electromagnetic field, ↵ is the angle between the
dipole moment and the field. The field may be a deterministic function
of time, describing a driving field, or a stochastic processing, describing
a fluctuating background field. The latter situation is that of interest in
this work. The state of the system at the time t is given by

⇢t = E
⌧
 tÎÍ t

�
E
, (2)

where E[5]E denotes the average over the different realizations of the
background field, intended as a stochastic process. The single-realization
state of the system is given by  tÎ = at0Î+ bt1Î, where jÎ, j = 0,1 are
the eigenstates of the free Hamiltonian,H

0

jÎ = Ej jÎ, with ÛÛatÛÛ2+ÛÛbtÛÛ2 =
1, ≈t. The instantaneous dipole moment and energy of the system are
given by

Mt = �(atb<t + a
<

t bt), (3)

Wt =
1

2

⌦ (

ÛÛbtÛÛ2 * ÛÛatÛÛ2) , (4)

where we already employed natural units, i.e. ` = 1. In turn, the
Schrödinger equation for the two-level systems may be written in terms
ofMt and Wt as follows

áMt +⌦2Mt = * (2� cos ↵)2 Wt Et, (5)

ÜWt + �s(Wt +
1

2

⌦) =

ÜMtEt , (6)

where �s is the Einstein coefficient for spontaneous emission. The
solution of the above equations is given by [33,34]:
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⌦
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where

Gts = * (2� cos ↵)2 e*�s(t*s)  
t

s
dyEy Es cos⌦(s * y) , (9)

and M
0

, W
0

denotes the initial values of the dipole moment and
the energy, respectively. In the following, we assume that the field

amplitude fluctuates around a vanishing average E[Et]E = 0. In this
case, we have

E[Mt]E =M
0

cos⌦t, (10)
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where I(!) is the power spectrum of field, i.e. the Fourier transform
of its correlations function E[E(t)E(s)]E . On the assumption that the
background radiation field has a Lorentzian spectrum centered at the
resonance ⌦ and width �, i.e.

I(!) =
I
0

�2

[(! *⌦)

2

+ �2]
, (12)

E[Wt]E may be simplified to

E[Wt]E = A
⌧
*1+e*�t cos �t

�
+W

0

e*�t cos �t+ 1

2

e*�t �s
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(� * �s)2. (15)

Using Bloch representation in terms of the Pauli matrices, the evolved
state of the system, i.e. ⇢t in Eq. (2), may thus rewritten as

⇢t =
1

2

⇠
I + E[Wt]E �3 + E[Mt]E �1

⇡
, (16)

which says that the dynamics of coherence does depend only on its
energy gap⌦, whereas the populations are affected also by the variables
governing the interaction Hamiltonians. The purity of the state at time
t is given by

�t = Tr[⇢2t ] =
1

2

�
1 + E[Mt]

2

E + E[Wt]
2

E
�
. (17)

The dynamics of the system may be also addressed by considering
the two-level system as an open quantum system interacting with its
classical environment [38], and writing a master equation (ME) for its
density matrix. Due to the nature of the atom-field interaction the ME
turns out to be exact [39], thus representing an equivalent description
of the dynamics, also useful in quantum simulations of open systems
[40,41], e.g. exotic phases of matter [42–44]. Following [39] we have
that ⇢t in (16) satisfies the ME

Ü⇢t = i[⇢t,H0

] +D[⇢t] , (18)

where the superoperator D[⇢t] may be expressed as a commutator

D[⇢t] = *

˘
� cos ↵

⌧
�
1

,E[Et ⇢t]E
�
. (19)

The expectation value over the realizations of the stochastic process
Et may be evaluated easily for Gaussian processes, upon exploiting the
Novikov condition [45]. In our case, involving Lorentzian spectra, the
direct solution (16) is however more convenient.

2.1. Quantification of memory effects

Before addressing the dynamics of non-Markovianity in details, let
us briefly review howmemory effects (due to non-Markovian dynamics)
may be quantified using the time dependence of the trace distance
D(⇢

1t, ⇢2t) =

1

2

ÙÙ⇢1t * ⇢2tÙÙ between a pair of evolved states of the
system [15]. In the previous formula, ÒAÒ denotes the trace-norm of
the operator A i.e. ÒAÒ = Tr[A] = Tr[

˘
A†A] =

≥
k
˘ak, ak being the

eigenvalues of A†A. As a starting point, we remind that any completely-
positive and trace-preserving map Et is also contractive, i.e. the trace dis-
tance between any two evolved states decreases D(⇢

1t, ⇢2t) < D(⇢
10

, ⇢
20

),
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where ⇢t = Et[⇢0]. For any Markovian process, the divisibility property
makes the contractivity properties to hold for any two chosen values of
time, i.e.

D(⇢
1t, ⇢2t) < D(⇢

1s, ⇢2s) ≈t > s . (20)

In turn, this monotonic decrease of distinguishability may be understood
as an irreversible flow of information from the system to the envi-
ronment. On the other hand, for a non-Markovian process, divisibility
is lost, and the trace distance may increase in some time-interval.
This means that in those cases information is flowing back from the
environment to the system. This property may be employed to define
a measure of non-Markovianity as follows:

NT = max⇢
10

,⇢
20  

T

�>0
ds �(s, ⇢

1s, ⇢2s), (21)

where �(t, ⇢
1t, ⇢2t) is the rate of change of the trace distance

�(t, ⇢
1t, ⇢2t) =

d
dt
D(⇢

1t, ⇢2t) , (22)

and the maximization is performed over all the possible pairs of initial
states. The integration is meant over the intervals where � is positive
up to a maximum time T , which corresponds to a maximum interaction
time, e.g. due to a finite observation time or, in case of a propagating
system, due to the finite size of the region with nonzero field.

3. Dynamics of non-Markovianity

Using the expression in Eq. (16), the trace distance between a generic
pair of evolved states may be written as follows

D(⇢
1t, ⇢2t) =

1

2

t
e*�t(W

10

*W
20

)

2

cos

2 �t + (M
10

*M
20

)

2

cos

2⌦t . (23)

The non-Markovianity measureNT corresponds to the maximal possible
backflow of information, and is calculated by taking the maximum over
all the initial pairs of states using Eq. (21). For qubit systems the maxi-
mum is obtained for a pair of states that are pure and orthogonal [15,46]
and this means that we may write

(W
10

*W
20

)

2

= 4 cos

2 ✓ (M
10

*M
20

)

2

= 4 sin

2 ✓ ✓ À [0,⇡_2] .

The maximization over pairs of states is thus transformed into a maxi-
mization over the single state parameter ✓, and the trace distance rate
may be written as

�(t, ⇢
1t, ⇢2t) í �(t, � , �,⌦, ✓)

= *

1

2S

⌧
e
1

2

�t
cos

2 ✓ ⌦ sin 2⌦t

+e*
1

2

�t
cos

2 ✓
�
� sin2 �t + � sin 2�t

��
(24)

S =

˘
e�t cos2 ✓ cos2⌦t + sin

2 ✓ cos2 �t .

Before going to the explicit analysis of non-Markovianity, it is useful to
notice a scaling property of �, i.e.

�(t, � , �,⌦, ✓) = � �(�t, 1, �_� ,⌦_� , ✓) , (25)

and, in turn, of NT ,

NT (� , �,⌦) = N�T (1, �,⌦) . (26)

As a consequence, one is led to consider the following dimensionless
variables

t ô ⌧ = �t , ⌦ ô ⌦_� , � ô �_� , T ô �T , (27)

which amounts to measure all the considered quantities in unit of �*1.
With this choice one has

NT í NT (�,⌦) = max

✓  
T

�>0
d⌧ �(⌧, 1, �,⌦, ✓) . (28)

Numerical analysis shows that for any given T , the maximum is obtained
either for ✓ = 0 or for ✓ = ⇡_2, depending on the values of � and⌦. Upon
exploiting this result, we may write

NT (�,⌦) =  
T

0

d⌧ max

⌅
g
0

(⌧,⌦), g⇡_2(⌧, �)
⇧
, (29)

where

g
0

(⌧,⌦) =

1

2

⌧
�(⌧, 1, �,⌦, 0) + ÛÛÛ�(⌧, 1, �,⌦, 0)ÛÛÛ

�

=

⌦
4

 sin 2⌦⌧ * sin 2⌦⌧
 cos⌦⌧ , (30)

g⇡_2(⌧, �) =
⌧
�(⌧, 1, �,⌦,⇡_2) + ÛÛÛ�(⌧, 1, �,⌦,⇡_2)ÛÛÛ

�

=

1

8

e*⌧_2
2

ÛÛÛ cos
2 �⌧ + � sin 2�⌧ÛÛÛ * 1 * cos 2�⌧ * 2� sin 2�⌧

 cos⌦⌧ .

(31)

As a first consistency check, let us consider short time evolution, which
should correspond to a Markovian behavior. Indeed, we have

�(⌧, 1, �,⌦, 0) Ù *⌦2⌧ + O(⌧2),

�(⌧, 1, �,⌦,⇡_2) Ù *

1

2

+

⇠
1

4

* �2
⇡
⌧ + O(⌧2) , (32)

such that NT = 0. Using Eq. (29) we have then evaluated non-
Markovianity as a function of � and⌦ for different values of the medium
‘‘length’’ T . Results are illustrated in Fig. 1: as it is apparent from the
plots, non-Markovianity is as an increasing function of both � and ⌦.
Moreover, for increasing ⌦, NT becomes almost independent on �. In
Fig. 1, we show both the values obtained for ✓ = 0 (light gray, referred
to as the ⌦-region in the following) and ✓ = ⇡_2 (dark gray, �-region) in
order to illustrate the regions in the �*⌦ plane where each parameter is
more relevant; remind that for ✓ = 0,NT does depend only on⌦ and vice
versa for ✓ = ⇡_2. The non-Markovianity is the maximum between the
two values. Notice that non-Markovianity increases with time, despite
the dissipative nature of the interaction, and this fact suggests that the
corresponding memory effects may be observed in practice. For sake
of completeness we report the analytic expression of NT (⌦) in the ⌦-
region, the corresponding expression in the �-region is cumbersome and
will not be reported here,

NT (⌦) =

⌅⌅
⌦T

⇧⇧
+

1

2

⇠ÛÛÛ cos⌦T
ÛÛÛ *

ÛÛÛ sin⌦T
ÛÛÛ cot⌦T

⇡
, (33)

where [[x]] denotes the integer part of x.
In Fig. 2 we show the behavior of NT as a function of T for different
values of � and ⌦. In the left panel we show NT vs T for � = 0.1
and few values of ⌦, whereas in the central panel we show NT vs
T for ⌦ = 0.1 and few values of �. As it is apparent from the plots,
NT increases continuously, but not smoothly. Roughly speaking, NT
is growing linearly with T when ⌦ is the relevant parameter and sub-
linearly vice versa. Notice the different range forNT in the two panels. In
the right panel we summarize the results, showing the region in the T *

� *⌦ parameter space where NT = î T
0

d⌧ g⇡_2(⌧, �) í NT (�), i.e. where
� is the relevant parameter determining the non-Markovianity. As
mentioned before, this physically corresponds to have a background
field with a broad spectrum compared to the width of the transition.
Since random telegraph noise (RTN) is characterized by a Lorentzian
spectrum, our results may be compared to those obtained for a two-level
system interacting with a dephasing classical environment fluctuating
according to RTN [36]. It turns out that dipole interaction is leading
to more pronounced non-Markovian effects compared to dephasing:
backflow of information increases with time instead of oscillating, and
no threshold on the width of the spectrum (or the switching rate of the
process) appears. This is a remarkable result, in view of the ubiquitous
occurrence of the dipole interaction in nature. It may be also appropriate
at this point to remind that the non-Markovian character of a quantum
map resulting from the interaction with a classically fluctuating field
is fully independent on the nature of the stochastic process used to
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Fig. 1. Non-Markovianity NT versus � and ⌦ and for three different fixed values of ‘‘length’’ of the medium T . From left to right T = 1, 3, 5. The two surfaces denote the integral in
Eq. (29) in the ⌦-region, i.e. for ✓ = 0 (light gray) and in the �-region, i.e. ✓ = ⇡_2 (dark gray). The non-Markovianity NT is the maximum between the two values. NT vanishes for small
values of � and ⌦ and increases with both, as well as with the time T (notice the different ranges on the NT axes).

Fig. 2. Non-Markovianity NT as a function of T for different values of � and ⌦. In the left panel we show NT vs T for � = 0.1 and (from bottom to top) ⌦ = 1, 2, 4, 8, whereas in the
central panel we show NT vs T for ⌦ = 0.1 and (from bottom to top) � = 1, 2, 4, 8. Notice the different range for NT in the two panels. The right panel shows the region in the T * � *⌦
parameter space where î T

0

d⌧ g⇡_2(⌧, �) > î T
0

d⌧ g
0

(⌧,⌦) (in the range T À [0, 5], � À [0, 5], ⌦ À [0, 5]).

describe its time dependence [41,47]. In other words, the stochastic
process describing the field may be (classically) Markovian, whereas the
quantum map originating from the interaction with the corresponding
classical field may be (quantum) non-Markovian at all times. This is
exactly what happens for the telegraph noise, which is described by a
classically memoryless continuous-time stochastic process, but it leads
to a non-Markovian quantum process if the switching rate is small
enough [36].

4. Conclusions

In this paper, we have addressed the dynamics of a two-level
system immersed in a classical fluctuating field, and interacting with
its environment via dipole interaction. We have discussed the non-
Markovianity of the corresponding quantum evolution, as measured
by the backflow of information (BLP measure) and, in particular, we
have evaluated the backflow of information for a background field with
a Lorentzian spectrum, also comparing our result with the analogue
dephasing case.

Our results uncovered the existence of two working regimes, which
we referred to as ⌦-regime or �-regime, corresponding to sharp and
broad spectrum of the field, where memory effects are governed either
by the energy gap of the two-level system, or by the interaction energy,
respectively. Non-Markovianity vanishes for short interaction times,
independently on � and ⌦ and then increases monotonically with time
and with both � and ⌦, despite the dissipative nature of the interaction,
thus suggesting that the corresponding memory effects may be observed
in practical scenarios. When compared to the corresponding dephasing
dynamics, it turns out that dipole interaction is leading to more pro-
nounced non-Markovian effects, with the backflow of information that
increases with the interaction time.
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