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Abstract: Continuous-time quantum walks may be ex-
ploited to enhance spatial search, i.e., for�nding amarked
element in a database structured as a complex network.
However, in practical implementations, the environmen-
tal noise has detrimental e�ects, and a question arises
on whether noise engineering may be helpful in mitigat-
ing those e�ects on the performance of the quantum algo-
rithm. Herewe studywhether time-correlated noise induc-
ing non-Markovianity may represent a resource for quan-
tum search. In particular, we consider quantum search
on a star graph, which has been proven to be optimal in
the noiseless case, and analyze the e�ects of independent
random telegraph noise (RTN) disturbing each link of the
graph. Upon exploiting an exact code for the noisy dy-
namics, we evaluate the quantumnon-Markovianity of the
evolution, and show that it cannot be considered as a re-
source for this algorithm, since its presence is correlated
with lower probabilities of success of the search.

� Introduction
There is a close connection between quantum metrolog-
ical precision bounds and quantum computation speed-
up limits, e.g. the search time in a database [1]. In turn,
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the interest in quantum computation relies on its ability
to outperform standard classical computation in solving
some peculiar tasks. Among these is the problem of �nd-
ing a certain element with a given property in a disordered
database of N items. Grover’s quantum algorithm [2] re-
trieves the speci�ed target at time of order T = O(

p
N)

instead of the classical T = O(N). Moreover, this quan-
tum speed-up has been proven to be optimal [3]. Quan-
tum spatial search [4] is the generalization of this problem
to a database characterized by a complex structure, i.e.,
a database whose elements are distributed in space and
connected by links according to a certain topology. Such a
database can be described by a graph.

Di�erent methods of solving the problem of quantum
spatial search have been proposed [4–8]. Here we focus on
the algorithm based on continuous-time quantum walks
(CTQWs) [9], introduced by Childs and Goldstone [5], that
can achieve the optimal speed-up T = O(

p
N) on certain

topologies, such as the complete graph or the hypercube.
Many other graphs are suitable for quantum spatial search
using this algorithm: For instance, the star graph was re-
cently proven to be optimal [10]. However, despite a great
theoretical e�ort in characterizing the networks that are
suitable for the search and to�ndmore e�cient versions of
the algorithm, only few studies address the e�ects of noise
on quantum spatial search via CTQWs.

The presence of broken links in complex networks has
been investigated in [11], and it has been shown that the
coupling of the system to a thermal bath may improve the
performance of the algorithm a�ected by static disorder
[12]. Changing the complex structure of the graph after a
time interval τ, i.e., creating random temporal networks,
can lead to a dynamical topology suitable for search as
well [13], while the �rst study of a fully-dynamical descrip-
tion of thenoise has been recently presented [10], in partic-
ular introducing classical random telegraph noise (RTN)
a�ecting the hopping rate of the links of the network. The
e�ect of RTN on the dynamics of quantum systems has
beenwidely studied in the literature, being a typicalmodel
for noise a�ecting solid state devices [14–16] and used as
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a building block of �/f noise [17, 18]. Many works have fo-
cused on one- or two-qubit systems [14, 19–21], with stud-
ies of its e�ect on CTQWs appearing in recent literature
[22–25].

A key concept in the �eld of open quantum systems is
non-Markovianity. Depending on di�erent points of view,
it expresses the divisibility of the quantummapdescribing
the evolution of the system [26] or the back�ow of quan-
tum information going from the environment to the system
[27]. A crucial point in the study of non-Markovianity re-
lies on understanding when its presence is a resource, i.e.,
when non-Markovianity enhances the results of the partic-
ular task we want to achieve using the quantum system.
Quantum non-Markovianity was proven to be a resource
in di�erent scenarios for quantum information process-
ing [28, 29], teleportation [30], computation [31], metrol-
ogy [32]. Systems a�ected byRTNcan exhibit eitherMarko-
vian and non-Markovian quantum dynamics, depending
on the parameters and on the type of interaction with the
environment [20, 24, 33]: the latter has been shown to al-
low for recoherence e�ects in qubit systems [33], while it
induces localization in quantum walks on lattices [22, 24].

In this paper, we address the role of quantum non-
Markovianity in the computational task of quantum spa-
tial search. We answer the questions: is non-Markovianity
a resource for quantum spatial search via CTQW? Does its
presence improve the performance of the algorithm?

As a matter of fact, the dynamics of the CTQW on
graphs subject to dynamical noise is obtained by Monte-
carlo simulation of the noise [10]. However, the study of
non-Markovianity requires higher precision and numeri-
cal stability, therefore in this paper we employ a numeri-
cally exact technique to obtain the state of the walker at a
generic time t. This technique, valid for any system subject
to classical dynamical noise, was �rst proposed in [34] and
speci�cally used to study the dynamics of small quantum
systems, such as one or two qubits perturbed by random
telegraph noise [16, 20]. Here, we develop a fast code that
allows us to scale up the technique to larger quantum sys-
tems.We discuss the general technique in Sec. 4, while the
code we used to implement it is available on GitHub [35].

The paper is structured as follows: in Sec. 2 we review
the quantum spatial search algorithm based on CTQWand
we discuss the noise model. In Sec. 3 we review the con-
cept of quantumnon-Markovianity and introduce themea-
sures we employ to study the noisy evolution. In Sec. 4 we
present the analytical method we have used to calculate
the evolution of the quantum walk subject to dynamical
noise. In Sec. 5 we discuss the results, while Sec. 6 closes
the paper with some concluding remarks.

� Noisy quantum spatial search
Wemodel our structured database as a given graph G com-
posed of N nodes, andwewant to �nd themarked element
w, called target node. Any graph is characterized by an ad-
jacency matrix A, whose elements are de�ned as

Aij =
(
� if nodes i, j connected
� otherwise.

(1)

We want to run a CTQW on this graph in order to �nd
w. The Hilbert space of the walker is H = span{|ji} with
j = �, . . . , N, where |ji is the single-particle localized state
associated to the node j. According to the original de�ni-
tion [9], the Hamiltonian of the walk is proportional to the
Laplacian matrix of the graph L, de�ned as L = D − A,
where D is the degree matrix, a diagonal matrix such that
Djj is the number of links connected to node j. To per-
form the spatial search, we add to the original Hamilto-
nian a projector onto the target node, in order to localize
the walker there. Therefore, the Hamiltonian of the algo-
rithm reads

H = �L + Hw = �L − |wihw| , (2)

where Hw = − |wihw| is called oracle Hamiltonian, � is a
suitable coupling constant and L is the Laplacian matrix
associated to G.

The initial state of the quantum walk is the fully delo-
calized state |si:

|si = �p
N

NX

j=�
|ji , (3)

and the state at time t reads
��ψ(t)

↵
= e−iHt |si . (4)

If, at time t, we measure the walker in the node basis, the
probability of obtaining the target node is given by p(t) =��⌦w
��ψ(t)

↵���. We assume that we can choose to measure at
the time T for which the above probability ismaximal, and
we de�ne the success probability of the algorithm as

psucc =
��⌦w
��ψ(T)

↵��� (5)

We want to maximize psucc keeping T as short as possible.
The algorithm is optimal on the given graph G if there ex-
ists a time T = O(

p
N) and a suitable constant � for which

the probability of success is close to �.
We nowdescribe how to introduce dynamical noise on

the algorithm, following the approach of [10]: a pictorial
representation of the model is shown in Fig. 1. We insert
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independent random telegraphnoise (RTN)perturbing the
hopping rate of each link of the graph, where the RTN is a
classical dynamical noise that can assume only two val-
ues, say g(t) = ±�, and the probability of switching value
n times in a time t follows the Poisson distribution

pµ(n, t) = e−µt (µt)
n

n! , (6)

where µ is called switching rate.
Therefore, RTN describes a stationary stochastic pro-

cess with autocorrelation function

hg(τ)g(�)i = e−�µ|τ|, (7)

corresponding to a Lorentzian spectrum.
CTQWs a�ected by RTN have been studied in the re-

cent past for one-dimensional lattices [22–24], and for
quantum spatial search on graphs [10]. Here we consider
independent random telegraph noise perturbing each link
of the complex network with the same switching rate µ,
and we accordingly modify the Laplacian matrix in Eq. (2)
as follows.

The noise is described by the N × N matrix g(t), where
N is the number of nodes in the graph and gjk(t) is the
stochastic process describing the noise on the link con-
necting j to k. The matrix g(t) is thus symmetric, zero-
diagonal and has only l independent entries, where l is
the number of links in the graph. Keeping inmind that the
noise realizations on di�erent links are uncorrelated, we
have the following autocorrelation function, for the non-
zero elements of g(t)

hgjk(τ)gj0k0 (�)i = e−�µ|τ|(δjj0δkk0 + δjk0δkj0 ) . (8)

The noisy Laplacian L(g)(t) thus reads

L(g)jk (t) =

8
>><

>>:

−
⇥
� + νgjk(t)

⇤
if (j, k) connected

Djk + ν
PN

i=� gik(t) if j = k
� otherwise

(9)

where ν 2 [�, �] is the relative noise strength, assumed to
be the same for all the links. The Hamiltonian of the noisy
walk, replacing the one in Eq. (2), is now a function of the
stochastic process g(t) and reads

H(g)(t) = �L(g)(t) − |wihw| . (10)

Using the language of open quantum systems, we de-
scribe the state of the system at time t as a density matrix
ρ(t). Starting from the initial state ρ� = |sihs|,

ρ(t) = hU[g(t)]ρ�U†[g(t)]i{g(t)}, (11)

where h. . .i{g(t)} denotes the average over all possible real-
izations of the stochastic process g(t), while U[g(t)] is the

unitary evolution operator that drives the evolution asso-
ciated to a particular realization of the noise, given by

U[g(t)] = T exp

8
<

:−i
tZ

�

ds H(g)(s)

9
=

;, (12)

where T is the time-ordering operator.
Equation (11) describes a quantummap sending aden-

sity matrix into a density matrix. Considering the initial
time t� = �, for each time twedenote suchamapasE(t, �),
de�ned as

E(t, �)ρ� = ρ(t). (13)
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where µ is called switching rate.
Therefore, RTN describes a stationary stochastic pro-

cess with autocorrelation function

�g(�)g(0)� = e�2µ|� |, (7)

corresponding to a Lorentzian spectrum.
CTQWs a�ected by RTN have been studied in the

recent past for one-dimensional lattices [23–25], and for
quantum spatial search on graphs [11]. Here we consider
independent random telegraph noise perturbing each link
of the complex network with the same switching rate
µ, and we accordingly modify the Laplacian matrix in
Eq. (2) as follows.

The noise is described by the N � N matrix g(t),
where N is the number of nodes in the graph and gjk(t)
is the stochastic process describing the noise on the link
connecting j to k. The matrix g(t) is thus symmetric,
zero-diagonal and has only l independent entries, where l
is the number of links in the graph. Keeping in mind that
the noise realizations on di�erent links are uncorrelated,
we have the following autocorrelation function

�gjk(�)gj�k�(0)� = e�2µ|� |(�jj��kk� + �jk��kj�) . (8)

The noisy Laplacian L(g)(t) thus reads

L(g)
jk (t) =

�
���

���

�
�
1 + �gjk(t)

�
if (j, k) connected

�N
i=1 [1 + �gik(t)] if j = k

0 otherwise
(9)

where � � [0, 1] is the relative noise strength, assumed
to be the same for all the links. The Hamiltonian of the
noisy walk, replacing the one in Eq. (2), is now a function
of the stochastic process g(t) and reads

H(g)(t) = �L(g)(t)� |w��w| . (10)

Using the language of open quantum systems, we de-
scribe the state of the system at time t as a density matrix
�(t). Starting from the initial state �0 = |s��s|,

�(t) = �U [g(t)]�0U
†[g(t)]�{g(t)}, (11)

where �. . .�{g(t)} denotes the average over all possible re-
alizations of the stochastic process g(t), while U [g(t)] is
the unitary evolution operator that drives the evolution
associated to a particular realization of the noise, given
by

U [g(t)] = T exp
�
�i
� t

0
dsH(g)(s)

�
, (12)

where T is the time-ordering operator.
Equation (11) describes a quantum map sending den-

sity matrix in density matrix. Considering the initial time

Fig. 1. Pictorial representation of the model described in Section
2: the links between the nodes of a graph (in this work, we focus
on the star graph) are a�ected by independent sources of RTN,
all characterized by the same switching rate µ and noise strength
�. The red node corresponds to the marked node in the Hamilto-
nian, |wi.

t0 = 0, for each time t we denote such a map as E(t, 0),
defined as

E(t, 0)�0 = �(t). (13)

3 Measures of non-Markovianity
Extending the concept of non-Markovianity for stochastic
processes to the quantum world is not trivial, since the
classical definition of Markovianity is based on probability
distributions evaluated at di�erent times, while in quan-
tum mechanics measuring the state of the system a�ects
it, thus it is not meaningful anymore to define a general
quantity like quantum non-Markovianity using classical
objects such as probability distributions [26, 36].

A very well-known class of master equations, i.e. evo-
lution equations for quantum states, is the one written
in the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [37, 38]. The quantum maps described by this class
are said to be Markovian because of their divisibility prop-
erty [26]: if, considering also time-inhomogeneous pro-
cesses, E(t2, t1) is the quantum map generating the evolu-
tion of a quantum state from t1 to t2, and if this evolution
follows the GKSL master equation, then the quantum
map is divisible in the sense that

E(t3, t1) = E(t3, t2)E(t2, t1) � t1 < t2 < t3. (14)

This property can be seen as a sort of quantum ana-
logue of the Chapman-Kolmogorov equation character-
izing a Markovian stochastic process. Furthermore, the
GKSL master equation is obtained by imposing some ap-

Figure 1: Pictorial representation of the model described in Section
2: the links between the nodes of a graph (in this work, we focus
on the star graph) are a�ected by independent sources of RTN, all
characterized by the same switching rate µ and noise strength ν.
The red node corresponds to the marked node in the Hamiltonian,
|wi.

� Measures of non-Markovianity
Extending the concept of non-Markovianity for stochastic
processes to the quantum world is not trivial, since the
classical de�nition ofMarkovianity is based onprobability
distributions evaluated at di�erent times, while in quan-
tummechanicsmeasuring the state of the systema�ects it,
thus it is notmeaningful anymore tode�neageneral quan-
tity like quantumnon-Markovianity using classical objects
such as probability distributions [26, 36].

A very well-known class ofmaster equations, i.e., evo-
lution equations for quantum states, is the one written in
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form
[37, 38]. The quantum maps described by the GKSL mas-
ter equation (or, more generally, its time-local generaliza-
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tion) are said to be Markovian because of their divisibil-
ity property [26]: if, considering also time-inhomogeneous
processes, E(t�, t�) is the quantum map generating the
evolution of a quantumstate from t� to t�, and if this evolu-
tion follows the GKSL master equation, then the quantum
map is divisible in the sense that

E(t�, t�) = E(t�, t�)E(t�, t�) 8 t� < t� < t�. (14)

This property can be seen as a sort of quantum ana-
logue of the Chapman-Kolmogorov equation character-
izing a Markovian stochastic process. Furthermore, the
GKSL master equation is obtained by imposing some ap-
proximations upon the coupling between system and en-
vironment [39]. In particular, weak coupling, Born approx-
imation, and fast decay of the environment’s correlation
functions (compared to the typical time-scale of the evolu-
tion of the quantum state) are required. These conditions
canbe seenas re�ecting amemoryless evolutionof the sys-
tem, thus strengthening the idea of “quantumMarkovian-
ity” of the quantummap.We refer the reader to a standard
textbook for amore rigorous explanation of the GKSLmas-
ter equation [39].

Further de�nitions of quantum non-Markovianity
have been proposed and used. In particular, a really com-
mon de�nition is the one based on the back�ow of quan-
tum information between system and environment [27].
The choice of a de�nition rather than another one depends
on the speci�c purposes for which we want to evaluate
quantum non-Markovianity. The main results and propos-
als on the topic are reviewed in [26, 36, 40]. Moreover, it
is known that di�erent de�nitions follow a hierarchy, i.e.,
some classes of de�nitions are contained in other ones;
this aspect, �rst discovered in [41], has been deeply inves-
tigated in a very recent paper [42]. In addition to the detec-
tion of quantum non-Markovianity of a quantum process,
wewould like to quantify the amount of non-Markovianity
of a quantummap. Variousmeasures of non-Markovianity
have been introduced in the literature to achieve this goal.
Inwhat followswe explore twomeasures of quantumnon-
Markovianity that wewill use in our work, chosen for their
signi�cance in the literature and thepossibility to compute
them with the problem at hand.

�.� Divisibility measure

The �rst measure we analyze is strictly related to the de�-
nition of non-Markovianity based on the divisibility of the
quantum map. We will employ a variation of the one pro-
posed in [43],whichhas already beenused in [22] for quan-
tum walks on lattices.

Suppose that E is the quantum map describing the
evolution of a quantum state starting at t = �, and suppose
to take ρ� as the initial state. We evaluate the quantity

Γ(τ, τ�) = D(E(τ, �)ρ�, E(τ, τ�)E(τ�, �)ρ�), (15)

where � ≤ τ� ≤ τ, and D is the trace distance between two
states, de�ned as:

D(ρ�, ρ�) =
�
� |ρ� − ρ�|, (16)

with |A| = Tr
p
A†A for a square matrix A.

Obviously, in the case of time-homogeneous pro-
cesses, E(τ, τ�) = E(τ − τ�). Eq. (15) is basically evaluating
how distant the �nal state obtained through the complete
evolution is, compared to the one for which the evolution
has been stopped and restarted at a certain time t�; it is
thus detecting how E deviates from divisibility. Γ(τ, τ�) is
clearly zero for any τ and τ� if E is described with amaster
equation in the GKSL form.

In order to get a number quantifying the deviation
from divisibility, one takes the maximal deviation from
the property of divisible quantummap, i.e., the maximum
over all τ and τ� up to in�nity. Therefore, the measure of
non-Markovianity that we employ is

NM = max
τ,τ�

Γ(τ, τ�). (17)

It is evident that Eq. (17) does not de�ne a measure of
the non-Markovianity of the quantummap, but only of the
evolution of a particular initial state. Indeed, in [43] the
trace distance in Eq. (15) is replaced with a distance in the
quantummaps space. However, in the case at hand the ini-
tial state of the system is �xed by the prescription of the
spatial search algorithm, thus Eq. (17) is both easier to cal-
culate and appropriate for our purposes.

�.� BLP measure

Probably themost famousmeasure of non-Markovianity is
the BLP measure [27], based on the back�ow of quantum
information between system and environment.

The trace distance between two states is contractive
under the action of a quantum channel, i.e. a completely
positive and trace preserving map [44]. It is straightfor-
ward to prove [27] that, if E is a divisible quantum map
Eq. (14), then the trace distance of two evolved states (with
initial state ρ�(�) and ρ�(�)) is monotonically decreas-
ing in time: namely, if ρ�(t) = E(t, �)ρ�(�) and ρ�(t) =
E(t, �)ρ�(�),

D(ρ�(t + τ), ρ�(t + τ)) ≤ D(ρ�(t), ρ�(t)) 8 t, τ > �. (18)
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This may not be true anymore if the dynamics is non-
Markovian. Therefore, let us de�ne the quantity

σ(t, ρ�,�(�)) =
d
dt D(ρ�(t), ρ�(t)). (19)

If σ(t, ρ�,�(�)) is positive for certain time intervals, then the
quantummap is non-Markovian and, in particular, during
those time intervals we are observing a back�ow of quan-
tum information. Indeed, the trace distance expresses our
ability to distinguish the states ρ� and ρ� [44], therefore
when it increaseswe are acquiringmore quantum informa-
tion about the two states.

The BLPmeasure is de�ned by integrating over all the
time intervals in which we are gaining quantum informa-
tion, i.e., in which Eq. (19) is positive, and then taking the
maximum upon all the possible pairs of initial states:

NBLP(E) = max
(ρ�(�),ρ�(�))

Z

σ>�

dt σ(t, ρ�,�(�)). (20)

Following the hierarchy of non-Markovianity mea-
sures, there are some dynamical maps for which the
BLP measure is zero, despite being non-Markovian with
respect to the divisibility de�nition [26]. Nonetheless,
Eq. (20) is a true measure of non-Markovianity of a quan-
tummap (and not only of a speci�c evolution), and it pro-
vides the quanti�er of a useful resource (the back�ow of
information).

Due to the maximization upon all the possible ini-
tial states, the evaluation of Eq. (20) is, in general, a
formidable task, only slightlymitigated by the fact, proven
in [45], that the states of the optimal pair must lie on the
boundary of the space of the density matrices and must
be orthogonal. Given the problem at hand, we choose to
�x ρ�(�) as the initial state of the spatial search algorithm,
and we optimize over the state ρ�(�) only.

� Analytical solution of the noisy
dynamics

The solution of Eq. (11) is usually computed numerically,
because of the cumbersome expression that arises in
Eq. (12) and of the huge number of possible realizations
of the noise. Exact analytical solutions are possible only
in certain cases in which the Hamiltonian commutes with
itself at di�erent times, such as in the case of pure dephas-
ing of qubits [22].

Joynt et al. have proposed an exact method of solving
the dynamics of a quantum system coupled to a classical
environment modeled as a Markovian stochastic process,

and particularly e�ective for RTN [16, 34]. The method al-
lows for analytical results only for a single qubit [16], while
it requires numerical matrix diagonalization for higher di-
mensions, [20]. The strengths of this method are that it
gives exact results up to machine-precision, and it avoids
�uctuations typical of Montecarlo simulations: the draw-
back, however, is the exponential complexity in terms of
the number of noise �uctuators.

We have implemented the method in Julia [46], with
particular emphasis on optimization for the problem at
hand: the code is available on GitHub [35]. Based on this
code we are able to solve the dynamics of a CTQW subject
to dynamical noise for graphs with up to N = �� links.
While this number is still quite small, it allows for gain-
ing intuition on the e�ects of noise on the spatial search
algorithm and the relation to non-Markovianity.

In this section,we brie�y explain how to obtain the ex-
act dynamics of the system with the method introduced in
[34], leaving the full explanation and proof to the original
paper. Suppose to have a Nq-dimensional quantum state,
described at time t by theNq×Nq densitymatrix ρ(t), and a
classical systemmade of Nc states, representing the possi-
ble values of thenoise. For example, if the classical noise is
a single �uctuator, Nc = �; if it consists of N independent
RTN sources, Nc = �N .

We start at t = � with ρ(�) and the classical proba-
bility distribution P(�), describing the initial state of the
stochastic process associated to the classical noise. The
Hamiltonian of the quantum system is H[g(t)], i.e., a func-
tion of the stochastic process describing the noise. At ev-
ery time instant, to every particular con�guration of the
noise, which we label with the index c 2 {�, . . . , Nc}, cor-
responds a particular form of the Hamiltonian Hc.

Since we assume a Markovian classical environment,
the probability of the di�erent states is described by the
master equation

dP(t)
dt = VP(t), (21)

where the elementVc,c0 of thematrixV dictates the transi-
tion rates between the states c and c0 of the environment.
Notice thatV is time-independent if the stochastic process
describing the environment is homogeneous, as is the case
in this work. In the case of a single RTN with a switching
rate µ, we have that Nc = � and

Vµ =
 
−µ µ
µ −µ

!
. (22)

For a collection of N independent �uctuators, the ma-
trix V becomes

V =
NX

i=�
V(i)
µ , V(i)

µ = I⌦i−�
� ⌦ Vµ ⌦ I⌦N−i

� . (23)
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Figure 2: Γ(τ, τ�) as a function of τ and � ≤ τ� ≤ τ, for several values of switching rate µ and noise strength ν = �, in logarithmic scale.
The plots are for the spatial search dynamics on the star graph with N = � and central target node. The red cross marks the maximum value,
i.e., the measureNM. We can observe that slow strong noise (deleterious for the algorithm) leads to a higher value of non-Markovianity.

We need to represent the density matrix as a vector,
and we do so by employing the generalized Bloch vector
n(t), a vector of dimension N�

q − �, with real components

ni(t) =
p
Nq
� Tr λiρ(t), (24)

where λj are the generators of SU(Nq), and they areNq×Nq
matrices chosen to satisfy

Tr λj = �, λ†j = λj , Tr
�
λjλk

�
= �δjk . (25)

We can go back to the density matrix ρ(t) from the Bloch
vector n(t) by means of the equation

ρ(t) = �
Nq

2

4INq +
p
Nq

N�
q−�X

j=�
nj(t)λj

3

5 , (26)

where INq denotes the identity in the Hilbert space of the
quantum system.

The actionof aunitary operatorU onto thedensityma-
trix ρ(t) is translated into the multiplication of the Bloch
vector n(t) by a transfer matrix T de�ned as

Tij =
�
� Tr

h
λiUλjU†

i
. (27)

Consider now a short time interval ∆t in which the
environment is in a �xed state c; during ∆t, the unitary
evolution is generated by the Hamiltonian Hc: Uc(∆t) =
exp[−iHc∆t]. The corresponding transfer matrix Tc is gen-
erated by the matrix

Gc = i lim
∆t!�

Tc − INq

∆t = i
�

NqX

i,j=�
Tr
�
[λi , λj]Hc

�
. (28)

In their paper [34], Joynt et al. introduced the quasi-
Hamiltonianmatrix

Hq = iV⌦ IN�
q−� +

NcM

i=c
Gc , (29)

where the second term is a direct sum of all the generators
de�ned in (28), and showed that the dynamics of the sys-
tem, averaged all the possible realizations of the stochas-
tic process describing the noise (as de�ned in Eq. (12)), is
given by

n(t) = h�|exp(−iHqt)|p�i · n(�). (30)

In Eq. (30), |p�i and |�i are vectors belonging to the
space of the classical con�gurations: |�i is a vector with
all components set to �, while |p�i ⌘ P(�) is the initial
probability distribution of the con�gurations of the noise.
In the case at hand, where we assume stationary noise, all
the con�gurations are equally probable and so

|p�i =
�
Nc

|�i . (31)

The expression h�|A|p�i where A is a Nc(N�
q − �) ×

Nc(N�
q − �) matrix, denotes a partial inner product in the

space of classical con�gurations: the result is a (N�
q − �) ×

(N�
q − �)matrix acting on the Bloch vector of the quantum

system.
Now let us focus on the studyof continuous-timenoisy

quantum walk on the star graph. If N is the number of
nodes in the graph, there are N − � links and thus N − �
independent RTN sources: the number of possible states
of the noise is Nc = �N−�. The number of real parameters
of the quantum system is N� −�, and hence the number of
rows of the matrix Hq is �N−�(N� − �), growing more than
exponentially with N.

Evaluation of (30) thus looks like a formidable task,
considering that matrix exponentiation is a costly func-
tion. However, the matrices V and QE are largely sparse,
with the number of nonzero elements growing sub-
exponentially with N: this allows us to resort to various
numerical techniques that ease the computational cost
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of (30). While the matrix exponential of a sparse matrix
is dense, and thus its evaluation is still extremely costly,
its action on a vector v can be evaluated just in terms of
matrix-vector product operations [47, 48].

By using the above techniques, we can evaluate a sin-
gle exact dynamics for multiple time instants for N = ��
within seconds on a laptop. However, due to the exponen-
tial scaling of the dimensions of Hq, we cannot reach val-
ues ofNmuchhigher than that, so this excludes, for exam-
ple, the study of complete graphs of more than �-� nodes.
Nevertheless, this method allows us to gain insight into
the dynamics of quantum walks a�ected by RTN on small
graphs. Further optimizations of the algorithm,using tech-
niques of matrix compression and distributed computa-
tion, may allow to reach even higher dimensions.

� Results
Both measures of non-Markovianity, de�ned in Eq. (17)
and Eq. (20), are highly sensitive to numerical errors in the
evaluation of the dynamics of the quantum walk, mean-
ing that small �uctuations can lead to completely wrong
results (see the discussion in [22]). Hence, the need to em-
ploy the exact method presented in Sec. 4, instead of the
Montecarlo simulation used in [10]. Due to the numeri-
cal complexity of the above method, we are restricted to
a small number of RTN sources. For this reason, we here
consider quantum spatial search on the star graph with
central node as target, proven to be optimal in [10], where
it is also shown that the random telegraph noise with fast
switching rate µ has almost no e�ects on the probability
of success of the search, while decreasing µ leads to worse
and worse results, proving that semi-static noise jeopar-
dizes the performance of the algorithm. Obviously, higher
noise strength ν implies lower success probability.

In this section we investigate if the presence of non-
Markovianity is a resource for quantum spatial search, i.e
if it correlates with better performance of the noisy algo-
rithm. To do so, we employ both the measures of non-
Markovianity presented in Sec. 3.

�.� Non-Markovianity of the evolution
according to the divisibility measure

Considering the dynamics of the algorithm on a star graph
with N = � nodes and central node as target, we have cal-
culated Γ(τ, τ�) as de�ned in Eq. (15), for the map de�ned
in Eq. (11), considering the starting state of the algorithm

10�2 10�1 100 101
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0.1

0.2

0.3

0.4

N
M

� = 0.2

� = 0.5

� = 0.9

� = 1.0

Figure 3: Divisibility measure of non-MarkovianityNM for the evo-
lution of the initial state |sihs| through the noisy algorithm of quan-
tum spatial search, as a function of the switching rate µ, for several
values of the noise strength ν. Non-Markovianity increases with the
strength of the noise and decreases with the switching rate: strong,
slow noise, which is the most detrimental, shows the greatest mem-
ory e�ects.

ρ(�) = |sihs|. The maximum of Γ(τ, τ�) appears for �nite
τ and τ� because the dynamics has the maximally mixed
state as �xed point (as can be easily checked fromEq. (11)).
The actual values for τ and τ� vary with the parameters of
the dynamics, but accurate analysis has shown that, for
N ≤ ��, we can restrict to the region τ, τ� ≤ ��.

The results for Γ(τ, τ�) are depicted in Fig. 2, for sev-
eral values of µ and ν. Fig. 3 shows the valueof themeasure
NM, obtained after taking themaximum of all the values of
Γ(τ, τ�) in Fig. 2. Apart from a slight bend from ν = �.� to
ν = � for µ = �.��, we obtainhigher values ofNM for slower
and stronger random telegraph noise, leading to bad per-
formance of the algorithm. Therefore, using suchmeasure
of non-Markovianity and in this speci�c case, the presence
of non-Markovianity is correlated with ine�cient quan-
tum spatial search. In Fig. 4 we show the success proba-
bility of the spatial search algorithm psucc as a function of
the non-MarkovianitymeasureNM of the dynamics, for the
same values of µ and ν of Fig. 3. At �xed noise strength,
the success probability increases as the non-Markovianity
decreases. However, no clear correlation between NM and
psucc may be seen.

�.� Non-Markovianity of the evolution
according to the BLP measure

To strengthen our results, we calculate the BLP mea-
sure of Eq. (20) as a second indicator of quantum non-
Markovianity, again for the algorithm on a star graph with
N = � and central node as target. The optimization over
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Figure 4: Success probability of the spatial search algorithm psucc
as a function of the non-Markovianity measureNM of the dynamics,
for the same values of µ and ν of Fig. 3. At �xed noise strength, the
success probability increases as the non-Markovianity decreases;
however, there is no clear correlation betweenNM and psucc.

all the possible initial states ρ�(�) and ρ�(�) is di�cult to
compute e�ciently, but for our purposes we just need to
study the non-Markovianity of the evolution of the CTQW,
therefore we have kept �xed one of the two states, say
ρ�(�), as the initial state |sihs|, and we have optimized the
measure only over all the possible ρ�(�).

Numerical investigation showed that, keeping ρ�(�) =
|sihs|, we obtain the maximum in Eq. (20) by choosing as
ρ�(�) the eigenstate |ri of the Laplacian of the star graph,
de�ned as:

|ri = −(N − �) |�i +
NX

k=�
|ki , (32)

where N is the number of nodes in the graph and {|ki}Nk=�
is the node basis.

The results for the BLP measure are shown in Fig. 5,
and they perfectly con�rm the correlation between pres-
ence of non-Markovianity in the evolution and lower suc-
cess probability of quantum spatial search.

Notice that this is one of the cases in which the di-
visibility measure proves to be“higher” in the hierarchy
of quantum non-Markovianity [42]. Indeed, the divisibil-
ity measure detects the presence of non-Markovianity, al-
though small, for µ = �� and µ = �, while the BLPmeasure
does not.

�.� Dependence on the size of the graph

Theanalysis above focusedon the star graphwith a central
target node and N = �. Here we address the dependence
of non-Markovianity on the size of the graph, by studying
the two measures for di�erent values of N, up to N = ��,
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Figure 5: BLP measure of non-Markovianity for the evolution of the
initial state |sihs| through the noisy algorithm of quantum spatial
search, versus the switching rate µ, for various values of the noise
strength ν. In computing the value of the BLP, we have considered
as initial pair |sihs| and |rihr|, as de�ned in Eq. (32). The presence
of information backflow between system and environment is corre-
lated with slow strong noise, i.e., with poorer performance of the
algorithm. The stronger the noise the higher the non-Markovianity
of the map. The measure is basically zero for switching rates above
µ ' �, but the map is still non-Markovian, according to the divisibil-
ity measureNM.

so that the dynamics can be still evaluated with the exact
method.

We found that the two quantities NM and NBLP have
a very similar behavior as functions of N, and we show
the former in Fig. 6, for di�erent values of the switching
rate and for the maximum noise strength (ν = �). We see
that the non-Markovianity decreases with N for fast noise,
while it is inappreciably increasing for slow noise.

While the computational complexity does not allow
us to explore higher values of N, we can expect non-
Markovianity to maintain the same trend. This correlates
with the dependence of psucc on N, which is slightly de-
creasing for strong, slow noise, and increasing for fast
noise, as shown in [10], further con�rming the link be-
tweennon-Markovianity andpoorer performance of the al-
gorithm.

� Concluding remarks
In this paper we have addressed spatial search imple-
mented by CTQW on a star graph and in the presence
of RTN a�ecting the links between the nodes. In particu-
lar, we have discussed the role of non-Markovianity of the
quantum dynamical map of the walker in determining the
performance of the algorithm.
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Figure 6: Non-Markovianity measureNM as a function of the size N
of the graph for di�erent values of the switching rate µ, for noise
strength ν = �.�. The non-Markovianity measure slightly depends
on N (notice that the y axis is in logarithmic scale), withNM de-
creasing for fast noise, and basically constant for slow noise. A
qualitatively identical plot could be made for the BLP measureNBLP.

In order to address the above problem, we have devel-
oped fast and optimized code, not based on Montecarlo
generation of stochastic trajectories, to achieve a numer-
ically exact solution of the dynamics of the walker. Avoid-
ing stochasticity allows one to increase the accuracy of the
result and to reduce �uctuations, a key requirement for
evaluatingmost quanti�ers of non-Markovianity. The code
is available online and can be applied to a general quan-
tum system a�ected by any number of RTN sources.

Our results show that, unlike many other scenarios in
which non-Markovianity can be seen as a resource for vari-
ous quantum information tasks, in the case at hand spatial
search performs better when the noise is fast, i.e., Marko-
vian, as opposed to slow noise, which induces a non-
Markovian dynamics and is detrimental for the algorithm.
A possible intuitive explanation of the results above lies in
the fact that the typical recoherence e�ect due to the non-
Markovianity of the quantummap, happens on timescales
that are much larger than the typical running time of the
algorithm. Notice also that there exists di�erent physical
platforms in which state-of-the-art experiments are avail-
able with a considerable dynamical control, and where
this phenomena may be, in principle, demonstrated.

It is still unknown whether these conclusions are spe-
ci�c to the particular statistics of the RTN, or if they are
valid in a more general sense. Also, the topology of the
graph might play a role in the interplay between mem-
ory e�ects and the localization of the walker in the target
node. Further investigation should hence address other
graphs layouts, as well as other types of classical or quan-
tumnoise that induce non-Markovian dynamics, and their
e�ect on the quantum spatial search algorithm.
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